Cianobactérias e Microalgas: Organismos Promissores para a Agricultura e para a Reabilitação dos Solos

  • Mariana Rocha FCUP - Faculdade de Ciências da Universidade do Porto
  • Pedro Pereira FCUP - Faculdade de Ciências da Universidade do Porto
  • Paula Melo FCUP - Faculdade de Ciências da Universidade do Porto http://orcid.org/0000-0002-3892-4140
Palavras-chave: Cianobactérias, Microalgas, Crostas Biológicas de Solo, Bioestimulantes, Plantas, Solos

Resumo

O crescimento constante e rápido da população mundial traz consigo vários problemas associados, como o aumento da procura por alimentos e, consequentemente, o uso de métodos agrícolas, muitas vezes inadequados, que podem levar à degradação e incapacitação dos solos. Além disso, todos os anos, cerca de 40% das culturas mundiais são perdidas, e ainda 820 milhões de pessoas são consideradas desnutridas. Deste modo, é de elevada importância encontrar novas formas e métodos para aumentar o rendimento agronómico, reduzindo a pegada agrícola, bem como, encontrar alternativas para os fertilizantes altamente poluentes usados atualmente.

As cianobactérias e microalgas, presentes nas crostas biológicas do solo, correspondem a microrganismos fotoautotróficos, muito versáteis e com uma grande variedade de potenciais aplicações, nomeadamente como bioestimulantes e condicionadores dos solos. Esses organismos oferecem muitos benefícios aos solos e às plantas, não apenas potencializando e melhorando o crescimento e o desenvolvimento das plantas, mas também promovendo o restabelecimento de muitas propriedades dos solos degradados.

Por um futuro mais sustentável, o possível uso destes microrganismos como bioestimulantes merece ser explorado como alternativa aos atuais métodos, fertilizantes e outros químicos agrícolas.

Referências

Abinandan, S., Subashchandrabose, S. R., Venkateswarlu, K., & Megharaj, M. (2019). Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Critical Reviews in Biotechnology, 39(8), 981-998. https://doi.org/10.1080/07388551.2019.1654972
Baer, S., & Birgé, H. (2018). Soil ecosystem services: an overview. In (pp. 17-38). https://doi.org/10.19103/AS.2017.0033.02
Belnap, J. (2003). The world at your feet: desert biological soil crusts. Frontiers in Ecology and the Environment, 1(4), 181-189. https://doi.org/https://doi.org/10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2
Belnap, J. (2006). The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrological Processes, 20, 3159-3178. https://doi.org/10.1002/hyp.6325
Belnap J, B. B., Lange OL (2001). Biological Soil Crusts: Characteristics and Distribution. . In L. O. Belnap J (Ed.), Biological Soil Crusts: Structure, Function, and Management. Ecological Studies (Analysis and Synthesis) (Vol. 150, pp. 3-30). Springer.
Bowker, M. (2007). Biological Soil Crust Rehabilitation in Theory and Practice: An Underexploited Opportunity. Restoration Ecology - RESTOR ECOL, 15. https://doi.org/10.1111/j.1526-100X.2006.00185.x
Bu, C., Wu, S., Xie, Y., & Zhang, X. (2013). The Study of Biological Soil Crusts: Hotspots and Prospects. CLEAN - Soil Air Water, 41. https://doi.org/10.1002/clen.201100675
Chamizo, S., Adessi, A., Certini, G., & De Philippis, R. (2020). Cyanobacteria inoculation as a potential tool for stabilization of burned soils [https://doi.org/10.1111/rec.13092]. Restoration Ecology, 28(S2), S106-S114. https://doi.org/https://doi.org/10.1111/rec.13092
Chamizo, S., Cantón, Y., Miralles, I., & Domingo, F. (2012). Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biology and Biochemistry, 49, 96-105. https://doi.org/https://doi.org/10.1016/j.soilbio.2012.02.017
Costa, J. A. V., Freitas, B. C. B., Cruz, C. G., Silveira, J., & Morais, M. G. (2019). Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. J Environ Sci Health B, 54(5), 366-375. https://doi.org/10.1080/03601234.2019.1571366
Council, N. R. (1993). Soil and Water Quality: An Agenda for Agriculture. The National Academies Press. https://doi.org/doi:10.17226/2132
Dahms, H. U., Ying, X., & Pfeiffer, C. (2006). Antifouling potential of cyanobacteria: a mini-review. Biofouling, 22(5-6), 317-327. https://doi.org/10.1080/08927010600967261
Dineshkumar, R., Kumaravel, R., Gopalsamy, J., Sikder, M. N. A., & Sampathkumar, P. (2017). Microalgae as Bio-fertilizers for Rice Growth and Seed Yield Productivity. Waste and Biomass Valorization, 9(5), 793-800. https://doi.org/10.1007/s12649-017-9873-5
FAO. (2019). New UN Decade on Ecosystem Restoration offers unparalleled opportunity for job creation, food security and addressing climate change. FAO. Retrieved 21st January from http://www.fao.org/news/story/en/item/1182090/icode/
FAO. (2020). PROTECTING PLANTS, PROTECTING LIFE. FAO. Retrieved 21st January from http://www.fao.org/plant-health-2020/about/en/
FAO, I. (2015). Status of the World’s Soil Resources. Retrieved 2nd February from http://www.fao.org/3/i5199e/I5199E.pdf
Fernández Valiente, E., Ucha, A., Quesada, A., Leganés, F., & Carreres, R. (2000). Contribution of N2 fixing cyanobacteria to rice production: availability of nitrogen from 15N-labelled cyanobacteria and ammonium sulphate to rice. Plant and Soil, 221(1), 107-112. https://doi.org/10.1023/A:1004737422842
Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology, 28(2), 1051-1061. https://doi.org/10.1007/s10811-015-0625-2
Gianfreda, L., & Rao, M. A. (2008). Interactions Between Xenobiotics and Microbial and Enzymatic Soil Activity. Critical Reviews in Environmental Science and Technology, 38(4), 269-310. https://doi.org/10.1080/10643380701413526
Gupta, R. K., Chaudhary, K. K., Kumar, M., Negi, A., & Rai, H. (2012). Bioremediation and cyanobacteria: an overview (Vol. 9). https://doi.org/10.13140/RG.2.1.2003.4323
Kamal, S., Kumar, M., Kumar, R., & Raghav, M. (2018). Effect of Biofertilizers on Growth and Yield of Tomato (Lycopersicon esculentum Mill). International Journal of Current Microbiology and Applied Sciences, 7, 2542-2545. https://doi.org/10.20546/ijcmas.2018.702.309
Kasso, M., & Bekele, A. (2018). Post-harvest loss and quality deterioration of horticultural crops in Dire Dawa Region, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 17(1), 88-96. https://doi.org/https://doi.org/10.1016/j.jssas.2016.01.005
Kaur, P., & Purewal, S. S. (2019). Biofertilizers and Their Role in Sustainable Agriculture. In B. Giri, R. Prasad, Q.-S. Wu, & A. Varma (Eds.), Biofertilizers for Sustainable Agriculture and Environment (pp. 285-300). Springer International Publishing. https://doi.org/10.1007/978-3-030-18933-4_12
LJ, S. (2007). Cyanobacteria. In S. J (Ed.), Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, (Vol. 2011, pp. 659-680). Springer.
Machado, R. M., & Serralheiro, R. P. (2017). Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae, 3(2). https://doi.org/10.3390/horticulturae3020030
Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharjee, P., Das, B., Ghosh, A., & Tribedi, P. (2016). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24. https://doi.org/10.1007/s11356-016-8104-0
Mieczyslaw, G., & Romanowska-Duda, Z. (2014). Improvements in Germination, Growth, and Metabolic Activity of Corn Seedlings by Grain Conditioning and Root Application with Cyanobacteria and Microalgae. Polish Journal of Environmental Studies, 23, 1147-1153.
Mishra, U., & Pabbi, S. (2004). Cyanobacteria: A potential biofertilizer for rice. Resonance, 9(6), 6-10. https://doi.org/10.1007/BF02839213
Muñoz-Rojas, M., Chilton, A., Liyanage, G. S., Erickson, T. E., Merritt, D. J., Neilan, B. A., & Ooi, M. K. J. (2018). Effects of indigenous soil cyanobacteria on seed germination and seedling growth of arid species used in restoration. Plant and Soil, 429(1), 91-100. https://doi.org/10.1007/s11104-018-3607-8
Pulleman, M., Creamer, R., Hamer, U., Helder, J., Pelosi, C., Pérès, G., & Rutgers, M. (2012). Soil biodiversity, biological indicators and soil ecosystem services—an overview of European approaches. Current Opinion in Environmental Sustainability, 4(5), 529-538. https://doi.org/https://doi.org/10.1016/j.cosust.2012.10.009
Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255-1273. https://doi.org/https://doi.org/10.1016/j.biotechadv.2018.04.004
Rocha, F., Esteban Lucas-Borja, M., Pereira, P., & Muñoz-Rojas, M. (2020). Cyanobacteria as a Nature-Based Biotechnological Tool for Restoring Salt-Affected Soils. Agronomy, 10(9), 1321. https://www.mdpi.com/2073-4395/10/9/1321
Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019). Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy, 9, 192. https://doi.org/10.3390/agronomy9040192
Roychowdhury, D. (2014). A REVIEW ON THE EFFECTS OF BIOFERTILIZERS AND BIOPESTICIDES ON RICE AND TEA CULTIVATION AND PRODUCTIVITY. INTERNATIONAL JOURNAL OF SCIENCE ENGINEERING AND TECHNOLOGY, 2.
Savci, S. (2012). Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia, 1, 287-292. https://doi.org/https://doi.org/10.1016/j.apcbee.2012.03.047
Shariatmadari, Z., Riahi, H., & Shokravi, S. (2011). STUDY OF SOIL BLUE-GREEN ALGAE AND THEIR EFFECT ON SEED GERMINATION AND PLANT GROWTH OF VEGETABLE CROPS [Article]. ROSTANIHA, 12(2 (41)), 101-110. https://www.sid.ir/en/journal/ViewPaper.aspx?id=261557
Sharma, N., & Singhvi, R. (2017). Effects of Chemical Fertilizers and Pesticides on Human Health and Environment: A Review. International Journal of Agriculture, Environment and Biotechnology, 10, 675-680.
Singh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Front Microbiol, 7, 529. https://doi.org/10.3389/fmicb.2016.00529
Sutherland, D. L., & Ralph, P. J. (2019). Microalgal bioremediation of emerging contaminants - Opportunities and challenges. Water Res, 164, 114921. https://doi.org/10.1016/j.watres.2019.114921
Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl, 20(1), 5-15. https://doi.org/10.1890/08-0127.1
Wang, W., Liu, Y., Li, D., Hu, C., & Rao, B. (2009). Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biology and Biochemistry, 41(5), 926-929. https://doi.org/https://doi.org/10.1016/j.soilbio.2008.07.001
Publicado
2021-11-20