REVISTA DO DETUA, VOL. 1, N° 2, SETEMBRO 1994

149

A Simulator Function Library for the
SWIFT LAN Manager Prototype

Armando J. Pinho, Fernando M. S. Ramos

Abstract - This paper gives a description of the Simulator
part of the SWIFT LAN Manager prototype, developed at
INESC, as a contribution to the EURET/SWIFT Project. The
editor tool used to manipulate simulator event files and the
encoding used to represent actions are also described.

Resumo - Este artigo descreve parte do trabalho
desenvolvido no INESC respeitante ao protétipo de um LAN
Manager para o projecto EURET/SWIFT, projecto co-
financiado pela Comissdo da Unido Europeia. Em particular
¢ descrito o nucleo do simulador assim como o editor dos
ficheiros de simulacio e o respectivo codigo usado para a
representacio de accdes.

I. INTRODUCTION

The aim of the EURET/SWIFT (Specifications for
Controller Working Positions in Future Air Traffic
Control) project is to provide a proposal of detailed
specification of the Controller Working Position (CWP) to
be used in the development of future Air Traffic Control
systems.

One important aspect of the definition of CWPs is the
communications environment, and in particular the
definition of the LAN Manager architecture and facilities
that should be implemented. For the purpose of clarifying
the concepts of LAN Management in SWIFT it was
specified and developed a prototype of LAN Manager.

The SWIFT LAN Manager prototype includes two basic
functional parts: the Human Machine Interface (HMI) and
the Simulator. The HMI provides all the interaction with
the user, including the support of user inputs and
representation of outputs, and the execution of the kernel
machine of the prototype. The Simulator part provides the
HM]I, at its request, with time controlled simulation events
previously recorded in a simulator event file. Also, an
Editor is provided as the tool to manipulate the simulator
event files. The Editor, although working dissociated (i.e.,
off-line) from the Simulator and HMI, is considered as
belonging to the Simulator part.

This paper gives a brief description of the design and
implementation of the Simulator part of the prototype
(including the Editor) which was developed at INESC,
Portugal. The HMI part, that will not be described in this

paper, was developed by ESG, Germany, that is a private
company partner of INESC in this SWIFT work package.

All the programming was done using the C language,
under the UNIX operating system environment. Although
the programs were intended to run on a HP 9000 machine,
the code (at least the one used to implement the Simulator
part) is easily portable to other architectures (in fact it was
developed mostly under the LINUX version of UNIX,
running on a 486 machine).

In the following sections we will give an overview of the
most important aspects of the Simulator including the
respective event file Editor, focusing on the
implementation, file format and encoding of actions.

II. THE SIMULATOR KERNEL

The purpose of the simulator kernel that we describe
here is the generation of events affecting a global data
structure that encodes, in every moment, all the state of the
current simulation. This data structure is also the
connection between the simulator kernel and the HMI
front-end. Briefly, the interation between the HMI front-
end and the simulator kernel is as follows. Periodically
(tipically every second), the front-end calls a function (the
simulator kernel) that, if there is any action to be
performed, it will be reflected in the global data structure.
Therefore, the coupling between the HMI and the
simulator kernel was kept quite low in order to avoid, as
much as possible, the inter-dependency of these two
modules. This was an important factor since the two
modules were developed at distinct institutions, the HMI
at ESG in Germany and the simulator kernel at INESC in
Portugal.

The events can be of several types including structural
and functional changes of the environment, and alarms.
Nevertheless, they are treated all the same way by the
simulator, i.e. as changes on the global data structure
(these changes on the global data structure will be referred
from now on as actions).

From the HMI point of view there is only a way to
access the simulator kernel which is by calling the
sim_periodic_timer() function. This function will
determine if there is any action to be performed and will
execute it if this is the case. The return value of this
routine informs the HMI if the call succeeded, if the

150

simulation ended or if the simulator was not able to access
the specified simulator event file.

Analyzing with more detail the simulator kernel we
identify an internal timer that is responsible for the correct
deliverance of the time programmed events. As we will
show shortly, each event has a time tag that represents the
time of occurence of that event during simulation. The
data structure that encodes an event is simply:

typedef struct {

int nActions;
int offsetTime;
int absoluteTime;
char **actions;

} SimEvent;

The parameters offsetTime and absoluteTime hold,
respectively, the number of seconds that have to tic since
the last event occured, and the number of seconds since
the begin of the simulation (obviously this is redundant
information but makes things easier to handle). The
paramenters nActions and actions denote, respectively, the
number of actions to be performed when that event occurs,
and the actions encoded as strings (below we will explain
the encoding used to represent actions as strings).

The simulation is controlled by another data structure
that is loaded with data from a simulator event file at the
start of a simulation:

typedef struct {
FILE *filePtr;
char *fileName;

char *creationDate;

char *lastChangeDate;
int numberOfEvents;

int currentEventNumber;
SimEvent **events;

int simStartTime;

} SimEventFile;

Parameters filePtr and fileName contain information
related to the simulator event file that is in use, while
creationDate and lastChangeDate indicate the date of file
creation and last modification. The other parameters are
related with the simulation itself: number of events in file
(numberOfEvents), indication of the event that is currently
being accessed (currentEventNumber), a list of events
(events), and the start time of the simulation obtained
through the system clock (simStartTime).

When a simulation begins the global data structure is
initialized with a default state, which mostly corresponds
to null values of the parameters. Therefore, it is expected
that the first event (that always occurs at simulation time
zero) will fill the parameters accordingly to the desired
initial scenario. All the subsequent actions are performed
in an incremental fashion, i.e. only the changes are
communicated.

The next section is devoted to provide a general
overview of the editor tool. It includes also a description

REVISTA DO DETUA, VOL. 1, N° 2, SETEMBRO 1994

of the simulator event file format and of the encoding used
to specify actions.

II1. THE EDITOR

The main goal of the editor tool is the manipulation of
simulation event files, which contain sequences of sets of
actions intended to feed the simulator. Each set of actions
is considered a record or event if it shares the same time
tag, corresponding to the time of occurrence of that event.
Therefore, each event may consist of several actions that
will be performed "simultaneously" (this means that when
the time of occurrence of the event arrives all the actions
associated will be performed as soon as possible, but at a
non-specified order).

When a new file is created the global data structure
contains the same initialization values as in the case of a
simulation. In every moment of editing the global data
structure reflects all past actions that are recorded in the
file until the previous event. The current event generates
only the actions needed to change the state of the previous
event to the state of the current. This means that the
editing, as the simulation, is also incremental.

In this section we describe three main items related to
the editor tool: its implementation, the format of the
simulator event files, and the encoding of actions.

A. The implementation of the editor

The editor was implemented using terminal screen
oriented menus. The curses package [1] (system V
terminal screen handling and optimization package) was
the main source of screen handling routines that we used
to develop the editor. This package has the advantage to
be independent of the specific terminal used to run the
programs, since it uses the terminfo [2] terminal capability
data base to look for the appropriate escape sequencies.

The main motivation to use a menu based editor was the
reasonable complexity of the data structure that has to be
handled during editing. This approach offers the advantage
of easy move across all the data structure paraineters
making the changes in an arbitrary sequence. The
organization of the menus follows closely the organization
of the global data structure. For example, to the sub-
structure alarm_event:

typedef struct alarm_event_type {

Boolean alarm_tag;
id_type CWP_id;
id_type resource_id;
Int_16 alarm_no;
char alarm_message[MAX_mesg];
Boolean alarm_criticality;
Int_8 alarm_type;
time_type alarm_log_time;

} alarm_event_type;

corresponds the menu items:

REVISTA DO DETUA, VOL. 1, N° 2, SETEMBRO 1994

Alarm tag
CWP id
Resource id
Alarm number
Alarm message
Alarm criticality
Alarm type
Alarm log time

The movimentation can be done using the cursor keys
and the data is entered using fields with auto-validation.
Some of the input fields offer a pre-defined list of choices
that can be selected in an easy manner.

B. The simulator event file format

The simulator event files are ASCII files, starting with a
header that is twofold. It is used to distinguish simulator
event files from other files and also it provides information
about the creation time and last change time of the file.
Here is an example of the header of a simulator event file:

ke e ok ok ok ok ok sk ok sk sk st sk sk sk ok s ok ok sk sk ke ok sk sk sk sk ok sk ok sk ok sk sk ok sk ok

LAN Manager simulator event file
Creation date: Thu Jul 21 12:34:11 1994
Last change : Thu Jul 21 12:38:14 1994

ek ok ok ke sk ok ke sk ke ok sk s sk ok sk ok ok e sk ok e sk sk sk sk st skok ok ok ok skosk ok

Each event begins with a "Begin Event" string and ends
with a "End Event” string. Following the "Begin Event"
indication, two numbers (on separate lines) represent
respectively the offset time (time in seconds since the
previous event) and the absolute time (the time in seconds
from the begin of the simulation) of the event. All the
remaining information until the "End Event" mark is
formed of encoded actions (one per line). Next is a short
example of one of these files, containing just two events:

e ok ok s sk sk ke sk sk ok ok sk st sk ook sk sk sk ook sk ok ok sk ok ok sk sk sk ok sk ok ok ok ok sk sk ok

LAN Manager simulator event file
Creation date: Thu Jul 21 12:34:11 1994
Last change : Thu Jul 21 12:38:14 1994

3k 3k ok ke ok ok ok ok Sk sk ok ok sk ok ok ok ok sk skt sk ok sk sk sk Sk sk ok ok sk sk ok ok okokeok sk ok

Begin Event
0

0

00001
00011
00043825
000903445
000910
02001
020122
0203 0GATEW
02031012

151

End Event

Begin Event

10

10

1001

1011

1 04 This is an alarm!
1051

1071207

End Event

The meaning of the encoded actions are explained in the
next section.

C. The encoding of actions

In order to record on file changes of some of the
parameters of the global data structure (performed during
editing) and read them back during simulation we
developed an encoding scheme that we explain briefly.
The basic idea was to use the tree organization of the data
structure as the mean to access the end parameters. To
clarify the idea let us provide an example. Suppose we
have the following data structure definition:

typedef struct typel {

int P1; /%0 %/
char *P2; /¥ 1%
double P3; [*2 %/
} typel;
typedef struct type2 {
char *P4; *0*
int P5; /¥ 1%
} type2;
typedef struct type3 {
typel pl; /* 0 */
type2 p2[MAX_ELEMS]; /¥ 1%
} type3;

Suppose also that only typel and type2 are composed
types, i.e. P1, P2, ... are leaves of the data structure tree.
Note the commented numbers on each parameter. They
number the parameters on an arbitrary but pre-determined
manner. Therefore, to indicate that P2 has value "Testing
string" we can use the following encoding:

0 1 Testing string
where the first number (0) indicates parameter p1 (of the
root tree), the second number (1) indicates parameter P2

of the data structure typel, and finally the value of the
parameter is represented. In the same way

1511254

152

indicates that the structure field p2[5].P2 contains value
1254.

As can be easily understood, the code generator needed
to encode the actions is straight forward to design although
somewhat tedious to implement.

The parser used to interpret the encoded actions is also
easy to design since there is no lookahead, i.e. at every
node it is always known what data type should be
expected.

A simulator event file decoder was implemented as an
aid tool associated with the editor. The output generated
by this program when applied to the simulator event file
given as example in the file format section is the
following:

* RECORD 1 (Abs. time = 0, Offset time = 0)
Elems.CWP[0].CWP_existing -> TRUE
Elems.CWP[0].station_id -> 1
Elems.CWP[0].login_time -> 03:08:25

REVISTA DO DETUA, VOL. I, N° 2, SETEMBRO 1994

Elems.CWP[0].CWP_secur.Sec_attempt -> 3445
Elems.CWP[0].CWP_secur.Sec_state -> FALSE
Elems.Net_elem[0].Net_elem_existing -> TRUE
Elems.Net_elem[0].Network_No -> 22
Elems.Net_elem{[0].node.node_name -> GATEW
Elems.Net_elem[0].node.congestions -> 12

* RECORD 2 (Abs. time = 10, Offset time = 10)
alarm[0].alarm_tag -> TRUE

alarm[0].CWP_id -> |

alarm[0].alarm_message -> This is an alarm!
alarm[0].alarm_criticality -> TRUE
alarm[0].alarm_log_time -> 01:20:07

REFERENCES

[1] curses(3X), CRT screen handling and optimization package.
Hewlett-Packard Company, HP-UX Release 9.0, August 1992,

[2] terminfo(4), terminal capability database. Hewlett-Packard
Company, HP-UX Release 9.0, August 1992.

