Internet of Musical Things Aplicado a Instrumentos Musicais Robóticos
(Internet of Musical Things Applied to Robotic Musical Instruments)
Abstract
Em meados da década de 1950, os músicos começaram a fazer uso do computador em atividades musicais, frequentemente não relacionados a processamento em tempo real. Porém, os avanços tecnológicos propiciaram um maior uso do computador em performances musicais, criando novas áreas de pesquisa como a de música ubíqua (ubimus), que promove ferramentas tecnológicas para auxiliar atividades musicais criativas e a Internet das Coisas Musicais (Internet of Musical Things -IoMusT), descrita como o uso da eletrônica (sensores, atuadores, conectividade e etc.) para propósitos musicais. Uma aplicação englobando essas duas áreas de pesquisa é o desenvolvimento de instrumentos musicais robóticos para performances em conjunto, que demandam sincronização. Este artigo apresenta conceitos de IoMusT e ubimus juntamente com exemplos de protótipos de robôs musicais (RoboMus), além de uma proposta para a sincronização dos robôs utilizando redes neurais para aprendizado e compensação de atrasos mecânicos e o protocolo PTP (Precision Time Protocol) para alinhamento de relógios.
(In the 1950s, musicians started to explore computer use for musical activities, often unrelated to real-time processing. However, technological advances have made the computer more present in musical performances, creating research areas such as ubiquitous music (ubimus), which aims to promote tools that support creative musical activities, and Internet of Musical Things (IoMusT), which is described as the use of electronics (sensors, actuators, connectivity, etc) for a musical purpose. Although, the increasingly intelligent and invasive technology has perhaps changed the way we think, sometimes even allowing smart devices to think for us. Thus, a question arises: how ubimus technology has influenced the musicality of human beings. In this paper, some of the key concepts of IoMusT is presented alongside examples using musical robots (RoboMus) and a proposal for robots synchronization including mechanical delay compensation. In addition, some considerations regarded to the interactions design of such technology are drawn.)
Downloads
References
Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805. https://doi.org/https://doi.org/10.1016/j.comnet.2010.05.010
Boley, H., & Chang, E. (2007). Digital ecosystems: Principles and semantics. Digital EcoSystems and Technologies Conference, 398–403.
Bretan, M., & Weinberg, G. (2014). Chronicles of a Robotic Musical Companion. Proceedings of the International Conference on New Interfaces for Musical Expression, 315–318. Retrieved from http://www.nime.org/proceedings/2014/nime2014_303.pdf
Bretan, M., & Weinberg, G. I. L. (2016). A Survey of Robotic Musicianship. Communications of the ACM, 59(5), 100–109. https://doi.org/10.1145/2818994
Camporez, H. A. F., Mota, T. S. R., Astorga, E. M. V., Rocha, H. R. O., & Costalonga, L. L. (2018). RoboMus: Uma Plataforma para Performances Musicais Robóticas. In D. Keller & M. H. De Lima (Eds.), Aplicações em Música Ubíqua(1st ed., pp. 58–93). São Paulo, Brasil: ANPPOM.
Camporez, H. A. F., Neto, A. F., Costalonga, L. L., & Rocha, H. R. de O. (2018). Interface Computacional para Controle Musical Utilizando os Movimentos dos Olhos. Revista Vórtex, 6(2), 1–17. Retrieved from http://vortex.unespar.edu.br/camporez_et_al_v6_n2.pdf
Cooklev, T., Eidson, J. C., & Pakdaman, A. (2007). An Implementation of IEEE 1588 Over IEEE 802.11b for Synchronization of Wireless Local Area Network Nodes. IEEE Transactions on Instrumentation and Measurement, 56(5), 1632–1639. https://doi.org/10.1109/TIM.2007.903640
Delicato, F. C., Pires, P. F., Batista, T., Cavalcante, E., Costa, B., & Barros, T. (2013). Towards an IoT Ecosystem. Proceedings of the First International Workshop on Software Engineering for Systems-of-Systems, 25–28. https://doi.org/10.1145/2489850.2489855
Hoffman, G., & Weinberg, G. (2010). Shimon: An Interactive Improvisational Robotic Marimba Player. CHI ’10 Extended Abstracts on Human Factors in Computing Systems, 3097–3102. https://doi.org/10.1145/1753846.1753925
IEEE. (2008). IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002), 1–300. https://doi.org/10.1109/IEEESTD.2008.4579760
Kannisto, J., Vanhatupa, T., Hännikäinen, M., & Hämäläinen, T. D. (2004). Precision Time Protocol Prototype on Wireless LAN. In J. N. de Souza, P. Dini, & P. Lorenz (Eds.), Telecommunications and Networking -ICT 2004(pp. 1236–1245). Berlin, Heidelberg: Springer Berlin Heidelberg.
Kapur, A. (2005). A History of robotic Musical Instruments. ICMC.
Keller, D., Flores, L. V., Pimenta, M. S., Capasso, A., & Tinajero, P. (2011). Convergent Trends Toward Ubiquitous Music. Journal of New Music Research, 40(3), 265–276. https://doi.org/10.1080/09298215.2011.594514
Keller, D., & Lazzarini, V. (2017). Ecologically Grounded Creative Practices in Ubiquitous Music. Organised Sound, 22(1), 61–72. https://doi.org/10.1017/S1355771816000340
Keller, D., Lazzarini, V., & Pimenta, M. S. (Eds.). (2014). Ubiquitous Music. Springer Publishing Company, Incorporated.
NESCoM. (2018a). RoboMus -Lapsteel guitar. Retrieved February 20, 2020, from goo.gl/KHrw4k
NESCoM. (2018b). RoboMus -Teste BongoBot. Retrieved February 20, 2020, from goo.gl/V6nvSn
Petersen, K., Solis, J., & Takanishi, A. (2008). Toward enabling a natural interaction between human musicians and musical performance robots: Implementation of a real-time gestural interface. RO-MAN 2008 -The 17th IEEE International Symposiumon Robot and Human Interactive Communication, 340–345. https://doi.org/10.1109/ROMAN.2008.4600689
Pisoni, D. B. (1977). Identification and discrimination of the relative onset time of two component tones: implications for voicing perception in stops. The Journal of the Acoustical Society of America, 61(May 2013), 1352–1361. https://doi.org/10.1121/1.381409
Singer, E., Feddersen, J., Redmon, C., & Bowen, B. (2004). LEMUR’s Musical Robots. Proceedings of the International Conference on New Interfaces for Musical Expression, 181–184. https://doi.org/10.1145/1027527.1027569
Turchet, L., Fischione, C., Essl, G., Keller, D., & Barthet, M. (2018). Internet of Musical Things: Vision and Challenges. IEEE Access, 6, 61994–62017. https://doi.org/10.1109/ACCESS.2018.2872625
Copyright (c) 2020 Higor Araujo Fim Camporez, Anilton Garcia, Jair Silva, Leandro Costalonga, Helder Rocha

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in the JDMI agree to the following terms:
-
Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons BY-NC-ND 4.0. This licensing allows others to share the work with no changes and acknowledgement of the work's authorship and initial publication in this journal, but not for commercial use.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Copyrights to illustrations published in the journal remain with their current copyright holders.
It is the author's responsibility to obtain permission to quote from copyright sources.
Any fees required to obtain illustrations or to secure copyright permissions are the responsibility of authors.
Additional Information
All correspondence concerning contributions, books and other review material should be sent to: deca-jdmi@ua.pt