Revisão sobre a avaliação da toxicidade de contaminantes ambientais em linhas celulares de anfíbios

  • Beatriz Martinho Departamento de Biologia, Universidade de Aveiro
  • Isabel Lopes
  • Sónia Dias Coelho CESAM & Departamento de Biologia da Universidade de Aveiro
Palavras-chave: Xenobióticos, Ecotoxicologia, Anfíbios, Linhas celulares


Os anfíbios estão a ser severamente afetados pela poluição ambiental. Sendo espécies sensíveis às alterações no ecossistema, fornecem informações vitais sobre as condições ambientais em que se encontram. Contudo, o uso de animais em toxicologia e ecotoxicologia é algo controverso, e tem suscitado um maior esforço no sentido de se cumprir o princípio dos 3 Rs (Redução, Refinamento e Substituição), e assim avaliar o uso de várias técnicas alternativas para reduzir a experimentação animal, nomeadamente o uso de linhas celulares. Este trabalho surge com o objetivo de analisar os estudos científicos no que respeita ao uso de linhas celulares de anfíbios na avaliação da toxicidade de contaminantes ambientais, bem como discutir as lacunas que persistem nesta área de investigação. Foram selecionados 38 estudos científicos que analisam a toxicidade de vários compostos químicos, em 12 linhas celulares ou células de diferentes tecidos de 9 espécies de anfíbios. Verificou-se que os metais constituem o grupo de compostos mais estudados no que diz respeito a ensaios in vitro com anfíbios, especialmente o cádmio. São aplicadas diferentes metodologias de acordo com o tipo de linha celular testada, avaliando, assim, diferentes parâmetros toxicológicos. A maioria das linhas celulares mostra um aumento de stress oxidativo, alterações nos processos celulares e no seu desenvolvimento.


Aronzon CM, Peluso J, Coll CP (2020). Mixture toxicity of copper and nonylphenol on the embryo-larval development of Rhinella arenarum. Environmental Science and Pollution Research 27 (12), 13985–13994.
Balls M (2002). Future Improvements: Replacement In Vitro Methods. ILAR Journal 43 (Suppl_1), S69–S73.
Barinaga M (1990). Where Have All the Froggies Gone? Science 247 (4946), 1033–1034.
Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI (2007). Habitat Split and the Global Decline of Amphibians. Science 318 (5857), 1775–1777.
Beekhuijzen M (2017). The era of 3Rs implementation in developmental and reproductive toxicity (DART) testing: Current overview and future perspectives. Reproductive Toxicology 72, 86–96.
Bernareggi A, Conte G, Constanti A, Borelli V, Vita F, Zabucchi G (2019). On the mechanism of the electrophysiological changes and membrane lesions induced by asbestos fiber exposure in Xenopus laevis oocytes. Scientific Reports 9 (1), 1–14.
Bioethics NC, & Hopkins MM (2005). The ethics of research involving animals. Nuffield Council on Bioethics.
Bjerregaard HF (1993). Electrophysiological measurements of a toad renal epithelial cell line (A6) as an assay to evaluate cellular toxicity in vitro. Toxicology in Vitro 7 (4), 411–415.
Bjerregaard HF (1995). Side-specific Toxic Effects on the Membranes of Cultured Renal Epithelial Cells (A6). Alternatives to laboratory animals 23 (4), 485–490.
Bjerregaard HF, Stærmose S, Vang J (2001). Effect of linear alkylbenzene sulfonate (LAS) on ion transport and intracellular calcium in kidney distal epithelial cells (A6). Toxicology in Vitro 15 (4–5), 531–537.
Bjerregaard HF (2007). Effects of Cadmium on Differentiation and Cell Cycle Progression in Cultured Xenopus Kidney Distal Epithelial (A6) Cells. Alternatives to laboratory animals 35 (3), 343–348.
Bols NC, Dayeh VR, Lee LEJ, Schirmer K (2005). Chapter 2 Use of fish cell lines in the toxicology and ecotoxicology of fish. Piscine cell lines in environmental toxicology. Biochemistry and Molecular Biology of Fishes 6 (C), 43–84.
Brown DD (2004). A tribute to the Xenopus laevis oocyte and egg. Journal of Biological Chemistry 279 (44)
Burggren WW, Warburton S (2007). Amphibians as animal models for laboratory research in physiology. ILAR Journal 48 (3), 260–269.
Campbell JH, Heikkila JJ (2018). Effect of hemin, baicalein and heme oxygenase-1 (HO-1) enzyme activity inhibitors on Cd-induced accumulation of HO-1, HSPs and aggresome-like structures in Xenopus kidney epithelial cells. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 210, 1–17.
Chahardehi AM, Arsad H, Lim V (2020). Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. Plants 9 (10), 1–35.
Christensen JR, Bishop CA, Richardson JS, Pauli B, Elliott J (2004). Validation of an amphibian sperm inhibition toxicological test method using zinc. Environmental Toxicology and Chemistry 23 (12), 2950–2955.
Collins J, Crump M (2009). Extinction in our times: global amphibian decline. Oxford University Press. Oxford, 273 pp.
Curzer HJ, Perry G, Wallace MC, Perry D (2015). The Three Rs of Animal Research: What they Mean for the Institutional Animal Care and Use Committee and Why. Science and Engineering Ethics 22 (2), 549–565.
Davidson C, Shaffer HB, Jennings MR (2001). Declines of the california red-legged frog: climate, uv-b, habitat, and pesticides hypotheses. Ecological Applications 11 (2), 464–479.
Davidson C, Shaffer HB, Jennings MR (2002). Spatial Tests of the Pesticide Drift, Habitat Destruction, UV-B, and Climate-Change Hypotheses for California Amphibian Declines. Conservation Biology 16 (6), 1588–1601.
de Schroeder TMF, de D’Angelo AMP (1995). Dieldrin modifies the hydrolysis of PIP2 and decreases the fertilization rate in Bufo arenarum oocytes. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 112 (1), 61–67.
Doke SK, Dhawale SC (2015). Alternatives to animal testing: A review. Saudi Pharmaceutical Journal 23 (3), 223.
Dumpert K, Zietz E (1984). Platanna (Xenopus laevis) as a test organism for determining the embryotoxic effects of environmental chemicals. Ecotoxicology and Environmental Safety 8 (1), 55–74.
Dunson WA, Wyman RL, Corbett ES (1992). A Symposium on Amphibian Declines and Habitat Acidification. Journal of Herpetology 26 (4).
Egea-Serrano A, Relyea RA, Tejedo M, Torralva M (2012). Understanding of the impact of chemicals on amphibians: a meta-analytic review. Ecology and Evolution 2 (7), 1382–1397.
Eigenbrod F, Hecnar SJ, Fahrig L (2007). Accessible habitat: an improved measure of the effects of habitat loss and roads on wildlife populations. Landscape Ecology 23 (2), 159–168.
Ellinger MS, Sharif S, BeMiller PM (1983). Amphibian cell culture: Established fibroblastic line from embryos of the discoglossid frog, Bombina orientalis. In Vitro 19 (5), 429–434.
Faurskov B, Bjerregaard HF (1997). Effect of cadmium on active ion transport and cytotoxicity in cultured renal epithelial cells (A6). Toxicology in Vitro 11 (5), 717–722.
Faurskov B, Bjerregaard HF (1999). Effect of Cisplatin on Transepithelial Resistance and Ion Transport in the A6 Renal Epithelial Cell Line. Toxicology in Vitro 13 (4–5), 611–617.
Fernando VAK, Weerasena J, Lakraj GP, Perera IC, Dangalle CD, Handunnetti S, Premawansa S, Wijesinghe, MR (2016). Lethal and sub-lethal effects on the Asian common toad Duttaphrynus melanostictus from exposure to hexavalent chromium. Aquatic Toxicology 177, 98–105.
Ferrell Jr JE (1999). Xenopus oocyte maturation: New lessons from a good egg. BioEssays 21 (10), 833–842.
Freed JJ, Mezger-Freed L (1970). Stable Haploid Cultured Cell Lines from frog Embryos. Proceedings of the National Academy of Sciences 65 (2), 337–344.
Friberg L (1986) Cadmium. In Handbook & the Toxicology of Metals. Editado por Friberg L, Nordberg GF e Vouk VB. pp. 130-184. Elsevier, Amsterdam.
Ghoneum M, Cooper EL, Smith C (1987). Inhibition of SK cell activity in frogs by certain drugs and sugars. Developmental & Comparative Immunology 11 (2), 363–373.
Gillan KA, Hasspieler BM, Russell RW, Adeli K, Haffner GD (1998). Ecotoxicological Studies in Amphibian Populations of Southern Ontario. Journal of Great Lakes Research 24 (1), 45–54.
Gorrochategui E, Lacorte S, Tauler R, Martin FL (2016). Perfluoroalkylated Substance Effects in Xenopus laevis A6 Kidney Epithelial Cells Determined by ATR-FTIR Spectroscopy and Chemometric Analysis. Chemical Research in Toxicology 29 (5), 924–932.
Graudejus O, Ponce Wong R, Varghese N, Wagner S, Morrison B (2018). Bridging the gap between in vivo and in vitro research: Reproducing in vitro the mechanical and electrical environment of cells in vivo. Frontiers in Cellular Neuroscience, 12
Gurdon JB, Hopwood N (2000). The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. The International Journal of Developmental Biology 44 (1), 43–50.
Harper EB, Rittenhouse TAG, Semlitsch RD (2008). Demographic consequences of terrestrial habitat loss for pool-breeding amphibians: predicting extinction risks associated with inadequate size of buffer zones. Conservation biology 22 (5), 1205–1215.
Hayes TB, Falso P, Gallipeau S, Stice M (2010). The cause of global amphibian declines: a developmental endocrinologist’s perspective. The Journal of Experimental Biology 213 (6), 921.
Hedberg, D., & Wallin, M. (2010). Effects of Roundup and glyphosate formulations on intracellular transport, microtubules and actin filaments in Xenopus laevis melanophores. Toxicology in Vitro, 24(3), 795–802.
Herber RFM (1994). Cadmium. Techniques and Instrumentation in Analytical Chemistry 15 (C), 321–338.
Hoover G, Kar S, Guffey S, Leszczynski J, Sepúlveda MS (2019). In vitro and in silico modeling of perfluoroalkyl substances mixture toxicity in an amphibian fibroblast cell line. Chemosphere 233, 25–33.
Houlahan JE, Fidlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000). Quantitative evidence for global amphibian population declines. Nature 404 (6779), 752–755.
Hubrecht RC, Carter E (2019). The 3Rs and Humane Experimental Technique: Implementing Change. Animals : An Open Access Journal from MDPI 9 (10).
Islam A, Malik MF (2018). Impact of Pesticides on Amphibians: A Review. Journal of Toxicological Analysis 1 (2), 3.
Iuga A, Lerner E, Shedd TR, Schalie WH van der. (2009). Rapid responses of a melanophore cell line to chemical contaminants in water. Journal of Applied Toxicology 29 (4), 346–349.
Iwamoto DV, Kurylo CM, Schorling KM, Powell WH (2012). Induction of cytochrome P450 family 1 mRNAs and activities in a cell line from the frog Xenopus laevis. Aquatic Toxicology 114–115, 165–172.
Johnson MS, Aubee C, Salice CJ, Leigh KB, Liu E, Pott U, Pillard D (2017). A review of ecological risk assessment methods for amphibians: Comparative assessment of testing methodologies and available data. Integrated Environmental Assessment and Management 13 (4), 601–613.
Kaneko M, Okada R, Yamamoto K, Nakamura M, Mosconi G, Polzonetti-Magni AM, Kikuyama S (2008). Bisphenol A acts differently from and independently of thyroid hormone in suppressing thyrotropin release from the bullfrog pituitary. General and Comparative Endocrinology 155 (3), 574–580.
Kaur G, Dufour JM (2012). Cell lines: Valuable tools or useless artifacts. Spermatogenesis 2 (1), 1.
Khamis I, Heikkila JJ (2018). Effect of isothiocyanates, BITC and PEITC, on stress protein accumulation, protein aggregation and aggresome-like structure formation in Xenopus A6 kidney epithelial cells. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 204, 1–13.
Knight VB, Serrano EE (2006). Tissue and species differences in the application of quantum dots as probes for biomolecular targets in the inner ear and kidney. IEEE Transactions on Nanobioscience 5 (4), 251–262.
Langlois VS (2021). Amphibian Toxicology: A Rich But Underappreciated Model for Ecotoxicology Research. Archives of Environmental Contamination and Toxicology 80 (4), 661–662.
Laub LB, Jones BD, Powell WH (2010). Responsiveness of a Xenopus laevis cell line to the aryl hydrocarbon receptor ligands 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Chemico-Biological Interactions 183 (1), 202–211.
Lavine JA, Rowatt AJ, Klimova T, Whitington AJ, Dengler E, Beck C, Powell WH (2005). Aryl Hydrocarbon Receptors in the Frog Xenopus laevis: Two AhR1 Paralogs Exhibit Low Affinity for 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD). Toxicological Sciences 88 (1), 60–72.
Lessman CA, Kessel RG (1992). Effects of acrylamide on germinal vesicle migration and dissolution in oocytes of the frog, Rana pipiens. Experimental Cell Research 202 (1), 151–160.
Liu LS, Zhao LY, Wang SH, Jiang JP (2016). Research proceedings on amphibian model organisms. Zoological Research 37 (4), 237–245.
Machaca K (2007). Ca2+ signaling differentiation during oocyte maturation. Journal of Cellular Physiology 213 (2), 331–340.
Marchand G, Wambang N, Pellegrini S, Molinaro C, Martoriati A, Bousquet T, Markey A, Lescuyer-Rousseau A, Bodart JF, Cailliau K, Pelinski L, Marin M (2020). Effects of Ferrocenyl 4-(Imino)-1,4-Dihydro-quinolines on Xenopus laevis Prophase I - Arrested Oocytes: Survival and Hormonal-Induced M-Phase Entry. International Journal of Molecular Sciences 21 (9), 3049.
Marin M (2012). Calcium Signaling in Xenopus oocyte. Advances in Experimental Medicine and Biology 740, 1073–1094.
Marin M, Slaby S, Marchand G, Demuynck S, Friscourt N, Gelaude A, Lemière S, Bodart JF (2015). Xenopus laevis oocyte maturation is affected by metal chlorides. Toxicology in Vitro 29 (5), 1124–1131.
Mouchet F, Baudrimont M, Gonzalez P, Cuenot Y, Bourdineaud JP, Boudou A, Gauthier L (2006). Genotoxic and stress inductive potential of cadmium in Xenopus laevis larvae. Aquatic Toxicology 78 (2), 157–166.
Music E, Khan S, Khamis I, Heikkila JJ (2014). Accumulation of heme oxygenase-1 (HSP32) in Xenopus laevis A6 kidney epithelial cells treated with sodium arsenite, cadmium chloride or proteasomal inhibitors. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 166, 75–87.
Patar A, Giri A, Boro F, Bhuyan K, Singha U, Giri S (2016). Cadmium pollution and amphibians – Studies in tadpoles of Rana limnocharis. Chemosphere 144, 1043–1049.
Pays A, Hubert E, Brachet J (1977). A Comparison between Organomercurial- and Progesterone-Induced Maturation in Amphibian Oocytes. Differentiation 8 (1–3), 79–95.
Pechmann JHK, Scott DE, Semlitsch RD, Caldwell JP, Vitt LJ, Gibbons JW (1991). Declining amphibian populations: The problem of separating human impacts from natural fluctuations. Science 253 (5022), 892–895.
Perkins FM, Handler JS (1981). Transport properties of toad kidney epithelia in culture. American Journal of Phisiology - Cell Physiology 241 (3), C154-C159.
Pickford DB, Jones A, Velez-Pelez A, Iguchi T, Mitsui N, Tooi O (2015). Screening breeding sites of the common toad (Bufo bufo) in England and Wales for evidence of endocrine disrupting activity. Ecotoxicology and Environmental Safety 117, 7–19.
Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, La Marca E, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sánchez-Azofeifa G, Still CJ, Young BE (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439 (7073), 161–167.
Pudney M, Varma MGR, Leake CJ (1973). Establishment of a cell line (XTC-2) from the South African clawed toad,Xenopus laevis. Experientia 29 (4), 466–467.
Quaranta A, Bellantuono V, Cassano G, Lippe C (2009). Why Amphibians Are More Sensitive than Mammals to Xenobiotics. PLOS ONE 4 (11), e7699.
Rehberger K, Kropf C, Segner H (2018). In vitro or not in vitro: a short journey through a long history. Environmental Sciences Europe 30 (1), 1–12.
Rokaw MD, Sarac E, Lechman E, West M, Angeski J, Johnson JP, Zeidel ML (1996). Chronic regulation of transepithelial Na+ transport by the rate of apical Na+ entry. American Journal of Phisiology - Cell Physiology 270 (2), C600-C607.
Ruiz de Arcaute C, Brodeur JC, Soloneski S, Larramendy ML (2020). Toxicity to Rhinella arenarum tadpoles (Anura, Bufonidae) of herbicide mixtures commonly used to treat fallow containing resistant weeds: glyphosate–dicamba and glyphosate–flurochloridone. Chemosphere 245, 125623.
Russell WMS, Burch RL (1959). The principles of humane experimental technique. Methuen.
Sany SBT, Hashim R, Rezayi M, Rahman MA, Razavizadeh BBM, Abouzari-lotf E, Karlen DJ (2015). Integrated ecological risk assessment of dioxin compounds. Environmental Science and Pollution Research 22 (15), 11193–11208.
Saria R, Mouchet F, Perrault A, Flahaut E, Laplanche C, Boutonnet JC, Pinelli E, Gauthier L (2014). Short term exposure to multi-walled carbon nanotubes induce oxidative stress and DNA damage in Xenopus laevis tadpoles. Ecotoxicology and Environmental Safety 107, 22–29.
Schultz TW, Dawson DA (2003). Housing and husbandry of Xenopus for oocyte production. Lab Animal, 32 (2), 34–39.
Schuppli AC, Fraser D, McDonald M (2004). Expanding the three Rs to meet new challenges in humane animal experimentation. Alternatives to Laboratory Animals 32 (5), 525–532.
Shirriff CS, Heikkila JJ (2017). Characterization of cadmium chloride-induced BiP accumulation in Xenopus laevis A6 kidney epithelial cells. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 191, 117–128.
Shmerling ZG, Skoblina MN (1978). The action of ethidium bromide and chloramphenicol on the steroidogenesis induced by gonadotrophic hormones in the ovaries of amphibia and mammals. General and Comparative Endocrinology 35 (4), 355–359.
Slaby S, Hanotel J, Marchand G, Lescuyer A, Bodart JF, Leprêtre A, Lemière S, Marin, M. (2017). Maturation of Xenopus laevis oocytes under cadmium and lead exposures: Cell biology investigations. Aquatic Toxicology 193, 105–110.
Smith JC, Tata JR (1991). Chapter 32 Xenopus Cell Lines. Methods in Cell Biology 36 (C), 635–654.
Smith KG, Lips KR, Chase JM (2009). Selecting for extinction: nonrandom disease-associated extinction homogenizes amphibian biotas. Ecology Letters 12 (10), 1069–1078.
Sparling DW, Fellers GM, Mcconnell LL (2001). Pesticides and amphibian population declines in california, USA. Environmental Toxicology and Chemistry 20 (7), 1591–1595.
Strong RJ, Halsall CJ, Jones KC, Shore RF, Martin FL (2016). Infrared spectroscopy detects changes in an amphibian cell line induced by fungicides: Comparison of single and mixture effects. Aquatic Toxicology 178, 8–18.
Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004). Status and Trends of Amphibian Declines and Extinctions Worldwide. Science 306 (5702), 1783–1786.
Taft JD, Colonnetta MM, Schafer RE, Plick N, Powell WH (2018). Dioxin Exposure Alters Molecular and Morphological Responses to Thyroid Hormone in Xenopus laevis Cultured Cells and Prometamorphic Tadpoles. Toxicological Sciences 161 (1), 196–206.
Tardiff RG (1978). In vitro methods of toxicity evaluation. Annual Review of Pharmacology and Toxicology 18, 357–369.
Thit A, Selck H, Bjerregaard HF (2013). Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6): Effects on proliferation, cell cycle progression and cell death. Toxicology in Vitro 27 (5), 1596–1601.
Thit A, Selck H, Bjerregaard HF (2015). Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells. Toxicology in Vitro 29 (5), 1053–1059.
Veldhoen N, Skirrow RC, Osachoff H, Wigmore H, Clapson DJ, Gunderson MP, Van Aggelen C, Helbing CC (2006). The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquatic Toxicology 80 (3), 217–227.
Vitt LJ, Caldwell JP, Wilbur HM, Smith DC (1990). Amphibians as harbingers of decay. BioScience 40 (6), 418–418.
Walcott SE, Heikkila JJ (2010). Celastrol can inhibit proteasome activity and upregulate the expression of heat shock protein genes, hsp30 and hsp70, in Xenopus laevis A6 cells. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 156 (2), 285–293.
Wolf K, Quimby MC (1964). Amphibian cell culture: Permanent cell line from the bullfrog (Rana catesbeiana). Science 144 (3626), 1578–1580.
Woolfson JP, Heikkila JJ (2009). Examination of cadmium-induced expression of the small heat shock protein gene, hsp30, in Xenopus laevis A6 kidney epithelial cells. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 152 (1), 91–99.
Zhang X, Giesy JP, Hecker M (2013). Cell Lines in Aquatic Toxicology. In: Férard JF, Blaise C (eds) Encyclopedia of Aquatic Ecotoxicology. Springer, Dordrecht.