Bioatividade antimicrobiana e antitumoral do veneno de serpentes

  • André Teodoro Silva Universidade de Aveiro
  • Fernando JM Gonçalves
  • Helena Oliveira
  • Sérgio Marques
Palavras-chave: Bioatividade, Potencial antimicrobiana, Potencial antitumoral, Veneno de Serpentes, Toxinas

Resumo

Os venenos de serpentes são secreções com uma diversa composição de toxinas com características estruturais e funcionais particularmente interessantes.  Embora possam ser letais, os venenos exibem potentes constituintes cuja a atividade e especificidade os tornam excelentes modelos para o desenvolvimento de novos fármacos. O estudo da bioatividade destas toxinas permite evidenciar a sua utilidade para o tratamento de diversas patologias que afetam a saúde humana. Desta forma, nesta revisão abordamos os principais constituintes dos venenos e os seus mecanismos no processo de envenenamento.  Elucidamos relativamente às suas bioatividades antimicrobiana e antitumoral, focando, neste âmbito, o seu enorme potencial terapêutico.

Referências

Abdel-Ghani, L. M., Rahmy, T. R., Tawfik, M. M., Kaziri, I., Al-Obaidi, A., Rowan, E. G.,Abdel-Rahman, M. A. (2019). Cytotoxicity of Nubein6.8 peptide isolated from the snake venom of Naja nubiae on melanoma and ovarian carcinoma cell lines. Toxicon, 168, 22–31. https://doi.org/10.1016/j.toxicon.2019.06.220
Amorim, F. G., Menaldo, D. L., Carone, S. E. I., Silva, T. A., Sartim, M. A., Pauw, E. D.,Sampaio, S. V. (2018). New Insights on Moojase, a Thrombin-Like Serine Protease from Bothrops moojeni Snake Venom. Toxins, 10(12). https://doi.org/10.3390/toxins10120500
Arlinghaus, F. T., & Eble, J. A. (2012). C-type lectin-like proteins from snake venoms. Toxicon, 60(4), 512–519. https://doi.org/10.1016/j.toxicon.2012.03.001
Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E.-M., Linder, T., Wawrosch, C., Uhrin, P., Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
Azevedo, F. V. P. V., Lopes, D. S., Cirilo Gimenes, S. N., Achê, D. C., Vecchi, L., Alves, P. T., Yoneyama, K. A. G. (2016). Human breast cancer cell death induced by BnSP-6, a Lys-49 PLA2 homologue from Bothrops pauloensis venom. International Journal of Biological Macromolecules, 82, 671–677. https://doi.org/10.1016/j.ijbiomac.2015.10.080
Barlow, A., Pook, C. E., Harrison, R. A., & Wster, W. (2009). Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proceedings of the Royal Society B: Biological Sciences. (London). https://doi.org/10.1098/rspb.2009.0048
Bazaa, A., Luis, J., Srairi-Abid, N., Kallech-Ziri, O., Kessentini-Zouari, R., Defilles, C., Marrakchi, N. (2009). MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration. Matrix Biology, 28(4), 188–193. https://doi.org/10.1016/j.matbio.2009.03.007
Ben Bacha, A., Alonazi, M. A., Elshikh, M. S., & Karray, A. (2018). A novel bactericidal homodimeric PLA2 group-I from Walterinnesia aegyptia venom. International Journal of Biological Macromolecules, 117, 1140–1146. https://doi.org/10.1016/j.ijbiomac.2018.06.024
Benati, R. B., Costa, T. R., Cacemiro, M. da C., Sampaio, S. V., Castro, F. A. de, & Burin, S. M. (2018). Cytotoxic and pro-apoptotic action of MjTX-I, a phospholipase A2 isolated from Bothrops moojeni snake venom, towards leukemic cells. Journal of Venomous Animals and Toxins Including Tropical Diseases, 24. https://doi.org/10.1186/s40409-018-0180-9
Ben-Mabrouk, H., Zouari-Kessentini, R., Montassar, F., Koubaa, Z. A.-, Messaadi, E., Guillonneau, X., Marrakchi, N. (2016). CC5 and CC8, two homologous disintegrins from Cerastes cerastes venom, inhibit in vitro and ex vivo angiogenesis. International Journal of Biological Macromolecules, 86, 670–680. https://doi.org/10.1016/j.ijbiomac.2016.02.008
Bhat, S. K., Joshi, M. B., Ullah, A., Masood, R., Biligiri, S. G., Arni, R. K., & Satyamoorthy, K. (2016). Serine proteinases from Bothrops snake venom activates PI3K/Akt mediated angiogenesis. Toxicon, 124, 63–72. https://doi.org/10.1016/j.toxicon.2016.11.001
Blower, R. J., Barksdale, S. M., & Hoek, M. L. van. (2015). Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis. PLOS Neglected Tropical Diseases, 9(7), e0003862. https://doi.org/10.1371/journal.pntd.0003862
Boldrini-França, J., Cologna, C. T., Pucca, M. B., Bordon, K. de C. F., Amorim, F. G., Anjolette, F. A. P., Arantes, E. C. (2017). Minor snake venom proteins: Structure, function and potential applications. Biochimica et Biophysica Acta (BBA) - General Subjects, 1861(4), 824–838. https://doi.org/10.1016/j.bbagen.2016.12.022
Bonilla-Porras, A. R., Vargas, L. J., Jimenez-Del-Rio, M., Nuñez, V., & Velez-Pardo, C. (2016). Purification of nasulysin-1: A new toxin from Porthidium nasutum snake venom that specifically induces apoptosis in leukemia cell model through caspase-3 and apoptosis-inducing factor activation. Toxicon, 120, 166–174. https://doi.org/10.1016/j.toxicon.2016.08.006
Borges, I. P., Castanheira, L. E., Barbosa, B. F., de Souza, D. L. N., da Silva, R. J., Mineo, J. R., de Melo Rodrigues, V. (2016). Anti-parasitic effect on Toxoplasma gondii induced by BnSP-7, a Lys49-phospholipase A2 homologue from Bothrops pauloensis venom. Toxicon, 119, 84–91. https://doi.org/10.1016/j.toxicon.2016.05.010
Borkow, G., & Ovadia, M. (1999). Selective Lysis of Virus-Infected Cells by Cobra Snake Cytotoxins: A Sendai Virus, Human Erythrocytes, and Cytotoxin Model. Biochemical and Biophysical Research Communications, 264(1), 63–68. https://doi.org/10.1006/bbrc.1999.1483
Brenes, H., Loría, G. D., & Lomonte, B. (2020). Potent virucidal activity against Flaviviridae of a group IIA phospholipase A2 isolated from the venom of Bothrops asper. Biologicals, 63, 48–52. https://doi.org/10.1016/j.biologicals.2019.12.002
Calvete, J. J. (2013). The continuing saga of snake venom disintegrins. Toxicon, 62, 40–49. https://doi.org/10.1016/j.toxicon.2012.09.005
Calvete, J. J., Juárez, P., & Sanz, L. (2007). Snake venomics. Strategy and applications. Journal of Mass Spectrometry: JMS, 42(11), 1405–1414. https://doi.org/10.1002/jms.1242
Calvete, J. J., Marcinkiewicz, C., Monleón, D., Esteve, V., Celda, B., Juárez, P., & Sanz, L. (2005). Snake venom disintegrins: Evolution of structure and function. Toxicon, 45(8), 1063–1074. https://doi.org/10.1016/j.toxicon.2005.02.024
Calvete Juan J., Sanz Libia, Angulo Yamileth, Lomonte Bruno, & Gutiérrez José María. (2009). Venoms, venomics, antivenomics. FEBS Letters, 583(11), 1736–1743. https://doi.org/10.1016/j.febslet.2009.03.029
Cecilio, A. B., Caldas, S., Oliveira, R. A. D., Santos, A. S. B., Richardson, M., Naumann, G. B., Sanchez, E. F. (2013). Molecular Characterization of Lys49 and Asp49 Phospholipases A2 from Snake Venom and Their Antiviral Activities against Dengue virus. Toxins, 5(10), 1780–1798. https://doi.org/10.3390/toxins5101780
Chen, K.-C., Kao, P.-H., Lin, S.-R., & Chang, L.-S. (2007). The mechanism of cytotoxicity by Naja naja atra cardiotoxin 3 is physically distant from its membrane-damaging effect. Toxicon, 50(6), 816–824. https://doi.org/10.1016/j.toxicon.2007.06.011
Chien, C.-M., Chang, S.-Y., Lin, K.-L., Chiu, C.-C., Chang, L.-S., & Lin, S.-R. (2010). Taiwan cobra cardiotoxin III inhibits Src kinase leading to apoptosis and cell cycle arrest of oral squamous cell carcinoma Ca9-22 cells. Toxicon, 56(4), 508–520. https://doi.org/10.1016/j.toxicon.2010.05.007
Ciscotto, P., Machado de Avila, R. A., Coelho, E. A. F., Oliveira, J., Diniz, C. G., Farías, L. M., Chávez-Olórtegui, C. (2009). Antigenic, microbicidal and antiparasitic properties of an l-amino acid oxidase isolated from Bothrops jararaca snake venom. Toxicon, 53(3), 330–341. https://doi.org/10.1016/j.toxicon.2008.12.004
Costa, T. R., Menaldo, D. L., Prinholato da Silva, C., Sorrechia, R., Albuquerque, S. de, Pietro, R. C. L. R., Sampaio, S. V. (2015a). Evaluating the microbicidal, antiparasitic and antitumor effects of CR-LAAO from Calloselasma rhodostoma venom. International Journal of Biological Macromolecules, 80, 489–497. https://doi.org/10.1016/j.ijbiomac.2015.07.004
Costa, T. R., Menaldo, D. L., Prinholato da Silva, C., Sorrechia, R., Albuquerque, S. de, Pietro, R. C. L. R., Sampaio, S. V. (2015b). Evaluating the microbicidal, antiparasitic and antitumor effects of CR-LAAO from Calloselasma rhodostoma venom. International Journal of Biological Macromolecules, 80, 489–497. https://doi.org/10.1016/j.ijbiomac.2015.07.004
de Barros, E., Gonçalves, R. M., Cardoso, M. H., Santos, N. C., Franco, O. L., & Cândido, E. S. (2019). Snake Venom Cathelicidins as Natural Antimicrobial Peptides. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.01415
de Freitas Oliveira, C., da Silva Lopes, D., Mendes, M. M., Homsi-Brandeburgo, M. I., Hamaguchi, A., de Alcântara, T. M., de Melo Rodrigues, V. (2009). Insights of local tissue damage and regeneration induced by BnSP-7, a myotoxin isolated from Bothrops (neuwiedi) pauloensis snake venom. Toxicon, 53(5), 560–569. https://doi.org/10.1016/j.toxicon.2008.12.025
de Melo Alves Paiva, R., de Freitas Figueiredo, R., Antonucci, G. A., Paiva, H. H., de Lourdes Pires Bianchi, M., Rodrigues, K. C., Sampaio, S. V. (2011). Cell cycle arrest evidence, parasiticidal and bactericidal properties induced by l-amino acid oxidase from Bothrops atrox snake venom. Biochimie, 93(5), 941–947. https://doi.org/10.1016/j.biochi.2011.01.009
Dean, S. N., Bishop, B. M., & van Hoek, M. L. (2011). Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiology, 11(1), 114. https://doi.org/10.1186/1471-2180-11-114
Du, H., Samuel, R. L., Massiah, M. A., & Gillmor, S. D. (2015). The structure and behavior of the NA-CATH antimicrobial peptide with liposomes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1848(10, Part A), 2394–2405. https://doi.org/10.1016/j.bbamem.2015.07.006
Dubovskii, P. V., & Utkin, Y. N. (2014). Cobra Cytotoxins: Structural Organization and Antibacterial Activity. Acta Naturae, 6(3), 11–18.
Dubovskii, Peter V., Ignatova, A. A., Feofanov, A. V., Utkin, Y. N., & Efremov, R. G. (2020). Antibacterial activity of cardiotoxin-like basic polypeptide from cobra venom. Bioorganic & Medicinal Chemistry Letters, 30(3), 126890. https://doi.org/10.1016/j.bmcl.2019.126890
Ebrahim, K., Shirazi, F. H., Mirakabadi, A. Z., & Vatanpour, H. (2015). Cobra venom cytotoxins; apoptotic or necrotic agents? Toxicon, 108, 134–140. https://doi.org/10.1016/j.toxicon.2015.09.017
Ebrahim, K., Vatanpour, H., Zare, A., Shirazi, F. H., & Nakhjavani, M. (2016). Anticancer Activity a of Caspian Cobra (Naja naja oxiana) snake Venom in Human Cancer Cell Lines Via Induction of Apoptosis. Iranian Journal of Pharmaceutical Research: IJPR, 15(Suppl), 101–112.
Estevão-Costa, M.-I., Sanz-Soler, R., Johanningmeier, B., & Eble, J. A. (2018). Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. The International Journal of Biochemistry & Cell Biology, 104, 94–113. https://doi.org/10.1016/j.biocel.2018.09.011
Fernandez-Gomez, R., Zerrouk, H., Sebti, F., Loyens, M., Benslimane, A., & Ouaissi, M. A. (1994). Growth inhibition of Trypanosoma cruzi and Leishmania donovani infantum by different snake venoms: Preliminary identification of proteins from Cerastes cerastes venom which interact with the parasites. Toxicon, 32(8), 875–882. https://doi.org/10.1016/0041-0101(94)90366-2
França, S. C., Kashima, S., Roberto, P. G., Marins, M., Ticli, F. K., Pereira, J. O., … Soares, A. M. (2007). Molecular approaches for structural characterization of Bothropsl-amino acid oxidases with antiprotozoal activity: CDNA cloning, comparative sequence analysis, and molecular modeling. Biochemical and Biophysical Research Communications, 355(2), 302–306. https://doi.org/10.1016/j.bbrc.2006.12.217
Fry, B. G. (2015). Venomous Reptiles and Their Toxins: Evolution, Pathophysiology, and Biodiscovery (1.a ed.). Oxford University Press.
Fry, B. G., Roelants, K., Champagne, D. E., Scheib, H., Tyndall, J. D. A., King, G. F., de la Vega, R. C. R. (2009). The Toxicogenomic Multiverse: Convergent Recruitment of Proteins Into Animal Venoms. Annual Review of Genomics and Human Genetics, 10(1), 483–511. https://doi.org/10.1146/annurev.genom.9.081307.164356
Ganguly, K. K., Pal, S., Moulik, S., & Chatterjee, A. (2013). Integrins and metastasis. Cell Adhesion & Migration, 7(3), 251–261. https://doi.org/10.4161/cam.23840
Gaynes, R. (2017). The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerging Infectious Diseases, 23(5), 849–853. https://doi.org/10.3201/eid2305.161556
Gonçalves, A. R., Soares, M. J., de Souza, W., DaMatta, R. A., & Alves, E. W. (2002). Ultrastructural alterations and growth inhibition of Trypanosoma cruzi and Leishmania major induced by Bothrops jararaca venom. Parasitology Research, 88(7), 598–602. https://doi.org/10.1007/s00436-002-0626-3
Graziano, F., Maugeri, R., Basile, L., Meccio, F., & Iacopino, D. G. (2016). Aulogous fibrin sealant (Vivostat®) in the neurosurgical practice: Part II: Vertebro-spinal procedures. Surgical Neurology International, 7(Suppl 3), S77–S82. https://doi.org/10.4103/2152-7806.174894
Guimarães, D. de O., Lopes, D. S., Azevedo, F. V. P. V., Gimenes, S. N. C., Silva, M. A., Achê, D. C., … Rodrigues, V. de M. (2017). In vitro antitumor and antiangiogenic effects of Bothropoidin, a metalloproteinase from Bothrops pauloensis snake venom. International Journal of Biological Macromolecules, 97, 770–777. https://doi.org/10.1016/j.ijbiomac.2017.01.064
Guo, Chunmei, Liu, S., Yao, Y., Zhang, Q., & Sun, M.-Z. (2012). Past decade study of snake venom l-amino acid oxidase. Toxicon, 60(3), 302–311. https://doi.org/10.1016/j.toxicon.2012.05.001
Guo, Chun-teng, McClean, S., Shaw, C., Rao, P., Ye, M., & Bjourson, A. J. (2013). Trypsin and chymotrypsin inhibitor peptides from the venom of Chinese Daboia russellii siamensis. Toxicon, 63, 154–164. https://doi.org/10.1016/j.toxicon.2012.12.013
Gutiérrez, J. M., Rucavado, A., Escalante, T., & Díaz, C. (2005). Hemorrhage induced by snake venom metalloproteinases: Biochemical and biophysical mechanisms involved in microvessel damage. Toxicon, 45(8), 997–1011. https://doi.org/10.1016/j.toxicon.2005.02.029
Hammouda, M. B., Riahi-Chebbi, I., Souid, S., Othman, H., Aloui, Z., Srairi-Abid, N., Essafi-Benkhadir, K. (2018). Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin. Biochimica et Biophysica Acta (BBA) - General Subjects, 1862(3), 600–614. https://doi.org/10.1016/j.bbagen.2017.11.019
Izidoro, L. F. M., Ribeiro, M. C., Souza, G. R. L., Sant’Ana, C. D., Hamaguchi, A., Homsi-Brandeburgo, M. I., Rodrigues, V. M. (2006). Biochemical and functional characterization of an L-amino acid oxidase isolated from Bothrops pirajai snake venom. Bioorganic & Medicinal Chemistry, 14(20), 7034–7043. https://doi.org/10.1016/j.bmc.2006.06.025
Jiménez–Charris, E., Lopes, D. S., Gimenes, S. N. C., Teixeira, S. C., Montealegre–Sánchez, L., Solano–Redondo, L., Rodrigues Ávila, V. de M. (2019). Antitumor potential of Pllans–II, an acidic Asp49–PLA2 from Porthidium lansbergii lansbergii snake venom on human cervical carcinoma HeLa cells. International Journal of Biological Macromolecules, 122, 1053–1061. https://doi.org/10.1016/j.ijbiomac.2018.09.053
Khusro, A., Aarti, C., Barbabosa-Pliego, A., Rivas-Cáceres, R. R., & Cipriano-Salazar, M. (2018). Venom as therapeutic weapon to combat dreadful diseases of 21st century: A systematic review on cancer, TB, and HIV/AIDS. Microbial Pathogenesis, 125, 96–107. https://doi.org/10.1016/j.micpath.2018.09.003
King, G. F. (2011). Venoms as a platform for human drugs: Translating toxins into therapeutics. Expert Opinion on Biological Therapy, 11(11), 1469–1484. https://doi.org/10.1517/14712598.2011.621940
Kini, R. M., & Doley, R. (2010). Structure, function and evolution of three-finger toxins: Mini proteins with multiple targets. Toxicon, 56(6), 855–867. https://doi.org/10.1016/j.toxicon.2010.07.010
Koh, C. Y., & Kini, R. M. (2012). From snake venom toxins to therapeutics – Cardiovascular examples. Toxicon, 59(4), 497–506. https://doi.org/10.1016/j.toxicon.2011.03.017
Kostiza, T., Dahinden, C. A., Rihs, S., Otten, U., & Meier, J. (1995). Nerve growth factor from the venom of the chinese cobra Naja naja atra: Purification and description of non-neuronal activities. Toxicon, 33(10), 1249–1261. https://doi.org/10.1016/0041-0101(95)00086-2
Kostiza, T., & Meier, J. (1996). Nerve growth factors from snake venoms: Chemical properties, mode of action and biological significance. Toxicon, 34(7), 787–806. https://doi.org/10.1016/0041-0101(96)00023-2
Lin, K.-L., Su, J.-C., Chien, C.-M., Chuang, P.-W., Chang, L.-S., & Lin, S.-R. (2010). Down-regulation of the JAK2/PI3K-mediated signaling activation is involved in Taiwan cobra cardiotoxin III-induced apoptosis of human breast MDA-MB-231 cancer cells. Toxicon, 55(7), 1263–1273. https://doi.org/10.1016/j.toxicon.2010.01.017
Lucena, S., Castro, R., Lundin, C., Hofstetter, A., Alaniz, A., Suntravat, M., & Sánchez, E. E. (2015). Inhibition of pancreatic tumoral cells by snake venom disintegrins. Toxicon, 93, 136–143. https://doi.org/10.1016/j.toxicon.2014.11.228
Mackessy, S. P. (2010). Evolutionary trends in venom composition in the Western Rattlesnakes (Crotalus viridis sensu lato): Toxicity vs. tenderizers. Toxicon, 55(8), 1463–1474. https://doi.org/10.1016/j.toxicon.2010.02.028
Morjen, M., Honoré, S., Bazaa, A., Abdelkafi-Koubaa, Z., Ellafi, A., Mabrouk, K., Luis, J. (2014). PIVL, a snake venom Kunitz-type serine protease inhibitor, inhibits in vitro and in vivo angiogenesis. Microvascular Research, 95, 149–156. https://doi.org/10.1016/j.mvr.2014.08.006
Morjen, M., Kallech-ziri, O., Bazaa, A., Othman, H., Mabrouk, K., Zouari-kessentini, R., Marrakchi, N. (2013). PIVL, a new serine protease inhibitor from Macrovipera lebetina transmediterranea venom, impairs motility of human glioblastoma cells. Matrix Biology, 32(1), 52–62. https://doi.org/10.1016/j.matbio.2012.11.015
Morjen, M., Othman, H., Abdelkafi-Koubaa, Z., Messadi, E., Jebali, J., El Ayeb, M., Marrakchi, N. (2018). Targeting α1 inserted domain (I) of α1β1 integrin by Lebetin 2 from M. lebetina transmediterranea venom decreased tumorigenesis and angiogenesis. International Journal of Biological Macromolecules, 117, 790–799. https://doi.org/10.1016/j.ijbiomac.2018.05.230
Mukherjee, A. K., Dutta, S., Kalita, B., Jha, D. K., Deb, P., & Mackessy, S. P. (2016). Structural and functional characterization of complex formation between two Kunitz-type serine protease inhibitors from Russell’s Viper venom. Biochimie, 128–129, 138–147. https://doi.org/10.1016/j.biochi.2016.08.005
Muller, V. D. M., Russo, R. R., Oliveira Cintra, A. C., Sartim, M. A., De Melo Alves-Paiva, R., Figueiredo, L. T. M., Aquino, V. H. (2012). Crotoxin and phospholipases A2 from Crotalus durissus terrificus showed antiviral activity against dengue and yellow fever viruses. Toxicon, 59(4), 507–515. https://doi.org/10.1016/j.toxicon.2011.05.021
Muller, V. D., Soares, R. O., dos Santos-Junior, N. N., Trabuco, A. C., Cintra, A. C., Figueiredo, L. T., Aquino, V. H. (2014). Phospholipase A2 Isolated from the Venom of Crotalus durissus terrificus Inactivates Dengue virus and Other Enveloped Viruses by Disrupting the Viral Envelope. PLoS ONE, 9(11). https://doi.org/10.1371/journal.pone.0112351
Neale, V., Sotillo, J., Seymour, J. E., & Wilson, D. (2017). The Venom of the Spine-Bellied Sea Snake (Hydrophis curtus): Proteome, Toxin Diversity and Intraspecific Variation. International Journal of Molecular Sciences, 18(12), 2695. https://doi.org/10.3390/ijms18122695
Niland, S., Komljenovic, D., Macas, J., Bracht, T., Bäuerle, T., Liebner, S., & Eble, J. A. (2018). Rhodocetin-αβ selectively breaks the endothelial barrier of the tumor vasculature in HT1080 fibrosarcoma and A431 epidermoid carcinoma tumor models. Oncotarget, 9(32), 22406. https://doi.org/10.18632/oncotarget.25032
Nirthanan, S. (2020). Snake three-finger α-neurotoxins and nicotinic acetylcholine receptors: Molecules, mechanisms and medicine. Biochemical Pharmacology, 181, 114168. https://doi.org/10.1016/j.bcp.2020.114168
Nunes, E. dos S., de Souza, M. A. A., Vaz, A. F. de M., Santana, G. M. de S., Gomes, F. S., Coelho, L. C. B. B., … Correia, M. T. dos S. (2011). Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 159(1), 57–63. https://doi.org/10.1016/j.cbpb.2011.02.001
Okamoto, D. N., Kondo, M. Y., Oliveira, L. C. G., Honorato, R. V., Zanphorlin, L. M., Coronado, M. A., Gouvea, I. E. (2014). P-I class metalloproteinase from Bothrops moojeni venom is a post-proline cleaving peptidase with kininogenase activity: Insights into substrate selectivity and kinetic behavior. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1844(3), 545–552. https://doi.org/10.1016/j.bbapap.2013.12.014
Oliveira-Júnior, N. G., Freire, M. S., Almeida, J. A., Rezende, T. M. B., & Franco, O. L. (2018). Antimicrobial and proinflammatory effects of two vipericidins. Cytokine, 111, 309–316. https://doi.org/10.1016/j.cyto.2018.09.011
Páramo, L., Lomonte, B., Pizarro‐Cerdá, J., Bengoechea, J.-A., Gorvel, J.-P., & Moreno, E. (1998). Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom. European Journal of Biochemistry, 253(2), 452–461. https://doi.org/10.1046/j.1432-1327.1998.2530452.x
Park, M. H., Jo, M., Won, D., Song, H. S., Han, S. B., Song, M. J., & Hong, J. T. (2012). Snake venom toxin from Vipera lebetina turanicainduces apoptosis of colon cancer cells via upregulation of ROS- and JNK-mediated death receptor expression. BMC Cancer, 12(1), 228. https://doi.org/10.1186/1471-2407-12-228
Patiño, A. C., Pereañez, J. A., Gutiérrez, J. M., & Rucavado, A. (2013). Biochemical and biological characterization of two serine proteinases from Colombian Crotalus durissus cumanensis snake venom. Toxicon, 63, 32–43. https://doi.org/10.1016/j.toxicon.2012.11.010
Perumal Samy, R., Gopalakrishnakone, P., Ho, B., & Chow, V. T. K. (2008). Purification, characterization and bactericidal activities of basic phospholipase A2 from the venom of Agkistrodon halys (Chinese pallas). Biochimie, 90(9), 1372–1388. https://doi.org/10.1016/j.biochi.2008.04.007
Perumal Samy, Ramar, Gopalakrishnakone, P., Bow, H., Puspharaj, P. N., & Chow, V. T. K. (2010). Identification and characterization of a phospholipase A2 from the venom of the Saw-scaled viper: Novel bactericidal and membrane damaging activities. Biochimie, 92(12), 1854–1866. https://doi.org/10.1016/j.biochi.2010.07.012
Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(12), 2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012
Rey-Suárez, P., Floriano, R. S., Rostelato-Ferreira, S., Saldarriaga-Córdoba, M., Núñez, V., Rodrigues-Simioni, L., & Lomonte, B. (2012). Mipartoxin-I, a novel three-finger toxin, is the major neurotoxic component in the venom of the redtail coral snake Micrurus mipartitus (Elapidae). Toxicon, 60(5), 851–863. https://doi.org/10.1016/j.toxicon.2012.05.023
Rodrigues, R. S., da Silva, J. F., Boldrini França, J., Fonseca, F. P. P., Otaviano, A. R., Henrique Silva, F., Rodrigues, V. M. (2009). Structural and functional properties of Bp-LAAO, a new l-amino acid oxidase isolated from Bothrops pauloensis snake venom. Biochimie, 91(4), 490–501. https://doi.org/10.1016/j.biochi.2008.12.004
Saikia, D., & Mukherjee, A. K. (2017). Anticoagulant and Membrane Damaging Properties of Snake Venom Phospholipase A2 Enzymes. Em H. Inagaki, C.-W. Vogel, A. K. Mukherjee, T. R. Rahmy, & P. Gopalakrishnakone (Eds.), Snake Venoms (pp. 87–104). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-6410-1_18
Salama, W. H., Ibrahim, N. M., El Hakim, A. E., Bassuiny, R. I., Mohamed, M. M., Mousa, F. M., & Ali, M. M. (2018). l-Amino acid oxidase from Cerastes vipera snake venom: Isolation, characterization and biological effects on bacteria and tumor cell lines. Toxicon, 150, 270–279. https://doi.org/10.1016/j.toxicon.2018.06.064
Samah, S., Fatah, C., Jean-Marc, B., Safia, K.-T., & Fatima, L.-D. (2017). Purification and characterization of Cc-Lec, C-type lactose-binding lectin: A platelet aggregation and blood-clotting inhibitor from Cerastes cerastes venom. International Journal of Biological Macromolecules, 102, 336–350. https://doi.org/10.1016/j.ijbiomac.2017.04.018
Sampaio, S. C., Hyslop, S., Fontes, M. R. M., Prado-Franceschi, J., Zambelli, V. O., Magro, A. J., Cury, Y. (2010). Crotoxin: Novel activities for a classic β-neurotoxin. Toxicon, 55(6), 1045–1060. https://doi.org/10.1016/j.toxicon.2010.01.011
Sarray, S., Delamarre, E., Marvaldi, J., Ayeb, M. E., Marrakchi, N., & Luis, J. (2007). Lebectin and lebecetin, two C-type lectins from snake venom, inhibit α5β1 and αv-containing integrins. Matrix Biology, 26(4), 306–313. https://doi.org/10.1016/j.matbio.2007.01.001
Sawan, S., Yaacoub, T., Hraoui-Bloquet, S., Sadek, R., Hleihel, W., Fajloun, Z., & Karam, M. (2017). Montivipera bornmuelleri venom selectively exhibits high cytotoxic effects on keratinocytes cancer cell lines. Experimental and Toxicologic Pathology, 69(4), 173–178. https://doi.org/10.1016/j.etp.2017.01.001
Shimizu, J. F., Pereira, C. M., Bittar, C., Batista, M. N., Campos, G. R. F., Silva, S. da, Jardim, A. C. G. (2017). Multiple effects of toxins isolated from Crotalus durissus terrificus on the hepatitis C virus life cycle. PLOS ONE, 12(11), e0187857. https://doi.org/10.1371/journal.pone.0187857
Silva, M. A., Lopes, D. S., Teixeira, S. C., Gimenes, S. N. C., Azevedo, F. V. P. V., Polloni, L., Rodrigues, R. S. (2018). Genotoxic effects of BnSP-6, a Lys-49 phospholipase A2 (PLA2) homologue from Bothrops pauloensis snake venom, on MDA-MB-231 breast cancer cells. International Journal of Biological Macromolecules, 118, 311–319. https://doi.org/10.1016/j.ijbiomac.2018.06.082
Silva, M. M., Seneviratne, S. S., Weerakoon, D. K., & Goonasekara, C. L. (2017). Characterization of Daboia russelii and Naja naja venom neutralizing ability of an undocumented indigenous medication in Sri Lanka. Journal of Ayurveda and Integrative Medicine, 8(1), 20–26. https://doi.org/10.1016/j.jaim.2016.10.001
Soares, T. G., Santos, J. L. dos, Alvarenga, V. G. de, Santos, J. S. C., Leclercq, S. Y., Faria, C. D., Borges, M. H. (2020). Biochemical and functional properties of a new l-amino acid oxidase (LAAO) from Micrurus lemniscatus snake venom. International Journal of Biological Macromolecules, 154, 1517–1527. https://doi.org/10.1016/j.ijbiomac.2019.11.033
Sudarshan, S., & Dhananjaya, B. L. (2016). Antibacterial activity of an acidic phospholipase A2 (NN-XIb-PLA2) from the venom of Naja naja (Indian cobra). SpringerPlus, 5(1), 112. https://doi.org/10.1186/s40064-016-1690-y
Sudharshan, S., Dhananjaya, B. L., Sudharshan, S., & Dhananjaya, B. L. (2015). Antibacterial potential of a basic phospholipase A2(VRV-PL-VIIIa) from Daboia russelii pulchella (Russell’s viper) venom. Journal of Venomous Animals and Toxins Including Tropical Diseases, 21, 1–8. https://doi.org/10.1186/s40409-015-0014-y
Suzuki, N., Yamazaki, Y., Brown, R. L., Fujimoto, Z., Morita, T., & Mizuno, H. (2008). Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: Implications for movement of the C-terminal cysteine-rich domain. Acta Crystallographica Section D: Biological Crystallography, 64(Pt 10), 1034–1042. https://doi.org/10.1107/S0907444908023512
Tan, C. H., Tan, K. Y., Ng, T. S., Sim, S. M., & Tan, N. H. (2019). Venom Proteome of Spine-Bellied Sea Snake (Hydrophis curtus) from Penang, Malaysia: Toxicity Correlation, Immunoprofiling and Cross-Neutralization by Sea Snake Antivenom. Toxins, 11(1), 3. https://doi.org/10.3390/toxins11010003
Tan, K. K., Ler, S. G., Gunaratne, J., Bay, B. H., & Ponnampalam, G. (2017). In vitro cytotoxicity of L-amino acid oxidase from the venom of Crotalus mitchellii pyrrhus. Toxicon, 139, 20–30. https://doi.org/10.1016/j.toxicon.2017.09.012
Teodoro, A., Oliveira, H., Marques, S., & Gonçalves, F. J. (2019). Avaliação do potencial antitumoral e antibacteriano do veneno de Vipera latastei (Tese Mestrado). Universidade de Aveiro.
Utkin, Y. N. (2013). Three-finger toxins, a deadly weapon of elapid venom – Milestones of discovery. Toxicon, 62, 50–55. https://doi.org/10.1016/j.toxicon.2012.09.007
Vitorino, K. A., Alfonso, J. J., Gómez, A. F., Santos, A. P. A., Antunes, Y. R., Caldeira, C. A. da S., Calderon, L. A. (2020). Antimalarial activity of basic phospholipases A2 isolated from Paraguayan Bothrops diporus venom against Plasmodium falciparum. Toxicon: X, 8, 100056. https://doi.org/10.1016/j.toxcx.2020.100056
Wang, B., Wang, Q., Wang, C., Wang, B., Qiu, L., Zou, S., Zhang, L. (2020). A comparative analysis of the proteomes and biological activities of the venoms from two sea snakes, Hydrophis curtus and Hydrophis cyanocinctus, from Hainan, China. Toxicon, 187, 35–46. https://doi.org/10.1016/j.toxicon.2020.08.012
Wang, J., Shen, B., Guo, M., Lou, X., Duan, Y., Cheng, X. P., Hao, Q. (2005). Blocking Effect and Crystal Structure of Natrin Toxin, a Cysteine-Rich Secretory Protein from Naja atra Venom that Targets the BKCa Channel,. Biochemistry, 44(30), 10145–10152. https://doi.org/10.1021/bi050614m
Wijeyewickrema, L. C., Gardiner, E. E., Gladigau, E. L., Berndt, M. C., & Andrews, R. K. (2010). Nerve Growth Factor Inhibits Metalloproteinase-Disintegrins and Blocks Ectodomain Shedding of Platelet Glycoprotein VI. Journal of Biological Chemistry, 285(16), 11793–11799. https://doi.org/10.1074/jbc.M110.100479
Xiao, H., Pan, H., Liao, K., Yang, M., & Huang, C. (2017). Snake Venom PLA2, a Promising Target for Broad-Spectrum Antivenom Drug Development. BioMed Research International, 2017. https://doi.org/10.1155/2017/6592820
Yamazaki, Y., Takani, K., Atoda, H., & Morita, T. (2003). Snake Venom Vascular Endothelial Growth Factors (VEGFs) Exhibit Potent Activity through Their Specific Recognition of KDR (VEGF Receptor 2). Journal of Biological Chemistry, 278(52), 51985–51988. https://doi.org/10.1074/jbc.C300454200
Yee, K. T., Tongsima, S., Vasieva, O., Ngamphiw, C., Wilantho, A., Wilkinson, M. C., Rojnuckarin, P. (2018). Analysis of snake venom metalloproteinases from Myanmar Russell’s viper transcriptome. Toxicon, 146, 31–41. https://doi.org/10.1016/j.toxicon.2018.03.005
Yen, C.-Y., Liang, S.-S., Han, L.-Y., Chou, H.-L., Chou, C.-K., Lin, S.-R., & Chiu, C.-C. (2013). Cardiotoxin III Inhibits Proliferation and Migration of Oral Cancer Cells through MAPK and MMP Signaling. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/650946
Zancolli, G., Calvete, J. J., Cardwell, M. D., Greene, H. W., Hayes, W. K., Hegarty, M. J., Wüster, W. (2019). When one phenotype is not enough: Divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species. Proceedings of the Royal Society B: Biological Sciences, 286(1898), 20182735. https://doi.org/10.1098/rspb.2018.2735
Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415(6870), 389–395. https://doi.org/10.1038/415389a
Zelanis, A., Huesgen, P. F., Oliveira, A. K., Tashima, A. K., Serrano, S. M. T., & Overall, C. M. (2015). Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites. Journal of Proteomics, 113, 260–267. https://doi.org/10.1016/j.jprot.2014.10.002
Zhang, Y., Zhao, H., Yu, G.-Y., Liu, X.-D., Shen, J.-H., Lee, W.-H., & Zhang, Y. (2010). Structure–function relationship of king cobra cathelicidin. Peptides, 31(8), 1488–1493. https://doi.org/10.1016/j.peptides.2010.05.005
Zhang, Y.-J., Wang, J.-H., Lee, W.-H., Wang, Q., Liu, H., Zheng, Y.-T., & Zhang, Y. (2003). Molecular characterization of Trimeresurus stejnegeri venom l-amino acid oxidase with potential anti-HIV activity. Biochemical and Biophysical Research Communications, 309(3), 598–604. https://doi.org/10.1016/j.bbrc.2003.08.044
Zhao, H., Gan, T.-X., Liu, X.-D., Jin, Y., Lee, W.-H., Shen, J.-H., & Zhang, Y. (2008). Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides, 29(10), 1685–1691. https://doi.org/10.1016/j.peptides.2008.06.008
Zhu, H., Yang, X., Liu, J., Ge, Y., Qin, Q., Lu, J., … Sun, X. (2014). Melittin radiosensitizes esophageal squamous cell carcinoma with induction of apoptosis in vitro and in vivo. Tumor Biology, 35(9), 8699–8705. https://doi.org/10.1007/s13277-014-2146-z
Publicado
2021-03-31
Secção
Artigos