Using GeoGebra Discovery in the context of Plane Geometry in a mathematics teacher training
DOI:
https://doi.org/10.34624/id.v16i2.35191Keywords:
GeoGebra Discovery, Mathematics Teacher Training, Plane Geometry, Mathematics Education and TechnologiesAbstract
This article presents the development and results of a continuing education of mathematics teachers for the study and exploration of Plane Geometry topics with the use of GeoGebra Discovery, an experimental version of GeoGebra with which it is possible, due to a set of Automatic Reasoning Tools (ART), to verify properties of Plane Geometry, some of them are pointed out in the literature as theorems. The objective of this training was to allow a reflection on the possible educational use of ART for use in teaching practice. Through the promotion of a remote didactic workshop, through the Teams platform, this study investigated, with the participants, possibilities of collaborative creation of pedagogical strategies for the use of ART in the teaching of Plane Geometry. In this qualitative investigation, the methodological assumptions of Design Research for the creation, execution and conduction of the training course were used, with the participation of five teachers, who work in Basic Education or Higher Education, in Brazilian institutions. To analyse the collected data, we used the TPACK (Technological Pedagogical Content Knowledge) theory, proposed by Mishra and Koehler. This theoretical contribution allowed us to identify which pedagogical, technological, and content knowledge the participants resorted to throughout the continuing education course with the use of the software, as well as to identify the difficulties faced by them throughout the course, to implement GeoGebra Discovery in their pedagogical practices.
Downloads
References
Balacheff, N. (2022). A argumentação matemática: um precursor problemático da demonstração. Educação Matemática Pesquisa, 24(1), 770–815. https://doi.org/10.23925/1983-3156.2022v24i1p770-815.
Bogdan, R., & Biklen, S. (1994). Investigação qualitativa em educação: uma introdução à teoria e aos métodos. Porto Editora.
Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design Research: Theoretical and Methodological Issues. Journal of the Learning Sciences, 13(1), 15–42. https://doi.org/10.1207/s15327809jls1301_2.
Garuti, R., Boero, P., & Lemut, E. (1998). Cognitive unity of theorems and difficult of proof. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 345–352). Stellenbosch (SA): PME.
González-López, M. J. (2001). La Gestión de la Clase de Geometría Utilizando Sistemas de Geometría Dinámica. In P. Gómez & L. Rico (Eds.), Iniciación a la investigación en didáctica de la matemática. Homenaje al profesor Mauricio Castro (pp. 277–290). Universidad de Granada. https://www.uv.es/Angel.Gutierrez/aprengeom/archivos2/homenaje/19Gonzalez-LopezMJ.PDF.
Hohenwarter, M., Kovács, Z., & Recio, T. (2019). Determinando propiedades geométricas simbólicamente con GeoGebra. Números: Revista de didáctica de las matemáticas, 100, 79–84. http://funes.uniandes.edu.co/14720/1/Hohenwarter2019Determinando.pdf.
Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical content knowledge? Contemporary Issues in Technology and Teacher Education, 9(1), 60-70. https://citejournal.org/wp-content/uploads/2016/04/v9i1general1.pdf
Kovács, Z. (2021). Sobre um problema que não era interessante para Erdős. Revista Do Instituto GeoGebra Internacional De São Paulo, 10(1), 5–18. https://doi.org/10.23925/2237-9657.2021.v10i1p005-018
Kovács, Z., Recio, T., & Vélez, M.P. (2022). Automated Reasoning Tools with GeoGebra: What Are They? What Are They Good For?. In P.R. Richard, , M. P. Vélez, & S. Van Vaerenbergh (Eds.), Mathematics Education in the Age of Artificial Intelligence. Mathematics Education in the Digital Era, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-86909-0_2.
Kovács, Z., Recio, T., & Vélez, M.P. (2018). Using Automated Reasoning Tools in GeoGebra in the Teaching and Learning of Proving in Geometry. The International Journal for Technology in Mathematics Education, 25(2), 33–50. https://doi.org/10.1564/tme_v25.2.03.
Kovács, Z., & Yu, J. H. (2020). Towards Automated Discovery of Geometrical Theorems in GeoGebra. ArXiv.org. https://doi.org/10.48550/arXiv.2007.12447.
Leivas, J. C. P., Lima, G. L., & Bianchini, B. L. (2023). Pensamento Geométrico. In B. L. Bianchini & G. L. Lima (Orgs.), O pensamento matemático e os diferentes modos de pensar que o constituem (pp. 153–190). Livraria da Física.
Lima, M. G., & Rocha, A. A. S. da . (2022). As tecnologias digitais no ensino de matemática. Revista Ibero-Americana De Humanidades, Ciências E Educação, 8(5), 729–739. https://doi.org/10.51891/rease.v8i5.5513.
Lopes, É. M. C., Pereira, G. M. R., & Oliveira, G. S. (2018). Utilização das tecnologias digitais de informação e comunicação na educação matemática de jovens e adultos: motivos e possibilidades apontados pelas pesquisas. Cadernos Da FUCAMP, 16(28). https://revistas.fucamp.edu.br/index.php/cadernos/article/view/1348.
Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge. Teachers College Record, 108(6), 1017–1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x.
Morselli, F. (2006). Use of examples in conjecturing and proving: An exploratory study. In Novotná, J., Moraová, H., Krátká, M. & Stehlíková, N. (Eds.). Proceedings 30th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4, pp. 185-192. Prague: PME.
Nakashima, R. H. R., & Piconez, S. C. B. (2016). Technological Pedagogical Content Knowledge (TPACK): Modelo explicativo da ação docente. Revista Eletrônica de Educação, 10(3), 231–250. https://doi.org/10.14244/198271991605.
Pereira, T. d. L. M. (2012). O uso do software GeoGebra em uma escola pública: interações entre alunos e professor em atividades e tarefas de geometria para o ensino fundamental e médio [Dissertação de Mestrado, Universidade Federal de Juiz de Fora]. https://repositorio.ufjf.br/jspui/handle/ufjf/1790.
Russo, A. M. (2023). A exploração de propriedades do triângulo no GeoGebra Discovery por alunos do ensino fundamental. Revista Do Instituto GeoGebra Internacional De São Paulo, 12(3), 133–161. https://doi.org/10.23925/2237-9657.2023.v12i3p133-161.
Shulman, L. S. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189x015002004.
Shulman, L. S. (2015). Conhecimento e ensino: fundamentos para a nova reforma. Cadernos Cenpec | Nova série, 4(2). https://doi.org/10.18676/cadernoscenpec.v4i2.293.
Souza, D. M. de, & Abar, C. A. A. P. (2023). Um estudo sobre as potencialidades da utilização do GeoGebra Discovery no contexto da Geometria Plana. Educação Matemática Em Revista, 28(80), 1-15. https://doi.org/10.37001/emr.v28i80.3456.
Trgalová, J., Donevska-Todorova, A., & Edson, A.J. (2023). Evaluation of Digital Resources: The “How” and “What for”. In: Pepin, B., Gueudet, G., Choppin, J. (eds) Handbook of Digital Resources in Mathematics Education. Springer International Handbooks of Education. Springer, Cham. https://doi.org/10.1007/978-3-030-95060-6_45-1.
Downloads
Published
Issue
Section
License
The authors keep the copyright for their work, assigning the first publication rights to the journal.
The Journal Indagatio Didactica is under the CC BY 4.0 license.
Model copyright statement to be submitted when the article is accepted for publication:
Copyright Statement PT | Copyright Statement EN


financially supported by National Funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the projects UIDB/00194/2020 (



