
REVISTA DO DETUA, VOL. 1, Nº 3, JANEIRO 1995 217

Resumo- Este artigo descreve as técnicas fundamentais
aplicadas na análise e na programação orientada a objectos
(OOD e OOP). O artigo destaca, igualmente, as capacidades
da linguagem C++, descreve algumas regras para a escrita
destes programas e apresenta uma aplicação de auto-estudo.

Abstract - This paper discusses the basic approaches

involved in the use Object-Oriented Programming (OOP)
and Object-Oriented Design (OOD) for application
development. It emphasises the principal distinctions
between two widely-used and well-known directions in
software development. At present there are many computer
languages that incorporate OOP capabilities. One of the
most powerful of these languages is C++. This article
underlines the main innovation introduced in C++. It
recommends some rules for writing C++ object-oriented
programs, and considers an animated software tutorial
which allows the OOP approach in general, and C++ in
particular, to be learned in the fastest possible way.

I. INTRODUCTION

Programming languages can be considered as a tools for
creating different software systems. Each language
supports a particular programming technology. The
complexity of developing modern software systems is
increasing, and there are basic limits in the ability of a
particular technology to cope with this complexity.
Widely-used approaches in software development are
related to procedural and modular programming. The
basic idea of these approaches can be represented in the
following expression:

 PROGRAM = ALGORITHM + DATA

Bjarne Stroustrup defines the ideas being accepted in

procedural and modular programming as follows [1]:
“Decide which procedures you want; use the best
algorithms you can find”, “Decide which modules you
want; partition the program so that data is hidden in
modules”. The languages which support procedural and
modular programming are especially appropriate for tasks
having algorithmic features (mathematical computations,
etc.). However, because of the complexity of many tasks,
especially having non computation characteristics
(computer-aided design, data base, user interfaces, etc.),
their effectiveness is limited [2]. This compels us to

consider new approaches and new technologies in
software development.
The idea of Object-Oriented Programming (OOP) was

implemented for the first time in the Simula-67 language.
OOP was invented as a tool for dealing with the
increasing complexity of software systems. We omit a
proof of this assertion and refer to [2].
The basic idea of OOP can be represented in the

following expression:

 PROGRAM = OBJECTS + MESSAGES

Bjarne Stroustrup defines the idea fundamental in OOP

as follows [1]: “Decide which classes you want; provide a
full set of operations for each class; make commonality
explicit by using inheritance”.

II. OOP FOUNDATIONS AND APPLICATIONS

Let us start with foundations of Object-Oriented
Technology (OOT). The basic objective of this
technology is to introduce new ideas for the design of
very complicated software systems. The limitations of the
human capacity for dealing with complexity is well
known [2]. A good approach to overcoming these
limitations is decomposition. OOT directly supports
object-oriented decomposition which has many
distinctions from algorithmic decomposition. It deals with
a set of objects interacting to perform some unique
behaviour. An object is a tangible entity encapsulating
data to be manipulated and methods which usually
provide an external interface.
Consider an example of an object called a register.

Suppose that it is a model of real digital electronic
scheme. Let us assume, that our register is 10 bits in size,
and that we can perform read and write operations on it.
This necessitates that we invent an object comprising the
following members:

 state (a data member);

 READ (a method or function member);

 WRITE (a method or function member).

After an object has been described we can suggest a

simple scenario which would be something like the
following:

From Procedural to Object-Oriented Programming
(foundations, distinctions, applications, training, attractive tutorial)

Valery Sklyarov

218REVISTA DO DETUA, VOL. 1, Nº 3, JANEIRO 1995

 write a value N to yourself;

 read a value being registered.

To perform these simple actions we must send the

messages mentioned above to the object. It should be
noted that each particular language introduces its own
terminology. For example in C++ methods are called
member functions, and messages are operations invoking
the member functions that provide the external interface,
etc.
Designing a complex digital device involves using many

kinds of simple registers. Suppose the registers to be
considered have different sizes. So on the one hand they
are slightly different, but on the other hand they have
exactly the same well-defined behaviour. We therefore
need to create a class of registers. Basically, classes and
objects are the main innovations of OOP. They are closely
related each others and cannot be considered
independently. The main difference between them is the
following: an object is a concrete entity existing in time
and space; a class is only an abstraction [2]. Grady Booch
defines class as follows [2]: “A class is a set of objects
that share a common structure and a common behaviour”.
Let us consider our class named for instance REGISTER,
in a bit more detail. Firstly, in order to define an object of
the class REGISTER we must define an instance of the
class. When we are defining an object it would be useful
to make some initial settings, for example to set a size for
a register and an initial state. The setting the size of a
register involves memory allocation (we remember, that
an object is a model of a particular register in computer
memory). Another words we want:
 - to allocate memory for setting the size of a

particular register;
 - to make an initial setting.
OOT supports these operations directly by introducing a

special method (a member function) called a constructor.
A constructor is responsible for creating an object and

initializing its data members. In our example it creates a
particular register having a defined size SIZE, and sets it
to a defined state INITIAL_STATE. In C++, the
declaration of the class could be following:

 class REGISTER

 { BOOLEAN *state;

 unsigned size;

 public:

 REGISTER(unsigned SIZE,

 BOOLEAN *INITIAL_STATE);

 void WRITE(BOOLEAN *NEW_STATE);

 void READ(BOOLEAN *CURRENT_STATE);

 };

As you can see a constructor has the same name as its

class, and it returns no value (not even a void). Our
constructor can be defined in the following form:

REGISTER::REGISTER(unsigned SIZE,

 BOOLEAN *INITIAL_STATE)

{

 size = SIZE;

 state = new BOOLEAN [SIZE];

 for(int i=0; i<SIZE;state[i++] =

 (INITIAL_STATE)?

 INITIAL_STATE[i]:0);

}

Here, BOOLEAN is a user-defined type representing a

one dimensional boolean array (each bit of the array
corresponds to a related bit of a real register), new is a
C++ operator (and a C++ keyword) providing dynamic
storage allocation. We will omit other explanations of
C/C++ instructions and library functions (the reader can
find them for example in [3], or in any C/C++
programming guide and library reference).
 Let us consider our register in a bit more detail. In most

instances it should probably be set to zero (00...0)
initially. This leads us to the idea of a constructor which
has so called default parameters. Consider the following
constructor declaration (inside the class):

REGISTER(unsigned SIZE,

 BOOLEAN *INITIAL_STATE = NULL);

Now we can define an object in two possible ways (we

have assumed that SIZE = 10):

 REGISTER register1(10);

 REGISTER register2(10,INITIAL_STATE);

In the first call of the constructor, the second parameter

is NULL by default. In the second call the second
parameter is a pointer to a particular initial state.
 Once an object has been created it occupies computer

memory. To free memory that was allocated we must
destroy the object. To do that, the OOT provides a special
method (member function) called a destructor. A
destructor has the same name as the class, but preceded by
a tilde (~). As we have already mentioned it destroys the
object being constructed. Consider the following possible
declaration and definition of a destructor for our example.

 class REGISTER

 {

 public:

 REGISTER(...);

 ~REGISTER(void)

 { delete [size] state; }

 };

Here delete is a C++ operator (C++ key word) which

provides dynamic storage deallocation. Our (and any
other) destructor has no arguments.

REVISTA DO DETUA, VOL. 1, Nº 3, JANEIRO 1995 219

 Let`s consider our class named REGISTER further. As
we mentioned above it represents a set of objects which
exhibit some well-defined behaviour. A concrete object
comprises data members and function members. Data
members can be considered as properties of an object and
therefore external access to the data members can be
strongly restricted. OOT provides member access control
which make it possible to hide both data members and
function members within class, so that access to them
from outside the class is limited. For instance, the C++
language introduces member access control attributes (key
words), which are: public, protected and private. All
members of a class are private by default. Public
(protected, private) members must be declared in the
public (protected, private) section of a class. The
significance of the attributes is: public members can be
used both inside and outside of a class without any
restrictions; protected members can be used inside a
class, by friend functions (see below) and inside derived
classes (see below); private members can be used inside
a class and by friend functions (friend is a key word of
C++). Different sections (public, protected, private) can
be repeated any number of times and in any sequence. In
the example we considered above, we had one implicitly
declared private section (by default) and one explicitly
declared public section.
 Let us look at an extended version of our example.

Suppose we want to introduce a shift register that is a
variety of register. Consider the previous REGISTER
class declaration. We remember that the WRITE and the
READ are member functions of class REGISTER. We
need exactly the same functions for a shift register. In
addition, our shift register involves a new function
performing the shift operation. In other words it is worth-
while to build a hierarchy of classes which might be as
follows: base class named REGISTER - derived class
named SHIFT_REGISTER. The concept of OOT which
emphasizes a hierarchical structure is called inheritance.
Basically inheritance denotes a relationship between
classes. It makes it possible that one class shares the
behaviour and/or structure of one or more other classes.
Let us continue with our example and design a base class
named REGISTER and a derived class named
SHIFT_REGISTER. According to the previous
explanation, the class SHIFT_REGISTER will inherit
members of the class REGISTER. In addition the new
class will introduce some new members, for example, a
member function named SHIFT. It leads us to the
following declaration:

class SHIFT_REGISTER : public REGISTER

// declaring the derived class SHIFT_REGISTER

// we must enumerate

// the base classes in a comma-delimited list

// followed after

// colon (:). In the example there exist a

// single base class

// named REGISTER

 {

 public:

 SHIFT_REGISTER(unsigned SIZE,

 BOOLEAN *INITIAL_STATE) :

 REGISTER(SIZE,INITIAL_STATE) { }

 void SHIFT(unsigned number);

};

When you declare a derived class you can use the access

specifier (private, protected, or public) in front of the
class in the base list. Access specifiers allow you to alter
the inherited access attributes for members of the derived
class (see, for example [4]). If a base class has a
constructor defined explicitly with one or more
arguments, any derived class must have a constructor as
well. In the example a constructor for the class
SHIFT_REGISTER is declared as:

 SHIFT_REGISTER(unsigned SIZE,

 BOOLEAN *INITIAL_STATE) :

 REGISTER(SIZE,INITIAL_STATE) { }

Suppose that the READ function is exactly the same for

both (base and derived) classes. However the WRITE
function is slightly different for the derived class. The
C++ language allows us to perform a redefinition (it is
called function overriding) of a function in this case. We
want to use a base class version of the function WRITE
for our class REGISTER and a derived class version of
the function WRITE for our class SHIFT_REGISTER.
Let us consider the following definitions:

REGISTER reg(...), *pointer1_to_register,

 *pointer2_to_register;

SHIFT_REGISTER shift_register(...);

One rule in C++ says that any variable defines as a

pointer to a base object (see, for instance,
pointer1_to_register, pointer2_to_register) may also be
used as a pointer to a derived object. The following
statements will be valid in our example:

 pointer1_to_register = ®

 pointer2_to_register = &shift_register;

Now using pointer2_to_register gives access to all

members of the object shift_register, inherited from the
class REGISTER. Consider the following expression:

 pointer2_to_register -> WRITE(...);

Which version of the WRITE will be called? If

pointer2_to_register was defined as a pointer to the base
class, then the WRITE member function of the base class
will be called. And how can we invoke the derived class
version? The answer lies in a virtual function

220REVISTA DO DETUA, VOL. 1, Nº 3, JANEIRO 1995

declaration (virtual is C++ key word). Virtual functions
make it possible to resolve the overloading problem
(polymorphism) during the course of program execution
(it is called late binding), rather that at compile time (it is
called early binding). They represent functions declared
with the specifier virtual in a base class and
subsequently redefined in one or more derived classes
with their names, types of returned values and the number
and types of arguments, being unchanged.
 Suppose we want to add two extra classes named

LEFT_SHIFT_REGISTER and
RIGHT_SHIFT_REGISTER to be inherited from class
SHIFT_REGISTER. Let us consider the SHIFT member
function that is common to both new classes. In our
representation the SHIFT_REGISTER class makes sense
only as the intermediate base of classes
LEFT_SHIFT_REGISTER and
RIGHT_SHIFT_REGISTER derived from it. Really,
registers that perform a pure shift operation do not exist,
because this operation is either a left shift or a right shift.
To declare operations like these, C++ provides pure
virtual functions. A virtual function is made pure by
setting it equal to zero. If a class contains at least one pure
virtual function it is called an abstract class. It is
impossible to create an object for such a class. It may only
be used as a base class for the definition of derived classes
which can inherit its members.
 So now we could consider the following

declarations:

class SHIFT_REGISTER : public REGISTER

{

public:

 virtual void SHIFT (unsigned number) = 0;

};

class LEFT_SHIFT_REGISTER : public

 SHIFT_REGISTER

{

public:

 void SHIFT (unsigned number)

 { shifting left by number bit

positions }

};

class RIGHT_SHIFT_REGISTER : public

 SHIFT_REGISTER

{

public:

 void SHIFT (unsigned number)

 { shifting right by number bit

positions }

};

Let`s look at the statements:

 (register state) <<= number;

 (register state) >>= number;

Since state is a boolean array we cannot use standard

>>= and <<= C/C++ operators. However the C++
language lets you redefine the actions of most standard
operators. The compiler distinguishes the various
functions by noting the context of the call. In other words
it can check the number and types of the operands. The
keyword operator, followed by the operator symbol, is
used to define the function name. Let us assume that we
want to override the operator <<=. An example of how
you can do this is as follows:

class LEFT_SHIFT_REGISTER : public

 SHIFT_REGISTER

{

public:

 BOOLEAN* operator <<= (unsigned number)

 {

 for(unsigned i=0;i<size-number;i++)

 state[i] = state[i+number];

 for(i=size-number;i<size;i++)

 state[i] = 0;

 return state;

 }

};

It should be mentioned that we intend to use the member

state which is declared in the base class. To enable this
member to be accessed in a derived class, it should be
assigned the attribute protected (you must avoid the
attribute public for data members of a class). Now the
following member function will work correctly:

 void SHIFT(unsigned number)

 { *this <<= number; }

Here a new C++ pointer named this is invoked (this is

C++ key word). It is a local variable of the class which
does not need to be declared. It is a pointer to the object
containing the function being executed and is available in
the body of any nonstatic member function. So the return
statement:

 class_type* func(...)

 {........

 return this;

 }

returns a pointer (for instance &obj) to the object of type

class_type, in which the function named func was
declared. The return statement:

 class_type& func(...)

 {

 return *this;

REVISTA DO DETUA, VOL. 1, Nº 3, JANEIRO 1995 221

 }

returns the object (for instance obj) of type class_type, in

which function named func was declared. The
construction type& lets us create a reference type closely
related to a pointer type. In the following statements:

 LEFT_SHIFT_REGISTER lsr(10);

 LEFT_SHIFT_REGISTER &ref_lsr = lsr;

the lvalue ref_lsr is an alias for lsr. Any operation on

ref_lsr has precisely the same effect as that operation
would on lsr.
 Consider the expression *this <<= number which

appeared above. Basically, an operator function must
either be a nonstatic member function, or have at least one
argument of the class type. Our nonstatic class member
operator function has two arguments which are:
 - an implicitly defined argument, of type

LEFT_SHIFT_REGISTER;
 - an explicitly defined argument named number,

of type unsigned integer.
The expression *this lets refer to an object of a class

LEFT_SHIFT_REGISTER vie its implicitly defined
pointer this (remember that this is a pointer and *this is
an object).
 Now you can use expressions:

 object_name.SHIFT(number);

 pointer_to_object->SHIFT(number);

 Suppose you want to use another expression which will
look something like the following:

 object_name <<= number;

In this case you have to change the operator<<=(...)
function as follows:

LEFT_SHIFT_REGISTER& operator <<= (unsigned

number)

{ ... (see considered above statements) ...

 return *this;

}

At last if you want to consider the following statement:

 object_name << number;

you have to overload the predefined bitwise left shift
“<<“ operator:

void operator << (unsigned number)

{ ... (see considered above statements,

 excepting “return ... “) ... }

 Let us consider another possible task. We wish to
compare states for two objects which have different types.
It could be states of a left shift register and a right shift
register. We want to invoke operations like Equal To, Not
Equal To, etc. and perform them in a function named
comp_two_reg. Remember that state has the attribute
protected and therefore is a hidden class member. So how
can we access it? The answer lies in the friend function

declaration (friend is C++ key word). Using friend
declarations, C++ provides a mechanism for access to
private (protected) members of a class from functions
which are not members of that class. This is enabled when
the functions have the specifier friend. For the example
we are considering, we should declare the function
comp_two_reg in LEFT_SHIFT_REGISTER and
RIGHT_SHIFT_REGISTER with the specifier friend.
For the general case, the necessary statements are outlined
below.

class LEFT_SHIFT_REGISTER : public

 SHIFT_REGISTER

{........

friend void

 comp_two_reg(LEFT_SHIFT_REGISTER *lsr,

 RIGHT_SHIFT_REGISTER *rsr);

 // we assume that our function has

 // returned value of type void

};

class RIGHT_SHIFT_REGISTER : public

 SHIFT_REGISTER

{

friend void

 comp_two_reg(LEFT_SHIFT_REGISTER *lsr,

 RIGHT_SHIFT_REGISTER *rsr);

};

void comp_two_reg(LEFT_SHIFT_REGISTER

 *lsr, RIGHT_SHIFT_REGISTER *rsr)

 {if((lsr->size)!=(rsr->size))

 cout << “states can not be compared”

 << endl;

 for(unsigned i=0;i<lsr->size;i++)

 if (lsr->state[i]!=rsr->state[i])

 { cout << “states are not equal”

 << endl;

 return;

 }

 cout << “states are equal” << endl;

}

Remember that friend functions are not member

functions and so they do not have the pointer this.
 Let us build a more complicated model of the shift

register. For example we want to obtain information about
a fixed state named state_fixed which is being defined
independently of a particular object. For these purposes a
new storage class specifier, static, can be used. Consider
the following declaration of the state_fixed
LEFT_SHIFT_REGISTER static data member:

 static BOOLEAN *state_fixed;

The member state_fixed is called a static member.

Static members have different properties from nonstatic
members. With nonstatic members, a distinct copy exists
for each object of the class. With static members only

222REVISTA DO DETUA, VOL. 1, Nº 3, JANEIRO 1995

single copy exists, shared by all objects of the class. It is
allowed to initialize static data members outside of a class
(if they are accessible), even a particular object has not
been defined yet, for instance:

LEFT_SHIFT_REGISTER::state_fixed = NULL;

or

LEFT_SHIFT_REGISTER::state_fixed =

 new BOOLEAN[25];

The basic use for static members is to keep track of data

that is common to all objects of a class. Because there is
only a single copy of a static function for many objects
of the same class, it does not have the pointer this, and
therefore can only access nonstatic members by explicitly
specifying a concrete object with the . or -> selection
operator. For example we can consider an alternative way
making it possible to set a fixed state. In this case we are
keeping our fixed state in a static function named, for
instance, S_FIXED. This function would be defined as the
following:

// the first statement represents the

// function declaration within the class

static void S_FIXED(LEFT_SHIFT_REGISTER *lr);

// the following statements show the possible

// function definition

void LEFT_SHIFT_REGISTER::S_FIXED(

 LEFT_SHIFT_REGISTER *lr)

 { BOOLEAN fixed_state[] =

 { 1,0,1,1,...,0 };

// accessing to class data members explicitly

// using their names (pointers), for example,

// lr -> size; or lr -> state[i];

}

 The final step of our example is devoted to memory of

type register. Suppose we want to consider arrays of
registers, which can be:
 an array of left shift registers;
 an array of right shift registers.
In other words we intend to build containers of registers.

They might represent a logical model of a physical
scheme located on a single chip, which is designed for
general application. Basically our task is aimed at
constructing a family of related classes which provide an
array of left shift registers and an array of right shift
registers. This can be done within the boundaries of OOT
using so called templates (template is C++ key word).
These allow you to define a pattern for either class
definitions, or a family of related functions, by setting the
data type itself as a parameter. Borland C++ container
classes such as stacks and arrays are good example of
using templates [4].
 Suppose l_or_r is a type which can be either

LEFT_SHIFT_REGISTER
or

RIGHT_SHIFT_REGISTER.

A declaration “template<class l_or_r>“ says that l_or_r
is a type name. A class template specifiers how
individual classes can be constructed. For our example the
individual classes might be:
 the class of left shift registers;
 the class of right shift registers.
As a result our class template would be look something

like the following:

 template<class l_or_r> class ARRAY:

 public LEFT_SHIFT_REGISTER,

 public RIGHT_SHIFT_REGISTER

 { l_or_r **data;

 unsigned array_size;

 public:

 ARRAY(unsigned ARRAY_SIZE,

 unsigned SIZE,

 BOOLEAN *INITIAL_STATE = NULL);

 ~ARRAY(void);

 l_or_r& operator [] (unsigned x)

 { return *data[x]; }

 };

 template<class l_or_r> ARRAY<l_or_r>::

 ARRAY(unsigned ARRAY_SIZE,

 unsigned SIZE,

 BOOLEAN *INITIAL_STATE) :

LEFT_SHIFT_REGISTER(SIZE,INITIAL_STATE),

RIGHT_SHIFT_REGISTER(SIZE,INITIAL_STATE)

 { data = new l_or_r* [ARRAY_SIZE];

 for(int i=0;i<ARRAY_SIZE;i++)

 data[i] = new l_or_r(SIZE);

 array_size = ARRAY_SIZE;

 }

 template<class l_or_r>

 ARRAY<l_or_r>::~ARRAY()

 { for(int i=0;i<array_size;i++)

 delete data[i];

 delete [] data; }

We can continue a refinement of our example. Another

varieties of devices (counters, decoders, etc.) could be
investigated. So a new hierarchical structure could be
built. In turns our devices might be considered as a
building blocks for more complicated digital schemes,
such as microprocessors, microcontrollers and
microcomputers. They could be further developed in
modern computers and computer systems. In any possible
level, object models are applicable in a habitual and
natural form. Starting from very simple devices, being
considered above, we can develop our application to
solve, for example, different tasks of logical simulation
and digital synthesis (see, for instance [5]).

REVISTA DO DETUA, VOL. 1, Nº 3, JANEIRO 1995 223

III. CONCLUSIONS

We have discussed a simple example demonstrating how
OOT in general, and the C++ language in particular, can
be used to represent logical models of digital devices.
Briefly, the consequences resulting from what we have
discussed are the following.
1. The key concepts of OOP are: encapsulation (class

declaration, objects definition, protecting class members,
defining object access rules); inheritance (single
inheritance, multiple inheritance, abstract classes);
polymorphism (function overloading, operator
overloading, virtual functions, templates).
2. OOP defines techniques that provide for [3]:

describing an object structure, or class (in C++ classes
also can be represented by structures and unions with
slightly different rules for accessing members); describing
methods or member functions for the manipulation of
objects using unique object inheritance principles;
protecting object members and defining the rules for
accessing objects; passing messages between objects;
eliminating or at least reducing global data.
3. OOP directly supports hierarchical ordering which can

be considered as one of the most powerful tools for
managing complexity. Using inheritance, object-oriented
program can be organized as a set of trees or directed
acyclic graphs of classes [1]. The physical building block
in object-oriented languages is the module, comprising a
set of classes instead of subprograms as in procedural
languages. In large systems the object model scales up [2].
Clusters of abstractions can be built in layers on top of
one another [2].
4. As followed from point 3, an object model is closely

related to finite automata models [5]. It is also mentioned
in [2, see p. 90]. Let us return to our example. On the one
hand a register is an object. On the another hand it can be
considered as tiny, independent machine referring to finite
automata theory being developed for a long time. Digital
schemes, containing digital devices like registers,
counters, decoders, etc., can be described as a set of
classes using the basic OOP principles mentioned above.
However they can be also considered as a network of
machines from the perspective of finite automata theory.
Moreover it is an approach which can be used to design
parameterized matrix digital schemes [5]. At present
templates are developing in nearly the same direction.
5. These are a brief description of new C++ basic key

words:
 “class” which is used to represent a general

structure of a set of objects (see also “struct” and
“union” key words [3,4]);
 “delete”, “new” which are used to dynamically

allocate and deallocate memory;
 “friend” which is used to design non-member

functions accessing private and protected class members;
 “operator” which is used to overload most of

the predefined operators in C++;

 “private”, “protected”, “public” which are
used to set predefined rules for accessing class members.
You can assign member attributes (private, protected,
public) when you declare class members, and when you
specify the base classes for derived classes;
 “template” which is used to build parameterized

types - in other words to set the type itself as a parameter;
 “this“ which is used to represent a hidden

pointer which is unique for each object, and points
(addresses) to the object itself in computer memory;
 “virtual“ which is used to support overloading

during execution (to provide late binding).
C++ introduces also some additional key words that are:

“catch“, “throw“, “try“ (exception handling, see, for
example, [1,4]), “inline“ (to make function as inline
function, see, for instance [3]).
Finally, there is a comprehensive, interactive, animated,

graphical tutorial program on C++ and object-oriented
concepts [3]. You can refer to [3, p 5-7] to understand
how to use the accompanying disk containing the tutorial.
The teaching program makes learning C++ as easy as
possible. There are also many C++ examples on the
tutorial disk.

REFERENCES

[1] Bjarne Stroustrup. The C++ programming language. Second
Edition, Addison-Wesley Publishing Company, 1994, 691 p.

[2] Grady Booch. Object-Oriented Analysis and Design. Second
Edition. The Benjamin/Cummings Publishing Company,
Inc.,1994, 589 p.

[3] Valery Sklyarov. The Revolutionary Guide to Turbo C++.
Birmingham, WROX, 1992, 352 p.

[4] Borland C++. Programmer`s Guide, Borland International, Inc.,
1993, 326 p.

[5] V.A.Sklyarov. Matrix LSI Finite Automata Synthesis.
Minsk,Science and Technique, 1984, 372 p.

_

