
REVISTA DO DETUA, VOL. 1, N° 4, SETEMBRO 1995 253

Digital Virtual Neuroprocessor: Design experience using Verilog HDL

Jorge Velez, António de Brito Ferrari

Resumo— No presente artigo são apresentados o
procedimento adoptado e a experiência obtida no projecto e
desenvolvimento de um processador neuronal, utilizando
Verilog HDL. A descrição das várias etapas de projecto no
sentido da descrição final do sistema e do correspondente
ambiente de simulação, constitui uma ilustração concreta da
aplicação das capacidades de uma metodologia baseada na
descrição e simulação de hardware no projecto de sistemas.
A configuração final do computador neuronal integra o
ambiente de simulação de Verilog HDL como ferramenta
fundamental para o teste e desenvolvimento de futuro
software neuronal.

Abstract— This paper presents the design flow and the
resulted experience in the development of a neural
processor, using Verilog HDL. Describing the design steps
toward the final system's description and simulation
environment, provides a concrete illustration of the
application of Verilog HDL features in the system's design
testing, characterization and improvement, at the early
stages of the project.
The end-use neural computer's configuration comprises the
Verilog HDL simulation environment as a fundamental tool
for future neural software test and development.

I. INTRODUCTION

The implementation of artificial neural networks (ANNs)
by software simulators running on serial processing
computers, is not suitable for most "on the ground"
applications where the real time speed requirements are
unreachable even if the fastest serial computers on the
market were used. For this domain of applications the use
of special parallel hardware implementations of ANNs is
required.
This paper describes the design methodology used in the

development of one such system. It presents the
experience gained in building the Verilog HDL
description of a digital neuroprocessor within the system
where it is to be integrated. The system description and
specification is presented in the following section.
As the complexity of current systems has been growing,

the designers have increasingly adopted a high-level
description of the system to be designed as the starting
point in the development process. Current hardware
description languages (HDLs) such as VHDL or Verilog,
support the design hierarchy, allowing mixed-level
descriptions to be submitted to simulation. They provide a
means for designing different parts of the system, using
distinct development strategies. The datapath of a

processor can be simulated with a behavioral architectural
description of its arithmetic and logic unit. Once all the
synchronization and clocking schemes have been
validated, the arithmetic and logic unit may be substituted
by a more detailed structural model. The same may be
applied for its constituting parts and so on.

Besides documenting and stating unambiguosly the
system's specifications, the use of an HDL allows for their
verification without resorting to iterations through the
time consuming phase of implementation.
Designing a special purpose processor constitutes a good

example of how useful an HDL description and
subsequent simulation, can be. Often being distant from
the traditional fairly tested architectural solutions, the
exploration of the design space through the evaluation of
the various alternatives coming up during system
development, is of great importance.

The advantages of using an HDL do not end up with the
completion of a project. In current integrated circuit (IC)
design, the existence of a correct system description is
very useful when testing the fabricated chip. The test
vectors can be previously evaluated and the HDL
simulation responses can then be compared to the real
responses from the fabricated IC.

II. BASIC SPECIFICATIONS

The objective is to design and build a computer whose
architecture is oriented toward the efficient
implementation of ANN models (neural computer or
neurocomputer), in particular Multi-Layer Perceptrons
(MLPs) with the backpropagation (BP) algorithm [1][2].
The architecture does not make any restrictions to the
network configuration, allowing for the mapping of nets
with different dimensions and any distribution of neurons
among different layers.

Due to the heavy computing requirements of such
models in current real-life applications, the
neurocomputer to be built is based on a parallel
configuration. Connected as an attached processor to a
host computer, it is constituted by a number of processing
units communicating via a common data bus (fig.1).

The proposed architecture envisages simplicity and low
cost adopting solutions to the typical bottlenecks. The
characteristics of neural nets (large number of neurons
and interconnections, simple internal processing) make

254 REVISTA DO DETUA, VOL. 1, N° 4, SETEMBRO 1995

the algorithms communication-intensive. Hence the
limitations in communication bandwidth tend to be the
main bottleneck in multiprocessor neural architectures.
The fundamental system characteristics (fig. 2) can be
summarized as follows:

• Neuroprocessor - each node in fig.1 includes a

special-purpose floating-point processor implemented
as a VLSI chip, and its own local memory.

• Parallel architecture easy to expand - by

implementing inter-node communications through a
tagged inter-communication bus type, the
architecture's typical bandwidth bottleneck, can be
minimized.

 The system is scalable simply by adding new VLSI
chips onto the global bus.

• Broadcast communication type - similar to the

classical single bus architectures, its design principles
come from the observation that nowadays memory is
cheap in comparison to arithmetic resources [3][4].
Providing each node with sufficient local storage,
traffic on the bus can be reduced to the new neuron
activations [1]. The learning algorithm must be
adapted to accomodate global communication.

• Reconfigurability and Generality - in programming

mode, apart from loading the neuroprocessor
microprogram, each node also receives the
information about the network topology. Such
topology is totally re-configurable through the host

computer.
 Although the architecture was thought for improved

performance with the BP algorithm, it may also be
used for executing other algorithms on other ANN
models.

• Computation and Communication Balance - a node is

designed to fully support the overlap of
communication with internal processing.
Communication and processing are asynchronous,
exchanging data through input/output first-in-first-out
(FIFO) buffers.

The operation is controlled by the host and encompasses

three main phases (modes):

1. Programming of the system by the host, where the
network topology is defined, and the initial values for
the weights are loaded into each node. After
programming the operation may proceed to the
training or recall modes.

2. In training mode the host presents the training

patterns and searches for the output neuron
activations (forward step). When one of such
activations is read, the host calculates the error and
sends it to the bus. Once the backpropagation of
errors is complete (backward step), another input
pattern is presented. At the end of the training set, all
the nodes update their weights (update).

3. Recall, where the operation is just as in the forward

phase of the learning process.

III. NODE ARCHITECTURE

Since the data word length has a major impact on
operation speed and silicon area, a reduced floating-point
representation was investigated [2]. The conclusion was
that a 16-bit floating-point format (1-bit sign + 5-bit
exponent + 10-bit mantissa) provided the required
precision and dynamic range. Each processor consists of
two separate units working asynchronously. A
communication unit, the node's interface with the global
bus, and a processing unit whose arithmetic resources are
multiplexed for each neuron in a node (fig. 3).

A. Communication Unit

The chosen bus protocol is the 3-wire Daisy Chain
(GRANT, REQUEST, BUS-BUSY), arbiter centralized at the
host bus interface. How this choice affects performance
was subject to experimentation through the final HDL
simulation [2] and it will be discussed later.
The communication unit consists basically of input and

output FIFOs (data and tag fields) and of a PLA-based
controller which also implements the Daisy Chain

Low Bandwidth
and

Comput. Characts.

System's General
Characts.

• Large nº of neurons

• Great inter-connectivity

• Different net models

• MLP structure

• Virtual digital design
• Ease of reconfiguration
 and generality
• Simple expansion
• Comm. and Proc. balance
• Global comm. (Broadcast)

BP reorganization

Fig. 2

...NODE1 NODE2 NODEn

Global Bus

User Terminal

HOST

Fig.1

REVISTA DO DETUA, VOL. 1, N° 4, SETEMBRO 1995 255

protocol. The length of these buffers has been
investigated [2].

B. Processing Unit

The processing unit, divided in control unit and datapath,
is a (micro)programmable processor with a dedicated
instruction set. A hardwired design would compromise
the desired neuroprocessor flexibility.
This unit's fundamental design decisions derive from the

system specifications and the BP processing
characteristics:

• Control Unit - this unit is microprogrammable and
based on SRAM where the machine code
implementing the neural algorithm is to be loaded.
The access time of the control memory is dependent
on its dimension. Hence it is important, both for chip
area and for processing speed, to keep the SRAM
small.

• Addressing Unit - according to the tag coming

through the bus, the neuron being processed and the
type of data involved (weight, update or activation), a
memory position has to be determined. This is a
frequent operation, therefore the addressing scheme
is of crucial importance to the processor's
performance.

 Two addressing modes are supported. An absolute
mode with no arithmetic required and a displacement
mode involving the summation of the incoming tag,
the neuron base address and their dimensions.

• Floating-Point Unit - the neurons intrinsic

calculations (summation and multiplication) are
executed by a 16-bit floating-point unit (FPU). The
short mantissa greatly contributes to the feasibility of
such FPU.

• Sigmoid Table Look-up - by using the exponent bits

and the sign value, a 64-position SRAM
implementing the non-linearity, is directly accessed.
Another implementation choice would involve heavy
calculations.

Other important relevant parts are:

• Integer Arithmetic Unit - the integer arithmetic unit is

meant, basically, for pointer and index calculations
needed to implement loops in the algorithms. Since
the addressing unit also uses a 16-bit adder, a
hardware multiplexing scheme was implemented so
that some silicon area can be saved.

• Register Bank - there are 8 general purpose registers.

Although this number represents a good tradeoff, a
few more would allow for a slight decrease in
memory traffic.

IV. VERILOG AND VERILOG-XL

Verilog (Verify Logic) is the HDL most used in
industry, particularly in the US. Introduced in 1983 by
Gateway Design Automation it was later acquired (1989)
by Cadence Design Systems that offered it to
standardization (1991). As a result a number of third-
party simulators, most of them running on PCs, is now
available.
The early availability of an efficient simulator supporting

all the language constructs and well supported by the
system environment (Verilog-XL), together with its
similarity to the C programming language, were
instrumental to its widespread acceptance. Its availability
to universities under EUROCHIP, and its easy integration
with Cadence Design Framework, together with the
characteristics mentioned, led to the decision to choose
Verilog as the HDL to be used.
The logic simulation process with Verilog-XL, involves

three separate steps: creation of a system model,
providing stimulus to exercise the model and indicate the
format in which results are to be viewed. The simulation
sessions may be interactive allowing the user to monitor
the system variables, forcing new stimulus or changing
the previous ones. The simulation may then proceed
normally, step by step with or without trace [5].
Input/Output of data from and to files under the

operating system, is possible. Such features allow the
gathering of statistics, register final values, etc, and the

PLA
Control

Communication Unit
Inp Buffer Out Buffer

DataTagData Tag

C
ountC

ou
nt

Global Bus

Register
Bank

FP Unit

Addressing
Unit

Arithmetic
Unit

Sigmoid
Table

Tag

Pass 1/2

contr

conds

add

mem
data

C
on

tr
ol

 U
ni

t

DatapathBus 1 Bus 2 Dest Bus

Bus Tag

Fig. 3

256 REVISTA DO DETUA, VOL. 1, N° 4, SETEMBRO 1995

reading of data values to memories, PLA contents, etc.
The output display includes normal printing in the
working window, fixed position textual printing, bars or
waveforms. The last three are updated as time evolves.
Past events can be viewed moving a cursor in a time bar.
The output facilities and the great simplicity of the related
commands, are undoubtedly a further strong motivation to
use Verilog-XL.

The language basic concept is the module. It represents
a piece of hardware connected with other modules
through inputs and outputs, called ports. Such modules
can be part of a hierarchy as a block of hardware that can
be used one or more times in another module.
The modules functioning can be described either

behaviorally or structurally. Behavioral descriptions can
be done at the register transfer, algorithmic or
architectural levels. The structural, netlist type, may be
described using primitives such as gates or through
transistor models (switch level).
All levels, behavioral or structural, can be mixed in a

same description and submitted together to simulation.
Thus high level behavioral descriptions of parts being
designed, can be simulated together with the structural
description of already implemented blocks.

The time concept constitutes the main particularity of

HDLs. Since every piece of hardware works in parallel
through time, Verilog code is executed in an event-driven
way. Every action is triggered by specific user-defined
events or through the value of a global variable
representing the system simulation time.
The package language+simulator could be used as a

standalone product or integrated in Cadence Design
Framework. Before going to the implementation phase,
for practical reasons, the standalone use is advised.

V. NODE DESCRIPTION

As referred, the first stage toward the neuroprocessor
implementation was the C language neural network
simulator. By defining the processor's data format, the
basic specifications were finally achieved.
Design and description are indivisible. Naturally, ideas

come first to light through scratches on paper. However,
by creating models of the pieces of hardware, whatever
the description level is, such ideas can easily be judged,
for invalidation or for adoption. The advocated
architecture is the basis for this kind of development. In
the present design, by architecture one refers not only to
the system but also to the node's architecture.
Level independent, the description structural detail is

also a matter of concern. Using behavioral constructs one
can build a module either modeling its function with
behavioral procedural blocks and register transfers, or by

detailing its constitution. By other words, one may use
only the behavioral level to model the block function or,
in a structural way, implement it with smaller and simple
behavioral level modules. This latter type of description
can be easily and automatically transformed into an
ordinary schematic by mapping those simple modules, to
the correspondent standard or user-developed cells, of a
specific technology.

The system design flow will be exposed as the sequence
of its main subparts description and their linking
procedure (fig.4). All the description top hierarchical
modules and the ones resulting from joining them, were
simulated before being linked again. Some requirements
and consequences of such procedure can also be viewed
in fig.4.

A. Communication Unit

In the communication unit design, the first step was to
implement the bus protocol. Thus, an arbiter and a
controller for the 3-wire Daisy Chain, were built. The
controller is part of the communication unit while the
arbiter belongs to the host interface. An extra line
(inhibition line) is included to prevent the arbiter to grant
the bus if any of the input buffers gets full.
Having validated the bus protocol scheme description,

the remaining bus communication unit functions were
then described. Since its control will be a PLA-based state
machine, it wasn't important to go deep in detail. At this
stage, spending time describing the PLA contents and
surrounding logic, was unnecessary. Instead, there were
written some behavioral code lines to implement all the
block functioning.
For an initial communication unit test, statistical

distributions were used for representing the items
processing time and the time interval between production
of two consecutive activations. Besides the waveforms
display, graphical output bars monitor the buffers
occupation through time and the maximum number ever,
in them. Statistics such as mean inter-arrival or longest
wait times, are also generated.

Apart from validating the basic architectural concepts,
several important conclusions could already be obtained.
It was shown that the fixed priority established by the
Daisy Chain protocol, had no effect unless the input
buffers got full. However, such situation only affects
performance if the output buffers are also filled up, which
rarely occurs if the buffer lengths are well dimensioned.
Some description related details and possible deadlock
situations were identified. Communication aspects since
they depend on algorithms, topologies and relative
processing times between nodes, were not studied at this
stage.

REVISTA DO DETUA, VOL. 1, N° 4, SETEMBRO 1995 257

B. Control Unit

Independently from the bus communication module, the
processing control state machine was specified. The main
purpose of this first version was to validate its functioning
principles and related clocking strategy. By supplying the
host lines and emulating the conditions coming from the
datapath, not yet built, all the unit synchronization was
defined.
The description detail was such that behavioral models

were only applied to pieces of hardware as simple as
multiplexers, latches and registers. In some constituting
blocks the detail evolved from less detailed descriptions.
Behavioral code with no detail, was used first to
determine or prove the effectiveness of the functional
specifications of those blocks. This illustrates a
development process starting from a high abstract level
and ending with a schematic equivalent structural
description. Thus, it will be quite fast to go from such a
description to implementation.

At this stage it was important to question the feasibility

of having SRAM for the control memory on-chip, though
the details for the µword format were not known yet. In
order to have an idea about the physical aspect of such
memory, ES2's parameterized SRAM cells were used.
The respective access protocol and timings, were
followed.

C. Addressing Unit

A first module version was created so that the addressing
scheme under the adopted clock strategy could
immediately be validated. Separate parts descriptions
constitutes not only a way to immediately verify the
idealized architecture but also a safe way to develop the
top hierarchical modules, as they grow up by integrating
smaller ones.
A second version was finally built which combines the

arithmetic unit and the addressing unit in the same
module, and implements the 16-bit adder multiplexing
scheme.

D. Datapath Parts

Having in mind the advocated generality, though it will
be directed to the BP algorithm, a first version of the
instruction set was defined through translation of pseudo-
code algorithms into assembler-like code. The required
datapath's transfers and operations determine the
hardware to build and to optimize.
The basic datapath parts are: the FPU, the integer

arithmetic unit, a bank of general purpose registers, the
addressing unit, the function table and a special register
— TAG register. The corresponding modules were
independently developed though there are some common
building blocks.

After specifying the modules synchronization and

interfacing, the µword format could finally be defined.
Since this processor is user-microprogrammed, the
possible µword's bits combinations give rise to a huge
instruction set dimension. The allowed instruction set,
assuring machine integrity, will be a small subpart of all
the combinations.
The simulation of all the parts working together was

quite extensive since the µword lines had to be emulated.
Incorrect synchronization of the applied stimulus allowed
some defects to pass, being detected later.
The final description detail is similar to the control unit

one. It requires a small step to implementation. For
instance, the FPU was fully designed. Its basic building
blocks are well known pieces of hardware (ex.):

module arith_unit(out,ovw,undw,op1,op2,sub/add,enable);
 ...
 exponent_comp exp_comp(diff,exp1,exp2);
 sign_detector s_det(out,signA,carry_add,diff);
 normalizer ...

endmodule

module sign_detector(out,signA,carry_add,diff_signs);
 ...
 assign #delay out=(diff_signs &&
 ~carry_add)?~signA:signA;
 //Implemented with simple combinatorial logic.
endmodule

The FPU project is certainly an excellent example to

illustrate the importance of using an HDL and simulation.

Specifications

Comm.
Unit ...

Control
Unit

Addr.
Unit FPU

Other
Parts

Description & Simulation
NODE

• Blocks Design&Simul.

• Joining Blocks&Simul.

environment simulation
descend level, increase detail
machine improvement

⇔
⇐

⇒

environment simulation
correct interfacing
machine improvement,
create higher hier. block

⇔
⇐

⇒

Fig.4

258 REVISTA DO DETUA, VOL. 1, N° 4, SETEMBRO 1995

By including high level constructs to perform the data
format conversions, the result could be displayed in both
machine and neuroprocessor representations. The
conversion between floating-point formats was done
building specific Verilog code functions used just as in C.
Their existence facilitates enormously the full FPU test
and, in case of error, ease for determining its location.

E. Joining Control and Addressing+Arithmetic Units

Joining these parts, was the next phase. Well defined the
cycles and synchronization of the respective instructions,
by filling the correspondent µword bits, the whole scheme
was then tested. Imperfections mainly relative to the
interfacing, could now be fully detected and corrected. A
working processor able to perform addressing and
arithmetic operations, and branch according to the
resulting conditions, was obtained. The external SRAM
interfacing was also included.

F. Joining the remaining Datapath Parts

The complete synchronization scheme was defined and
verified, at this stage. As a new piece of hardware was
included, the new datapath transfers involved were
immediately simulated and tested. It wasn't as hard as
testing the units separately because the stimulus were now
filled as the respective µword fields.
The occurring errors were normally and easily detected,

either by consulting the register values permanently
displayed on screen or by messages originated in
modules. Such fault detection messages were quite useful.
When a hardware error was detected, such as a floating
line on which the next µword address depends, then a
warning message was sent or an interrupt was generated.
To simulate "all" the specified instruction set, it was only

necessary to emulate the communication unit
asynchronous signals and the respective buffers.

G. Joining Communication Unit

Finally, the communication module was joined to the
processing unit description, creating a complete neural
node. By making instances of several neural node
modules connected to the bus and its arbiter, the system
simulation would then be done.

The external SRAM requirements had to be evaluated.

Through a few calculations involving the number of
neurons and connections foreseen, and being aware about
constraints such as the limit number for the nodes on the
bus, the capacity and speed of current commercial
SRAMs were found to satisfy the needs (64K words,
<20ns Tacc).
Designing with the target technology permanently in

mind, is fundamental. The impact of some of the crucial
system subparts on the final design, was studied whenever
it was possible. Such study was normally supported by the

ES2 design tool kit, as in cases of the multiplier, function
table and PLAs.

VI. SYSTEM SIMULATION

The simulation of the complete system required more
than the description of its parts. A system module
integrating the various neural processor modules, the
external SRAMs and the global bus arbiter, was created.
It is necessary to provide a practical way for adapting the

Verilog system description according to the topology and
configuration in use. The system module uses the Verilog
include directive to include the configuration dependent
parts. Those parts, such as node instances, output
commands, node port variables, programming, etc, are
automatically generated through C code. The C routines
also fill the external SRAM with the global configuration
data and random weights, if specified.
The function table is created by generating in C, the

sampled function values, and then, converting them into
the specified 16-bit floating-point format. If the function
and the number of points to represent it remain
unchanged, this procedure has to be executed only once.
Since programming directly in microcode would be

extremely difficult and time consuming, an assembler
was built which implements a subset of the allowed
instructions. If a special instruction is required or an
optimization through merging consecutive µwords, is
desired (e.g. within cycles), it can always be done using
one of the assembler directives which specifies explicitly
in hexadecimal format, the contents of a control memory
word. Further capabilities include the use of labels and
comments.
The test module, representing the host computer actions,

resulted quite complex. The host tasks had to be emulated
in Verilog. Such module implements the mode transitions,
drives the items into the global bus, snoops the bus for
activations, controls the supervision line (e.g., to
command the update operation), collects statistics and
measurements of various system parameters, monitors the
system variables for on screen visualization, etc. In
addition to the described complexity, almost all the tasks
above require re-writing the code whenever there is a
configuration modification or a change in some other
system parameters.

The devised functional description for the complete

system, can be illustrated as in fig.5. Configuration and
application data are situated at a different entry level since
the algorithms shall be provided as part of a set of neural
software and other tools.
Through distinct interface routines, the host front-end

which comprises the assembler and all the configuration
routines, controls both the hardware implementation and
the HDL description. The HDL simulation is useful not
only while the system is being developed but also during
the future practical applications. It will be used for new
algorithms validation and characterization.

REVISTA DO DETUA, VOL. 1, N° 4, SETEMBRO 1995 259

Accomplished the HDL description, several performance
measurements can finally be made toward performance
prediction and architecture evaluation. Communication
and processing balance are dependent on algorithms,
number of cycles to consume an item, number of cycles to
produce an item, network configuration and network
neurons correspondence to nodes, number of nodes,
buffers length and bus protocol. A deep investigation on
such matters demands extensive variation of system
parameters and network configuration which may result
in a huge simulation time. Additional data such as
instruction use measurement for code optimization (size,
efficiency) applied to the algorithm crucial parts, can be
obtained.
Some predefined tracing analysis were provided: bus

utilization vs time, node processing vs time and buffer
status vs time. In such conditions, one can verify how
different is the bus utilization during the various operating
phases and its dependency with other parameter settings.
The buffers length dependency on the network
parameters, network partition and number of nodes, was
appreciated.
The load distribution and its dependency on the

simulation conditions, can be analyzed. For instance,
different partitions of the same network can be tried
toward a more even load balance. The number of output
requests with the output buffer full and the waiting time
for an item with the input buffer empty, may be counted.
It measures the processing units forced latency.
Through the measurements in various simulation

conditions, some architecture's parameters, such as its
granularity and load balancing, can be evaluated. The
HDL description and simulation can be used for full
architecture performance characterization.

The following examples illustrate the importance and

type of information possible through system simulation.
Figure 6 is an example of bus utilization and nodes
processing monitorization versus time, during the
backward step of the BP algorithm (network 2x7x2 — 2
input neurons, 7 hidden and 2 outputs). The buffers size

was 5 which allowed the output buffers to remain not
completely full

The execution time constitutes a direct measure of

system performance. It allows algorithm codifications
appreciation, to qualify the network partitions, to optimize
the system parameters (such as number of nodes and
buffers size) for a particular application, etc. An example
of performance versus number of nodes is presented in
figure 7, for two distinct networks during the forward step
or recall functioning mode.
The speed-up non-linearities are due to inevitable

distinct number of neurons implemented by the different
nodes in each simulation.
In relation to the buffers dimension analysis (figure 8

shows the direct graphical output in a specific simulation
moment) several conclusions were obtained.
The maximum input buffer occupation is in fact imposed

during the forward step for networks with hidden
dimension higher than the output dimension. For the
backward step the situation reverses.
The output buffer occupation is minimum as long as the

input buffers are well dimensioned. Otherwise the
maximum number of items possible is determined by the
number of neurons implemented by the respective node.
Therefore, a programmed solution for a possible deadlock
when both buffers get full, is justified. Since such
situation will be rare, a hardware solution would be too
costly.
By locating the microprocessor control state machine

eventual bottlenecks and by investigating their foreseen
operation delays (e.g., consulting the ES2 tool kit),
besides conducting the improvement efforts toward the
most influent hardware aspects, it gives an idea about the
future processing unit clock frequency. Among the cycle
time constraining parts that may exist, it can be included
the external SRAM access time, the ALU/ADDR unit
operations or the FPU. Parts such as the function table,
were eliminated as eventual bottlenecks.

V V V

Algorithms

• Configuration
• Appl. Data

Physical
Implem.

HDL
Descript.Bars, text & waves

Files (stats&measures)

Host
Front-End

Fig.5

25000 35000 45000

~Busy
node1
node2
node3

Time (ns)

B
us

 P

ro
c1

 P

ro
c2

Pr

oc
3

Fig.6

260 REVISTA DO DETUA, VOL. 1, N° 4, SETEMBRO 1995

To run the simulation only one terminal command is

necessary. It indicates the system parts location (generally
in separate code files), and what type of simulation delays
is going to be used (min, typ or max).

VII. SIMULATION DIFFICULTIES

The main drawbacks of such system simulation, arise not
from the testing and validating design phase but from
building the whole system description so that its
performance and architectural solutions, could be
evaluated. Thus, the algorithms had to be machine
programmable right away, the configuration (neural
network and number of nodes) had to be automatic,
programming issues and host control had to be emulated,
etc. The creation of the surrounding environment (mainly
host jobs) in conjunction with the various successive
system parts test, constituted the less interesting and most

time consuming phases.
The assembler had to be created to allow faster, lexical

and syntactic error free code writing, floating-point
format conversions were programmed, instances and
variables in Verilog code had to be automatically created
through specific C routines, the function table was also
generated automatically, etc. A small modification, easy
to accomplish on the HDL description, may have a much
bigger impact on the configuration dependent routines.
The code for collecting data, such as the statistics, had
also to be automatically generated. However,
Programming Language Interface (PLI) could certainly be
used, in this case.
Verilog doesn't allow multidimensional constructs to be

applied to variables and instances, otherwise, the
configuration process could be practically automatic.
Although such efforts should be unnecessary at this stage,
one must notice that many of the configuration work is
useful for the future host front-end package.

The simulation time is too long for learning procedures

limiting the simulations to few epochs (learning iterations
over the entire training set). It certainly is not at all
surprising, since even with the C language simulator, the
algorithm could be, for large networks, very time
consuming. For accelerating the simulation, the graphical
output may be disabled.

VIII. CONCLUSIONS

Several HDL general advantages were proved and
illustrated throughout this system's development. The
description and simulation, easy to accomplish, are
fundamental for a methodic and coherent design flow.
They constitute a "helping rope" linking the former
development stage, to state the specifications, to the final
test design step.
Through the use of Verilog HDL, by clearly specifying

the different modules and their interconnections, division
for independent parts design, can easily be done.
Therefore, it represents an adequate development tool for
a design group job division, the way successful
commercial products are currently developed.
The initially proposed architecture, could be validated in

its principal aspects. The built HDL description
constitutes a powerful framework for measuring, testing
and, consequently, improving the system. In particular,
several fundamental design decisions and optimization,
mainly related to communication aspects, this system
typical bottleneck, were supported by the built simulation
framework.

The possibility for creating the surrounding environment

and emulating the real stimulus to the processors, gives
more credibility to the simulated tests. Also, being aware
of the target technology, there is no separation from
realizability even when high level models are used.

1 2 3 4 5 6 7
2e+4

3e+4

4e+4

5e+4

6e+4

7e+4
a) net 2x10x2 b) net 2x8x4

nº of nodes

Fi
na

l
T

im
e

 (n
s)

Fig.7

Fig. 8

REVISTA DO DETUA, VOL. 1, N° 4, SETEMBRO 1995 261

The choice of level and description detail shall always
consider, besides the modelling purposes, minimization of
time to produce the code. For an immediate great detail
description the schematics method would be preferable.
To pass to implementation will be an easier task. The

designer can now concentrate his efforts onto the
implementation aspects rather then worrying about the
architectural solutions to be devised.

In parallel with the physical system, the HDL description

will be useful for future use. Apart from end applications
use, it is proper for investigation and teaching purposes.
In addition, it will be fundamental for validating future
user programmed software, before running it in the nodes.
Verilog HDL reveals serious handicaps to deal with

varying configuration models. In the future, it should
feature multi-dimensional constructs for variables and
module instances. Mainly due to configuration dependent
code, a great deal of C code is necessary for achieving the
proposed objectives.
The user-friendly simulator graphical output, very

attractive, constitutes an extra motivation for Verilog use.

REFERENCES

[1] António de Brito Ferrari, Y.H.NG, "A Parallel
Architecture for Neural Networks", in Proc. Parallel
Computing, 1991.

[2] J. Velez, "Processador Neuronal Virtual Digital para
Implementação VLSI", Tese de Mestrado em Engª
Electrónica e Telecomunicações, DETUA, Universidade
de Aveiro, 1995.

[3] R.Kuczewski, M.Myers, W.Crawford, "Neurocomputers
Workstations and Processors: Approaches and
Applications", IEEE 1st ICNN, 1987, San Diego, CA.

[4] Robert Hecht-Nielsen, "Neurocomputing", Addison
Wesley, 1990.

[5] "Verilog-XL Reference Manual", 2 Volumes, Version 1.6
March 1991, Version 1.6a November 1991 Release Notes,
from Cadence Verilog Manuals.

