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Laguerre Filters – An Introduction

Tomás Oliveira e Silva

Abstract - In this tutorial paper we present a generalization
of the transversal filter, called Laguerre filter, and study some
of its more remarkable properties. This filter is obtained by
replacing each delay of the transversal filter by a first order
all-pass section, and by applying a first order low-pass filter
(with the same pole used in the all-pass sections) to the filter’s
input signal. Both the transversal and the lattice forms of the
Laguerre filter are discussed. We also deduce the stationar-
ity conditions of the mean-square error of a Laguerre filter
(transversal or lattice) with respect to its pole position.

Resumo - Neste trabalho apresentamos uma generalização
dos filtros transversais, os chamados filtros de Laguerre, e es-
tudamos algumas das suas propriedades mais notáveis. Estes
filtros são obtidos substituindo cada atraso dos filtros transver-
sais por uma secção passa tudo de primeira ordem e preproces-
sando o sinal de entrada do filtro com um filtro passa baixo de
primeira ordem (com o mesmo pólo das secções passa tudo).
São estudadas as formas transversal e “lattice” do filtro de
Laguerre. Deduzimos também as condições de estacionarida-
de do erro quadrático médio de um filtro de Laguerre (forma
transversal ou “lattice”) em relação à posição do seu pólo.

I. INTRODUCTION

The transversal filter and some other filter structures re-
lated with it, such as the lattice filter, are very popular
among the models of linear systems, specially if adapta-
tion of its parameters is desired [1]–[3]. Some applications
where these filters have attained considerable success in-
clude, among others, system identification, linear predic-
tion, channel equalization, and echo cancellation. The rea-
son for this success is, besides the simplicity of the transver-
sal filter structure, the unimodality of its error surface, and
the existence of fast and efficient adaptive algorithms to ad-
just its parameters [1]–[4].
The principal problem of the transversal filter, which is also

related to its advantages, is that its impulse response has a
finite duration (it is a FIR filter). For this reason, when this
filter is used to approximate a system with a long (possibly
infinite) impulse response the minimum number of delays
of the filter required to provide an acceptable approxima-
tion can be quite high. This problem can be partially solved
using filters with an infinite impulse response (IIR filters).
However, these filters have their own problems, specially if
output error models are used [5], [6]. Among these are pos-
sible multimodal error surfaces [7], and possible instability
problems related to the adaptation of the poles of these fil-
ters [6].
Another disadvantage of the transversal filter is that

its continuous-time (analog) version requires delay lines,

which are difficult to implement. In an attempt to solve this
problem, in [8] each delay of the transversal filter was re-
placed by an all-pass filter. This preserves many of the prop-
erties of transversal filters and gives rise to continuous-time
(and discrete-time) generalizations of the transversal filters
that have infinite impulse responses. If the all-pass filter is
chosen properly, these filters are usually able to produce ac-
ceptable approximations of systems with long impulse re-
sponses with a much smaller number of parameters that a
transversal filter.
The Laguerre filter, which is another generalization of the

transversal filter, has its roots in the pioneering work of
Wiener and Lee concerning the synthesis of electric net-
works using Laguerre functions [9], [10]. The early pa-
pers in this area used truncated Laguerre series to approx-
imate the impulse response of a given continuous-time sys-
tem [11]–[18]. The discrete-time counterparts of these pa-
pers, based on the Laguerre sequences [19]–[21], appeared
some years later, and gave rise to the so-called Laguerre fil-
ters [22]–[30]. In the last few years Laguerre models (or
filters) were applied successfully to several problems in the
automatic control field [31]–[37], [24], [38]–[40]. Other re-
cent applications of the Laguerre functions and sequences in
signal processing can be found in [41]–[43].
The main advantage of the Laguerre filter in relation to the

transversal filter is that the former is an IIR filter with one
adjustable multiple pole and the latter is a FIR filter with a
fixed multiple pole at the origin. As we will see later on, if
the pole of the Laguerre filter is placed at the origin the La-
guerre filter degenerates into the transversal filter, i.e., we
may consider the Laguerre filter to be a generalization of the
transversal filter. By adjusting the pole position of the La-
guerre filter it is possible to control the rate of decay of its
impulse response, which is quite useful to provide good ap-
proximations of systems with long impulse responses.

Due to space limitations we will only discuss in this paper
the discrete-time Laguerre filters. Similar results can be eas-
ily obtained for the continuous-time Laguerre filters, which
are left as an exercise to the interested reader (see also [44]).
For the same reason we will also not discuss here the adap-
tation of the weights and of the pole of Laguerre filters.
The structure of this paper is the following. In section II we

review some mathematical material necessary for the under-
standing of this paper. In section III we describe briefly the
main properties of transversal filters. These filters are then
generalized in section IV, giving rise to the so-called La-
guerre filters. As these filters have one additional parameter,
the Laguerre pole position, which affects considerably their
performance, we present in subsection IV-A a simple con-
dition that the optimal value of this parameter must satisfy.
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In section V we introduce the lattice form of the Laguerre
filter, which is the base of another proof of the “optimality”
condition for the Laguerre pole position. In section VI we
present a simple example that illustrates some of the results
of this paper. Finally, in section VII we summarize the con-
tents of this paper and describe briefly other generalizations
of transversal filters.

II. NOTATION, DEFINITIONS, AND SOME USEFUL

FACTS ABOUT HILBERT SPACE THEORY AND

LEAST MEAN-SQUARE APPROXIMATIONS

The majority of the definitions and results presented in this
section can be found in [45], [3], [46]–[48].
We will denote matrices and vectors respectively by upper

and lower case bold letters. The indexes of the elements of
matrices and vectors will start from zero and not from one.
The letter k will be the discrete time variable. The Kro-
necker’s delta will be denoted by �ij (it is equal to one if
i � j and equal to zero otherwise).

A. The Hilbert space ��

A Hilbert space is an inner product space which is a com-
plete metric space with respect to the metric induced by its
inner product [46]. This means that a Hilbert space is a lin-
ear vector space, possibly of infinite dimension, with an in-
ner product operation defined between any two of its ele-
ments (an inner product space). This inner product is used
to define the norm of an element of that space (norm induced
by the inner product), which is simply the square root of
the inner product of that element with itself. This norm is
used in turn to define a distance (metric) between any two
elements of that space (a metric space), that is the norm of
the difference between these two elements. The remain-
ing characteristic of a Hilbert space is that the metric space
is complete (or closed). This means that any convergent
(Cauchy) sequence of elements of that space converges to
an element of that space. Two elements of a Hilbert space
are said to be orthogonal if their inner product is zero. An
element of a Hilbert space is said to be normal if its norm
is equal to one. For an introductory exposition of Hilbert
spaces we refer the reader to [46].
The problem of finding the best approximation of an ar-

bitrary element of a Hilbert space by an element of a (lin-
ear) subspace of that Hilbert space is solved by the princi-
ple of orthogonality (a consequence of the projection theo-
rem [46], [47]), which states that the error of the (unique)
best approximation is orthogonal to the subspace in ques-
tion.

A real sequence f�k� belongs to the Hilbert space ��, the
space of all square-summable causal sequences, if and only
if [46]:

��X
k��

f��k� ���

Note that all absolutely summable causal sequences belong
to �� [45], i.e., the impulse responses of all causal stable lin-
ear systems belong to this Hilbert space.

The Fourier transform of a sequence f�k� belonging to ��

is defined as�

F �ej�� �

��X
k��

f�k� e�j�k�

The function F �ej�� is a square-integrable function, in the
sense of Lebesgue, on the unit circle [48].
The inner product between any two sequences, f�k� and
g�k�, of �� is defined as

hf�k��g�k�i �
��X
k��

f�k�g�k��

Because both F �ej�� and G�ej�� are square-integrable
functions on the unit circle we may also evaluate this inner
product by the formula (Parseval’s theorem)

hf�k��g�k�i � �

��

Z ��

��

F �ej��G��ej�� d��

In particular,

hf�k��f�k�i � �

��

Z ��

��

��F �ej����� d�� (1)

A set of sequences of �� is said to be complete if any se-
quence of that Hilbert space can be approximated arbitrarily
well (in the norm induced by the inner product) by a linear
combination of the sequences of that set. If these sequences
are orthonormal (both orthogonal and normal) then the set
is called an orthonormal basis of ��.
Let ffi�k�g��i�� be an orthonormal basis of ��. Then, any

sequence g�k� belonging to �� can be expanded in the form
(orthonormal expansion)

g�k� �

��X
i��

cifi�k�

where ci � hg�k��fi�k�i are the Fourier coefficients of g�k�
with respect to the orthonormal set ffi�k�g��i�� .
The canonical basis of �� is the orthonormal set of se-

quences f��k�i�g��i�� , where ��k�i� � �k�i are the “pulse
sequences” (these sequences are nonzero only for k � i).
The canonical basis is the simplest example of a complete
orthonormal set of ��.

B. Stochastic processes

Let X and Y be two real random variables with zero mean
and finite variance. The inner product between these two
random variables is defined by their covariance (or corre-
lation), i.e., by

hX�Y i � E�XY �

where E��� denotes mathematical expectation. In particular,
hX�Xi � Var�X � is the variance (mean-square value) of
X .

�The symbol j (not to be confused with j) denotes the square root of��.
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Let x�k� and y�k� be two real wide-sense stationary
stochastic processes with zero mean and finite variance.�

The cross-correlation function between these two stochas-
tic processes is defined by

Rxy�	� � E�x�k � 	�y�k���

Because these stochastic processes are wide-sense station-
ary their cross-correlation does not depend on the time vari-
able k. The cross-power spectral density between x�k� and
y�k� is the Fourier transform of Rxy�	�:

	xy�e
j�� �

��X
����

Rxy�	� e
�j�� �

It should be stressed that this expression must be used with
care, because it may not converge for some values of � (on
a set of measure zero). IfRxy�	� is an absolutely summable
sequence 	xy�e

j�� can be considered to be the z-transform
of Rxy�	� evaluated on the unit circle. (Note that in this
case 	xy�z� need not be analytic on the unit circle. Without
stronger conditions the best that can be said is that it con-
verges uniformly there.)
It is possible to recover the cross-correlation function from

the cross-spectral density by the formula

Rxy�	� �
�

��

Z ��

��

ej��	xy�e
j�� d��

Due to the aforementioned possible convergence problems
of 	xy�e

j�� this integral must be evaluated with care.�

The functionsRxx�	� and	xx�e
j�� are called respectively

autocorrelation and power spectral density of the stochastic
process x�k�. Note that the variance of x�k� is given by

Var�x�k�� � Rxx�
� �
�

��

Z ��

��

	xx�e
j�� d��

Let H�z� be the transfer function of a stable linear system,
x�k� its input, and y�k� its output. The input-output rela-
tion of this system has to be expressed in the time domain
when x�k� (and hence y�k�) is a stochastic process, because
is is not clear how to apply z-transforms to this kind of sig-
nals (see figure 1). It is easy to verify that the power spectral
density of y�k� is given by [45]

	yy�e
j�� �

��H�ej��
���	xx�e

j���

�Note that in this case x�k� and y�k� are sequences of random variables.
We will reserve the letters f , g, and h, to represent nonrandom sequences.
�Strictly speaking, the above integral should be replaced by the follow-

ing Stieltjes integral [47]

Rxy��� �
�

��

Z ��

��

ej�� d�xy���

where

�xy��� �

Z �

��

�xy�e
j�� d�

is the cross-spectral distribution function. This formalism accounts for pos-
sible impulses (Dirac delta distributions) in �xy�ej��without resorting to
the theory of distributions. We will avoid such technicalities here.

x�k� H�q� y�k�

Fig. 1 - Block diagram of a causal stable system with transfer function
H�z� �

P��

i��
h�i�z�i. The symbol q is the advance operator, i.e.,

q	x�k�
 � x�k � ��, and q�� is its inverse (the delay operator). The
output of this system is given by the convolution of x�k� with h�k�, i.e.,

by y�k� �
P��

i��
h�i�x�k � i� � H�q�x�k�.

Because H�z� converges uniformly and is bounded on the
unit circle if the system is stable (remember that h�k� is in
this case an absolutely summable sequence), it is easy to
verify that if x�k� has zero mean and finite variance then so
will y�k�. Therefore, the variance of y�k� is given by

hy�k��y�k�i � �

��

Z ��

��

��H�ej��
���	xx�e

j�� d�� (2)

Let F �z� and G�z� be two stable linear systems excited
respectively by the stochastic processes x�k� and y�k�, as-
sumed to be correlated, with outputs u�k� � F �q�x�k� and
v�k� � G�q�y�k�, respectively. The inner product between
u�k� and v�k� is given by

hu�k��v�k�i �

��X
i�j��

f�i�E�x�k � i�y�k � j��g�j�

�

��X
i�j��

f�i�

�
�

��

Z ��

��

ej��j�i�	xy�e
j�� d�

�
g�j�

�
�

��

Z ��

��

F �ej��G��ej�� 	xy�e
j�� d�� (3)

This formula will be useful later on. Note that (2) is a special
case of (3).

C. Least mean-square approximations

Consider the problem of the approximation of a random
variable Y by a linear combination of n � � other random
variables X�� � � � � Xn, correlated with Y, such that the vari-
ance (mean-square) of the approximation error is as small as
possible. Let Yn be the approximation of Y, given by

Yn �

nX
i��

wn�iXi�

and let En � Y � Yn be the approximation error, whose
variance is 
n � hEn�Eni. This approximation problem
is naturally formulated and solved in the context of Hilbert
spaces, in this case the Hilbert space of random variables
with zero mean and finite variance [47].
In our specific problem the subspace where the approxima-

tion lies is composed of all linear combinations of the ran-
dom variablesX�� � � � � Xn, and the principle of orthogonal-
ity states that

hEn�Xii � 
� i � 
� � � � � n� (4)

These equations are usually called normal equations and can
be deduced without resorting to Hilbert space theory, equat-
ing the partial derivatives of 
n with respect to each of the
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wn�i’s to zero. Assuming that the normal equations are sat-
isfied the (least) mean-square error of the approximation is
given by


n � hEn�Y i � hY�Y i �
nX

i��

wn�i hY�Xii� (5)

The normal equations (4) can be put together in only one
equation, of the form
�
��
hX��X�i � � � hX��Xni

...
. . .

...
hXn�X�i � � � hXn�Xni

�
	

�
��
wn��

...
wn�n

�
	
 �

�
��
hY�X�i

...
hY�Xni

�
	
 �

This equation can be written in the condensed form
Rnwn � pn, with obvious definitions for the square ma-
trix Rn, and for the vectors wn and pn. The matrix Rn is
symmetric and nonnegative definite. This second fact is a
trivial consequence of

wt

nRnwn � hYn�Yni � 
� (6)

A very important case of the approximation problem stud-
ied here occurs when hXi�Xji � �ij . In this case fXigni��

is an orthonormal set and Rn is the n� �� n� � identity
matrix, which implies that wn�i � hY�Xii �

� ci does not
depend on n. The best approximation to Y is then given by
the simple formula

Yn �

nX
i��

ciXi�

and the least mean-square error of the approximation is
given by


n � hY�Y i �
nX

i��

c�i �

Note that Yn � Yn�� � cnXn, and that 
n � 
n�� � c�n,
with the initial values Y�� � 
 and 
�� � hY �Y i.
From a given linearly independent set fXigni�� it is pos-

sible to construct an orthogonal set fX b
i gni�� where Xb

i �Pi

j�� bijXj with the restriction bii � �, using the Gram-
Schmidt orthogonalization procedure [49]. Note that the
constants bij are such that hXb

i �X
b
j i � 
 for 
 � j � i,

which in turn implies that hXb
i �Xji � 
 also for 
 � j � i.

Remembering the orthogonality principle of best approxi-
mations in Hilbert spaces it is easy to verify that Xb

i is pre-
cisely the error of the best approximation of Xi by a linear
combination of the random variables X�� � � � � Xi��.

D. Approximations of linear systems

Consider the problem of the approximation of a given sta-
ble and causal system H�z� by another stable and causal
systemHn�z�. (The exact form ofHn�z� is irrelevant to the
present discussion.) Both systems are excited by the same
stochastic process x�k� and the objective of the approxima-
tion is to minimize the variance of the error signal en�k�,
which is the difference between the outputs of both systems.

�x�k�

H�q�

Hn�q�

y�k�

yn�k�
en�k�

Fig. 2 - Model of the approximation of a general system, H�z�, by another
system, Hn�z�. The objective of the approximation is the minimization of
the variance of en�k� by adjusting some parameters of Hn�z�.

x�k�

yn�k�
�

q��

x�k�

wn��

�

q��

x�k � ��

wn��

�

q��

x�k � ��

wn��

x�k � n�

wn�n

Fig. 3 - Transversal filter of order n (with n delays). The output of this filter
is given by yn�k� �

Pn

i��
wn�i x�k � i�, and is used to approximate a

given desired signal, y�k�, correlated with x�k�.

This situation is depicted in figure 2. Applying (2) to this
case gives for the variance of en�k� the formula


n �
�

��

Z ��

��

��H�ej���Hn�e
j��
���	xx�e

j�� d�� (7)

We are interested in the comparison of this formula with the
following �� inner product

�

��

Z ��

��

��H�ej���Hn�e
j��
��� d�� (8)

If 	xx�e
j�� is an essentially bounded Lebesgue measurable

function on the interval ������� and if (8) converges to
zero when n goes to infinity then (7) will also converge to
zero. For example, this will happen if Rxx�	� is absolutely
summable and if hn�k�, the impulse response of Hn�z�, is
a linear combination of the first n� � sequences of a com-
plete set of ��. (Obviously, each one of the sequences of that
set must be absolutely summable, otherwiseHn�z� could be
unstable.) For a general power spectral density the same re-
sult holds if Hn�e

j�� converges to H�ej�� for all frequen-
cies where 	xx�e

j�� has a Dirac delta distribution. For ex-
ample, this will happen if the complete set used to form
hn�k� is the canonical basis of ��.
Note that (7) may be null even when (8) is non-null if
	xx�e

j�� vanishes on a set of ������� with nonzero mea-
sure, i.e., if x�k� is a band limited process. This cannot
happen if 	xx�e

j�� is strictly positive for (almost) all � �
�������, a condition usually called persistence of excita-
tion (of infinite order) [50].

III. THE TRANSVERSAL FILTER

Consider the transversal filter of figure 3. The weights of
this filter that minimize the variance of the error of the ap-
proximation of a given desired signal y�k�, correlated with
x�k�, by yn�k� satisfy the Wiener-Hopf equations [3] (cf.
the normal equations (4))

nX
i��

wn�i hx�k � i��x�k � j�i � hy�k��x�k � j�i
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for 
 � j � n. These equations can be put in the form

Rnwn � pn (9)

where the elements of Rn, which can be computed easily
using (3), are given by

rij � hx�k � i��x�k � j�i

�
�

��

Z ��

��

ej��j�i�	xx�e
j�� d� (10)

(
 � i� j � n), and where those of pn are given by

pi � hy�k��x�k � i�i

�
�

��

Z ��

��

ej�i	yx�e
j�� d�

(
 � i � n). Note that rij only depends on ji� jj. This
means that the elements of each diagonal of Rn are equal,
i.e.,Rn is a symmetric Toeplitz matrix. It is possible to ex-
plore the Toeplitz structure of this matrix to solve (9), as
done for example in the Levinson algorithm [3], [49]. This
gives rise to the so-called lattice filters, which we will dis-
cuss later on in the context of Laguerre filters.

The smallest and largest eigenvalues ofRn play an impor-
tant role not only in the resolution of the Wiener-Hopf equa-
tions, where they define the numerical stability of the system
of normal equations [49], but also in the convergence speed
of certain adaptive algorithms of the weights of transversal
filters [3]. Fortunately, it is easy to obtain simple bounds
for these eigenvalues if we restrict the input signal of the
transversal filter to have an absolutely summable autocorre-
lation function (less restrictive results can be found in [51]).
In this case the power spectral density converges uniformly
(and is bounded) on the interval � � �������.
A well know method to compute the smallest and largest

eigenvalues of a symmetric matrix, in this case Rn, is to
evaluate the minimum and maximum values of the Rayleigh
quotient [49]:

�min�Rn� � min
wn ���

wt

nRnwn

wt

nwn

�

�max�Rn� � max
wn ���

wt

nRnwn

wt

nwn

�

wherewn is an arbitrary nonnull vector withn�� elements.
In our concrete case it is easy to verify that (cf. (6) and (2))

wt

nRnwn �
�

��

Z ��

��

�����
nX

i��

wn�i e
�j�i

�����
�

	xx�e
j�� d��

and that (because the functions e�j�i are orthonormal in the
interval �������)

wt

nwn �
�

��

Z ��

��

�����
nX

i��

wn�i e
�j�i

�����
�

d��

Using trivial lower and upper bounds for the power spectral
density in the first of these two formulas it is easy to con-
clude that

inf
�
	xx�e

j�� � �min�Rn� � �max�Rn� � sup
�

	xx�e
j��

(11)
where the infimum and supremum are over all values of �
in the interval �������. In particular, if the power spec-
tral density 	xx�e

j�� is strictly positive for all frequencies
(persistence of excitation), then �min�Rn� � 
, i.e., Rn is
non-singular. In that case the Wiener-Hopf equations have
only one solution, irrespective of the value of n.

IV. THE LAGUERRE FILTER

Consider again the transversal filter of figure 3. Denote by
H�z� the transfer function of the (stable and causal) system
that produces y�k� when excited by x�k�. Applying the re-
sults of subsection II-D to the transversal filter it becomes
clear that this filter is indirectly trying to approximate the
impulse response ofH�z� by the first n�� sequences of the
canonical basis of ��. Unfortunately, these sequences are ex-
tremely localized in time. Hence, the quality of the approx-
imation will be very poor (for small n) when the impulse re-
sponse of H�z� is very long (e.g., when it decays slowly to
zero). Note, however, that because the canonical basis is a
complete set of �� the approximation error can be made arbi-
trarily small by using a sufficiently largen (cf. section II-D).
It is possible to use other complete sets of �� to build a

“transversal-like” filter. In order for the filter to be practical
to use each sequence of that set should be easy to generate
digitally, i.e., it should have a rational z-transform. Proba-
bly the simplest set of such sequences (besides the canonical
basis) is the set of the Laguerre sequences [19], which form
a complete orthonormal set of �� [20]. The z-transforms of
these sequences are given by [21]

Li�z� u� �
p
�� u�

�z�� � u�i

��� uz���i��
� i � 
 (12)

where u is a free (real) parameter, the Laguerre pole posi-
tion, with modulus smaller that one. Note that Li�z� 
� �
z�i, i.e., the sequences of the canonical basis of �� are a spe-
cial case of the Laguerre sequences. Also interesting is the
fact that for i � 


Li���z� u� � A�z� u�Li�z� u� (13)

with

A�z� u� �
z�� � u

�� uz��
�

i.e., these sequences can be generated in cascade, starting
with a first order low-pass section (L��z� u�), followed by
first order all-pass sections (A�z� u�).
Replacing the “backbone” of the transversal filter, that gen-

erates the first n�� canonical sequences of �� when excited
by ��k�, by the equivalent structure that generates the first
n � � Laguerre sequences (when excited by ��k�) we ob-
tain the Laguerre filter shown in figure 4. This filter struc-
ture was introduced in [22] and was studied with some de-
tail in [24]. We will assume, unless stated otherwise, that
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x�k� p
��u�

��uq��

yn�k� u�
�

q���u

��uq��

x��k� u�

wn���u�

�

q���u

��uq��

x��k� u�

wn���u�

xn�k� u�

wn�n�u�

Fig. 4 - Laguerre filter of order n (with n sections). This filter is stable if
and only if juj � �. For u � 
 the Laguerre filter degenerates into the
familiar transversal filter.

for each value of u the weights of this filter are computed
such that yn�k� u� is the best approximation, in the mean-
square sense, to a given desired signal y�k�. This explains
why these weights are functions of u in figure 4.
The output of an order n Laguerre filter excited by a real

wide-sense stationary stochastic process x�k� with zero-
mean is given by

yn�k� u� �
nX

i��

wn�i�u�xi�k� u�

where
xi�k� u� � Li�q� u�x�k��

For each value of u the optimal set of weights of this filter
can be computed from the normal equations

nX
i��

wn�i�u� hxi�k� u��xj�k� u�i � hy�k��xj�k� u�i (14)

(
 � j � n). These equations can be put in the form

Rn�u�wn�u� � pn�u� (15)

where the elements of Rn�u� are given by

rij�u� �

Z ��

��

�
ej� � u

�� uej�

�j�i
	xx�e

j����� u�� d�

�� j�� uej�j�

(
 � i� j � n), and where those of pn�u� are given by

pi�u� �

Z ��

��

�
ej� � u

�� uej�

�i
	yx�e

j��
p
�� u� d�

����� uej��

(
 � i � n). These expressions can be obtained easily
from (3). Similarly to the transversal filter case, rij�u� de-
pends only on ji� jj, i.e., Rn�u� is a Toeplitz matrix. We
will explore this fact in the next section.
It is possible to simplify considerably the expression for
rij�u� using the change of frequency variable � �	 
 de-
fined by the bilinear transformation [24]

ej� �
ej� � u

�� uej�
� (16)

It is easy to verify that when � goes from�� to ��, 
 also
goes from �� to �� (see figure 5), that

ej� �
ej� � u

� � uej�
� (17)

�� ��

��

��

�

�

����

����

���

���

���

Fig. 5 - Graph of the frequency transformation � �� � for several values
of u. Note that there exists a one to one correspondence between � and �.
The inverse transformation � �� �, which appears in (18), can be visual-
ized easily by replacing u by �u. For u 	 
 this inverse transformation
compresses the low frequencies and for u � 
 it compresses the high fre-
quencies.

and that

d
 �
�� u�

j�� uej�j� d��

It is then trivial to verify that rij�u� can also be given by [24]

rij�u� �
�

��

Z ��

��

ej��j�i�	xx



ej��u
��uej�

�
d
� (18)

which only differs from (10) in the argument of the power
spectral density of x�k�. This very important result can be
used to determine immediately bounds for the eigenvalues
ofRn�u� based on those for the matrixRn appearing in the
transversal filter case. Because (17) represents only a distor-
tion of the frequency scale (see figure 5) it turns out that (11)
is also valid for this case, i.e., the lower and upper bounds
for the eigenvalues of Rn�u� are exactly the same as those
for Rn and do not depend on u. Also, some results con-
cerning the asymptotic eigenvalue distribution ofRn when
n 	 � (see [51] or [52] for details) can be adapted with
very little effort to the matrices Rn�u�.

A. Stationarity condition of the MSE of a Laguerre filter
with respect to u [30]

The variance of the error signal of a Laguerre filter, i.e.,
its mean-square error (MSE), is a function of u. In order
to minimize this function we need to deduce its stationar-
ity condition (with respect to u) and then to solve it. One of
the solutions of this condition will be the optimal value of
u.
The MSE of a Laguerre filter is given by


n�u� � hen�k� u��en�k� u�i�
Assume for the moment that the weights of the Laguerre fil-
ter are arbitrary, i.e., that they do not depend on u and that
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they do not need to satisfy the normal equations. Then, the
partial derivative of the MSE with respect to u is given by (a
prime denotes differentiation with respect to this variable)


�n�u�wn� � ��
nX

i��

wn�i hen�k� u��x�i�k� u�i (19)

where wn is a vector whose elements are the weights of
the Laguerre filter. Notice that the stationarity conditions of

n�u�wn� require (19) to be zero, and they also force the
normal equations to be satisfied. This latter condition would
have been unnecessary if we had assumed that the weights
where computed from the normal equations for each value
of u. (This assumption would have made the analysis of the
problem much more difficult.)
Because of the remarkable formula [30]

L�i�z� u� �
�i� ��Li���z� u�� i Li���z� u�

�� u�
� (20)

the derivative of xi�k� u� � Li�q� u�x�k� with respect to u
is given by

x�i�k� u� �
�i� ��xi���k� u�� i xi���k� u�

�� u�
� (21)

Applying this formula in (19) and simplifying the result with
the normal equations (14) we obtain


�n�u� � ���n� ��
wn�n�u� hen�k� u��xn���k� u�i

�� u�
� (22)

We emphasize that this formula is only valid if the normal
equations are satisfied. Hence, the weights are again func-
tions of u, i.e., they are again computed from the normal
equations. (In fact, this formula is the total derivative of

n�u�.) Equating this formula to zero gives the stationarity
condition of the MSE with respect to u.
The next step is to find the value of the only complicated

term of (22): hen�k� u��xn���k� u�i. In order to do so we
need to orthonormalize the signals xi�k� u�.
Let xo��k� u�� � � � � x

o
i �k� u� be the orthonormalized sig-

nals obtained by applying the Gram-Schmidt orthogo-
nalization algorithm (with normalization) to the signals
x��k� u�� � � � � xi�k� u�. The linear transformation per-
formed by this algorithm can be expressed by

xoi �k� u� � Ti�u�xi�k� u� (23)

where

xi�k� u� � �x��k� u� � � � xi�k� u� �
t

is a vector holding the original signals, and where

xoi �k� u� � �xo��k� u� � � � xoi �k� u� �
t

is the corresponding vector holding the orthonormalized
signals. The matrix Ti�u� is a lower-triangular ma-
trix. It will be nonsingular if and only if the signals
x��k� u�� � � � � xi�k� u� are linearly independent (we will as-
sume this condition to hold in the sequel). For example, this

will happen if x�k� satisfy the persistence of excitation con-
dition.
It is possible to prove that [53]

Ti�u�Ri�u�T
t

i �u� � Ii�

i.e., Ti�u� is the inverse of the first Cholesky factor of
Ri�u� [49]. For notational convenience we will denote the
element of the last line and column ofTi�u� by ti�u�. Note
that ti�u� � � for all i if and only if 	xx�e

j�� � � for all �,
i.e., if and only if x�k� is white noise with unitary variance.
Note also that ti�u� is strictly positive, and that the element
in the same position on the lower-triangular matrixT��

i �u�
is ��ti�u�.
Because the signals xoi �k� u� are obtained by a linear com-

bination of the signals xj�k� u�, j � 
� � � � � i, it is clear that
the output of a Laguerre filter of order n can also be given
by the orthonormal expansion

yn�k� u� �

nX
i��

ci�u�x
o
i �k� u� (24)

with ci�u� � hy�k��xoi �k� u�i. Note that ci�u� does not de-
pend on n. It is also clear that the error signal of a Laguerre
filter of order n� � is given by

en���k� u� � en�k� u�� cn���u�x
o
n���k� u��

This formula implies that

hen�k� u��xn���k� u�i � hen���k� u��xn���k� u�i
� cn���u�hxon���k� u��xn���k� u�i�

The last normal equation for the Laguerre filter of ordern��
gives hen���k� u��xn���k� u�i � 
. It is also clear that

yn���k� u� � wt

n���u�xn���k� u�

� ctn���u�x
o
n���k� u��

with obvious definitions for the vectors wn���u� and
cn���u�. Due to (23) and to the special form of Tn���u�
it is then easy to verify that

cn���u� � wn���n���u��tn���u�� (25)

Due to the special form ofT��
n���u� and to the orthonormal-

ity of the signals xoi �k� u� it is also easy to verify that

hxon���k� u��xn���k� u�i � ��tn���u��

Putting all these facts together gives

hen�k� u��xn���k� u�i � wn���n���u�

t�n���u�
�

Applying this formula in (22) we obtain


�n�u� � ���n� ��wn�n�u�wn���n���u�

��� u�� t�n���u�
� (26)

Therefore, the stationarity points of the MSE with respect to
u satisfy the simple condition [30]

wn�n�u�wn���n���u� � 
� (27)
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This condition is a generalization of the condition presented
in [26] for the particular case where x�k� � ��k� (which
is the deterministic signal equivalent to white noise). It is
interesting to verify that if wn�n�u� � 
 then 
n�u� �

n���u�, and that if wn���n���u� � 
 then 
n�u� �

n���u�. Hence, in each stationary point of 
n�u� the graph
of this function touches the graph of 
n���u� and/or of

n���u�. We will illustrate this phenomenon in section VI.
It is important to stress that usually, but not always, the lo-
cal minima of 
n�u� satisfy the conditions wn�n�u� 
� 

and wn���n���u� � 
, in which case 
n���u� � 
n�u� �

n���u�.
For simple and efficient ways of solving approxi-

mately (27) we refer the reader to [54]. Basically, we ap-
proximate wi�i�u� by a truncated Taylor series or by a Padé
approximant, and then find the zeros of that approximation.
The derivatives of wi�i�u� required to form these approxi-
mations can be computed differentiating (15) and using (20)
to simplify the result.

V. THE LAGUERRE LATTICE FILTER [55]

As promised earlier we are going to explore the Toeplitz
structure of the matrixRn�u�. This will give rise to the lat-
tice form of the Laguerre filter. The following line of rea-
soning is a simple generalization of the ideas that led to the
standard lattice filter. These ideas can be found in any good
book about adaptive filter theory, such as [1]–[3]. Another
important work related to the material presented here is [8].
As before, we assume that the signals xi�k� u� of the La-
guerre filter are linearly independent. To simplify the no-
tation we will use the definition rji�jj�u�

�

� rij�u� when
referring to the elements of the Toeplitz matrixRn�u�.
In order to orthogonalize the signals xi�k� u� it is useful

to consider the problem of the minimization of the vari-
ance of the following signals, with the restrictions ai��u� �
bi��u� � �:

xfi �k� u� �

iX
j��

aij�u�xj�k� u�� (28)

xbi �k� u� �

iX
j��

bij�u�xi�j�k� u�� (29)

As explained in subsection II-C, xfi �k� u�will be orthogonal
to xj�k� u� for 
 � j � i, and xbi �k� u� will be orthogonal
to xj�k� u� for 
 � j � i. This implies that the signals
xbi �k� u� are the result of the Gram-Schmidt orthogonaliza-
tion procedure applied to the signals xi�k� u�. We will de-
note the standard deviation (the square root of the variance)
of xfi �k� u� by �fi �u�, and that of xbi �k� u� by �bi �u�. Both
of these standard deviations are strictly positive because we
have assumed that the signals xi�k� u� are linearly indepen-
dent.
It is simple to verify that the augmented normal equations	

for these two problems are (in the following two equations

�The augmented normal equations are the equations (4) and (5) put to-
gether in only one equation.

we have omitted, for aesthetical reasons, the dependence on
u of all variables)

�
�
r� � � � ri
...

. . .
...

ri � � � r�

�


�
�
ai� bii

...
...

aii bi�

�

 �

�
��
��fi �

� 

...

...

 ��bi �

�

�
	
 � (30)

Due to the symmetry of these two problems it is clear that
aij�u� � bij�u� for all i � 
 and for 
 � j � i, and that
�fi �u� � �bi �u�

�

� �i�u� also for all i � 
.
The reason why the signals xfi �k� u� are also useful is re-

lated to the special form of (30), that implies that

�
��

r� � � � ri��

...
. . .

...
ri�� � � � r�

�
	


�
�����

� 

ai� aii

...
...

aii ai�

 �

�
				
 �

�
�����

��i �i


 

...

...

 

�i ��i

�
				
 � (31)

Note that �i�u� and �i�u� can be computed as soon as the
coefficients aij�u� are know.
From (31) it is very easy to obtain the order update formu-

lae for the weights aij�u� (and also for the weights bij�u�),
which are

ai���j�u� � ai�j�u� � ki���u� ai�i���j�u�

for 
 � j � i��, with ki���u� � ��i�u���
�
i �u�, and with

ai�i���u�
�

� 
. The application of these formulae in (28)
and in (29), together with (13), gives

xfi���k� u� � xfi �k� u� � ki���u�A�q� u�x
b
i �k� u��

and

xbi���k� u� � A�q� u�xbi �k� u� � ki���u�x
f
i �k� u��

with xf� �k� u� � xb��k� u� � x��k� u�. These recursion
equations define part of the Laguerre lattice filter. It is also
easy to show that

ki���u� � �hA�q� u�x
b
i �k� u��x

f
i �k� u�i

��i �u�
�

and that
��i���u� � ��� k�i���u���

�
i �u��

From this last formula we conclude, if �i���u� � 
, that
jki���u�j � �. This implies that the inverse Laguerre lattice
filter is stable [56]. The coefficients ki�u� are sometimes
called reflection coefficients.
It is clear that the output of the Laguerre filter is given by

the orthogonal expansion (compare with (24))

yn�k� u� �
nX

i��

di�u�x
b
i �k� u�

where

di�u� �
hy�k��xbi �k� u�i

��i �u�

does not depend on n. This formula defines the joint-
process part of the Laguerre lattice filter, shown in figure 6.
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Fig. 6 - Laguerre lattice filter of order n. For u � 
 this is the familiar lattice filter.

A. Stationarity condition of the MSE of a Laguerre lattice
filter with respect to u [55]

We start by normalizing the signals xbi �k� u�, obtaining the
signals

xoi �k� u� �
xbi �k� u�

�i�u�
�

Using these signals the output of the Laguerre filter can also
be given by (this is a repetition of (24))

yn�k� u� �
nX

i��

ci�u�x
o
i �k� u�

with ci�u� � �i�u� di�u�, and its MSE is given by


n�u� � hy�k��y�k�i �
nX

i��

c�i �u��

Because

xoi �k� u� �

iX
j��

bi�i�j�u�

�i�u�
xj�k� u�

it is not very difficult to show, using (21), that

dxoi �k� u�

du
�

i��X
j��

�ij�u�x
o
j �k� u� (32)

with

�i�i���u� �
�i� ���i���u�

��� u���i�u�
�

The exact value of the other �ij ’s will not be needed. It
will prove useful to change the upper limit of the summa-
tion in (32) from i�� to �. This is accomplished with the
definition �ij�u�

�

� 
 for j � i� �.
Differentiating the orthonormality condition

hxoi �k� u��xoj �k� u�i � �ij

with respect to u and using (32) it is easy to verify that for
all i� j � 


�ij�u� � �ji�u� � 
�

This formula implies that �ij�u� � 
 for j � i and also for
j � i� �. Because

ci�u� � hy�k��xoi �k� u�i
it is then clear that

c�i�u� � �i�i���u� ci���u� � �i�i���u� ci���u�� (33)

The derivative of the MSE with respect to u is given by


�n�u� � ��
nX

i��

ci�u� c
�
i�u��

Using (33) and�i�i���u� � ��i���i�u� this summation be-
comes a telescopic series (!) whose sum is


�n�u� � ���n�n���u� cn�u� cn���u��

Note that this formula is in accord with (26) because ti�u� �
���i�u�. It is then very easy to verify that


�n�u� � ���n� ����n���u� dn�u� dn���u�

��� u��
� (34)

Hence, the stationarity condition is

dn�u� dn���u� � 
� (35)

Note how easily this condition can be interpreted: the MSE
of a Laguerre lattice filter has a stationary point with respect
to u if and only if the last weight used to compute the output
signal vanishes and/or the first unused weight vanishes.
Although (35) could also have been obtained much more

easily from (27) and (25), its deduction given above is en-
tirely based on the Laguerre lattice filter, and is interesting
in its own right.

VI. AN EXAMPLE

To illustrate the approximation capabilities of Laguerre fil-
ters we used a Laguerre lattice filter with �
 sections to ap-
proximate the output of a third order elliptic low pass filter
with the following transfer function

H�z� �

�
�
����� z������ ������z��� z���

��� 
�����z������ ������z��� 
�����z���
�
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Fig. 7 - Normalized MSE (in dB) of the Laguerre lattice filters of orders
from 
 (top) to �
 (bottom) as functions of u. The Laguerre filters were
used to approximate a low pass system excited by colored Gaussian noise.
Note that these curves touch only at their local extrema. Note also the bad
performance of the transversal filter (u � 
� when compared to the best
Laguerre filter, i.e., with optimal u, of the same order.

excited by colored Gaussian noise generated by feeding
(pseudo) white Gaussian noise of unitary variance to a fil-
ter with transfer function

N�z� �

�� � ���z��

� � 
��z��
�

The same signal was used as input of the Laguerre lat-
tice filter. The approximation was performed off-line us-
ing ��

 samples of the input signal, previously recorded
from one realization of the (pseudo) white Gaussian pro-
cess. To reduce the effects of the null initial conditions, the
first �

 samples were used only to initialize the Laguerre
lattice filter. The other �


 samples were used to compute
the reflection coefficients (ki�u�), the joint-process weights
(di�u�), and the MSE (
i�u�) of the Laguerre lattice filters
of orders from 
 to �
. (Remember that a Laguerre lattice
filter of order n effectively contains all Laguerre lattice fil-
ters of lower orders.) The algorithm used to compute these
coefficients is presented in the appendix.
The normalized MSE error
 curves for the eleven Laguerre

lattice filters are presented in figure 7. Note that consecu-
tive curves touch only where they have local extrema, which
is in accord with (35). Although in this example all local
minima (maxima) of Ji�u� are associated with the condi-
tion di���u� � 
 (di�u� � 
) this is not always the case.
Figure 7 also shows that the MSE curve of a Laguerre filter
usually has local minima. This is an usual characteristic of
insufficient order IIR filters used in an output error configu-
ration.

VII. CONCLUSIONS

We have seen that the transversal filter can be generalized
to a filter structure, the Laguerre filter, which has one ad-
ditional free parameter that controls the filter’s (multiple)
pole position. Setting this parameter to 
 puts the (multi-
ple) pole of the filter at the origin, turning the Laguerre filter

�That is, the MSE error divided by the variance of the signal being ap-
proximated: Ji�u� � 
i�u��hy�k��y�k�i.

into a transversal filter. By adjusting properly this parame-
ter, which controls the rate of decay to zero of the filter’s im-
pulse response, allows this filter to provide good approxima-
tions to systems with slowly decaying impulse responses.
It is easy to devise algorithms to adapt the weights of La-

guerre filters similar to the LMS or the RLS developed for
the transversal filter [1]–[3]. It is also easy to adapt the
reflection coefficients and joint-process weights of the La-
guerre lattice filters using a stochastic gradient approach
similar to the one used for transversal filters [1]–[3]. Unfor-
tunately, it appears that it is not easy to generalize the FTF
and LSL fast adaptation algorithms [1]–[4] to the Laguerre
filter. Finally, it is possible to extend the adaptation (using a
LMS scheme) to the Laguerre pole position. In this respect,
the equations (26) and (34) are useful (specially the latter).

Besides the Laguerre functions there are other complete
orthonormal sets of �� whose sequences have rational z-
transforms. In this respect the Kautz functions [57] and se-
quences [21] are particularly useful. Replacing the Laguerre
sequences by the Kautz sequences we obtain a Kautz filter,
which appears to be very promising in the approximation of
systems with a dominant complex pole pair [58]–[62].

APPENDIX

The following C code implements an algorithm to compute
the coefficients of the orthonormal expansion (24) given the
symmetric Toeplitz matrix Rn�u� (more properly, its first
line) and the vectorpn�u�. From these coefficients it is very
easy to compute the MSE of the Laguerre lattice filters with
up to n sections. Note that this algorithm is slightly differ-
ent than the usual Levinson algorithm [49] that solves the
systemRnwn � pn. Here we are not interested inwn but
in the coefficients of the orthonormal expansion (24).

/*
** Modified Levinson algorithm
**
** Inputs:
** n --- Number of sections
** r[0..n] --- Elements of the first line
** of the R Toeplitz matrix
** p[0..n] --- Elements of the p vector
** Outputs:
** c[0..n] --- Weights of the orthonormal
** expansion
** Internal variables:
** k --- Reflection coefficient of each
** section
** s2 --- Variance of orthogonal output
** signal of each section
*/

typedef double real;
#define nMax 10

void modLevinson(int n,real *r,real *p,real *c)
{
real k,s2,a[1 + nMax],b[1 + nMax];
int i,j;

a[0] = 1.0;
s2 = r[0];
c[0] = p[0] / sqrt(s2);
for(i = 1;i <= n;i++)
{

a[i] = 0.0;
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k = 0;
for(j = 0;j < i;j++)
k += r[i - j] * a[j];

k /= s2;
s2 *= 1.0 - k * k;
for(j = 0;j <= i;j++)
b[j] = a[j];

for(j = 0;j <= i;j++)
a[j] -= k * b[i - j];

c[i] = 0.0;
for(j = 0;j <= i;j++)
c[i] += a[i - j] * p[j];

c[i] /= sqrt(s2);
}

}

This algorithm can be easily modified to generate the di�u�
coefficients of the Laguerre lattice filter. It is only neces-
sary to replace the divisions by sqrt(s2) with divisions
by s2.
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