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Resumo— No presente artigo são apresentados o 
procedimento adoptado e a experiência obtida no projecto e 
desenvolvimento de um processador neuronal, utilizando 
Verilog HDL. A descrição das várias etapas de projecto no 
sentido da descrição final do sistema e do correspondente 
ambiente de simulação, constitui uma ilustração concreta da 
aplicação das capacidades de uma metodologia baseada na 
descrição e simulação de hardware no projecto de sistemas. 
A configuração final do computador neuronal integra o 
ambiente de simulação de Verilog HDL como ferramenta 
fundamental para o teste e desenvolvimento de futuro 
software neuronal. 
 
Abstract— This paper presents the design flow and the 
resulted experience in the development of a neural 
processor, using Verilog HDL. Describing the design steps 
toward the final system's description and simulation 
environment, provides a concrete illustration of the 
application of Verilog HDL features in the system's design 
testing, characterization and improvement, at the early 
stages of the project. 
The end-use neural computer's configuration comprises the 
Verilog HDL simulation environment as a fundamental tool 
for future neural software test and development. 

I. INTRODUCTION 

The implementation of artificial neural networks (ANNs) 
by software simulators running on serial processing 
computers, is not suitable for most "on the ground" 
applications where the real time speed requirements are 
unreachable even if the fastest serial computers on the 
market were used. For this domain of applications the use 
of special parallel hardware implementations of ANNs is 
required. 
This paper describes the design methodology used in the 

development of one such system. It presents the 
experience gained in building the Verilog HDL 
description of a digital neuroprocessor within the system 
where it is to be integrated. The system description and 
specification is presented in the following section. 
As the complexity of current systems has been growing, 

the designers have increasingly adopted a high-level 
description of the system to be designed as the starting 
point in the development process. Current hardware 
description languages (HDLs) such as VHDL or Verilog, 
support the design hierarchy, allowing mixed-level 
descriptions to be submitted to simulation. They provide a 
means for designing different parts of the system, using 
distinct development strategies. The datapath of a 

processor can be simulated with a behavioral architectural 
description of its arithmetic and logic unit. Once all the 
synchronization and clocking schemes have been 
validated, the arithmetic and logic unit may be substituted 
by a more detailed structural model. The same may be 
applied for its constituting parts and so on. 

Besides documenting and stating unambiguosly the 
system's specifications, the use of an HDL allows for their 
verification without resorting to iterations through the 
time consuming phase of implementation. 
Designing a special purpose processor constitutes a good 

example of how useful an HDL description and 
subsequent simulation, can be. Often being distant from 
the traditional fairly tested architectural solutions, the 
exploration of the design space through the evaluation of 
the various alternatives coming up during system 
development, is of great importance. 

The advantages of using an HDL do not end up with the 
completion of a project. In current integrated circuit (IC) 
design, the existence of a correct system description is 
very useful when testing the fabricated chip. The test 
vectors can be previously evaluated and the HDL 
simulation responses can then be compared to the real 
responses from the fabricated IC. 

II. BASIC SPECIFICATIONS 

The objective is to design and build a computer whose 
architecture is oriented toward the efficient 
implementation of ANN models (neural computer or 
neurocomputer), in particular Multi-Layer Perceptrons 
(MLPs) with the backpropagation (BP) algorithm [1][2]. 
The architecture does not make any restrictions to the 
network configuration, allowing for the mapping of nets 
with different dimensions and any distribution of neurons 
among different layers. 

Due to the heavy computing requirements of such 
models in current real-life applications, the 
neurocomputer to be built is based on a parallel 
configuration. Connected as an attached processor to a 
host computer, it is constituted by a number of processing 
units communicating via a common data bus (fig.1). 

The proposed architecture envisages simplicity and low 
cost adopting solutions to the typical bottlenecks. The 
characteristics of neural nets (large number of neurons 
and interconnections, simple internal processing) make 
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the algorithms communication-intensive. Hence the 
limitations in communication bandwidth tend to be the 
main bottleneck in multiprocessor neural architectures. 
The fundamental system characteristics (fig. 2) can be 
summarized as follows: 

 
• Neuroprocessor - each node in fig.1 includes a 

special-purpose floating-point processor implemented 
as a VLSI chip, and its own local memory. 

 
• Parallel architecture easy to expand - by 

implementing inter-node communications through a 
tagged inter-communication bus type, the 
architecture's typical bandwidth bottleneck, can be 
minimized. 

 The system is scalable simply by adding new VLSI 
chips onto the global bus. 

 
• Broadcast communication type - similar to the 

classical single bus architectures, its design principles 
come from the observation that nowadays memory is 
cheap in comparison to arithmetic resources [3][4]. 
Providing each node with sufficient local storage, 
traffic on the bus can be reduced to the new neuron 
activations [1]. The learning algorithm must be 
adapted to accomodate global communication. 

 
• Reconfigurability and Generality - in programming 

mode, apart from loading the neuroprocessor 
microprogram, each node also receives the 
information about the network topology. Such 
topology is totally re-configurable through the host 

computer. 
 Although the architecture was thought for improved 

performance with the BP algorithm, it may also be 
used for executing other algorithms on other ANN 
models. 

 
• Computation and Communication Balance - a node is 

designed to fully support the overlap of 
communication with internal processing. 
Communication and processing are asynchronous, 
exchanging data through input/output first-in-first-out 
(FIFO) buffers. 

 
The operation is controlled by the host and encompasses 

three main phases (modes): 
 

1. Programming of the system by the host, where the 
network topology is defined, and the initial values for 
the weights are loaded into each node. After 
programming the operation may proceed to the 
training or recall modes. 

 
2. In training mode the host presents the training 

patterns and searches for the output neuron 
activations (forward step). When one of such 
activations is read, the host calculates the error and 
sends it to the bus. Once the backpropagation of 
errors is complete (backward step), another input 
pattern is presented. At the end of the training set, all 
the nodes update their weights (update). 

 
3. Recall, where the operation is just as in the forward 

phase of the learning process. 

III. NODE ARCHITECTURE 

Since the data word length has a major impact on 
operation speed and silicon area, a reduced floating-point 
representation was investigated [2]. The conclusion was 
that a 16-bit floating-point format (1-bit sign + 5-bit 
exponent + 10-bit mantissa) provided the required 
precision and dynamic range. Each processor consists of 
two separate units working asynchronously. A 
communication unit, the node's interface with the global 
bus, and a processing unit whose arithmetic resources are 
multiplexed for each neuron in a node (fig. 3). 

A. Communication Unit 

The chosen bus protocol is the 3-wire Daisy Chain 
(GRANT, REQUEST, BUS-BUSY), arbiter centralized at the 
host bus interface. How this choice affects performance 
was subject to experimentation through the final HDL 
simulation [2] and it will be discussed later. 
The communication unit consists basically of input and 

output FIFOs (data and tag fields) and of a PLA-based 
controller which also implements the Daisy Chain 
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protocol. The length of these buffers has been 
investigated [2]. 

B. Processing Unit 

The processing unit, divided in control unit and datapath, 
is a (micro)programmable processor with a dedicated 
instruction set. A hardwired design would compromise 
the desired neuroprocessor flexibility. 
This unit's fundamental design decisions derive from the 

system specifications and the BP processing 
characteristics: 
 

• Control Unit - this unit is microprogrammable and 
based on SRAM where the machine code 
implementing the neural algorithm is to be loaded. 
The access time of the control memory is dependent 
on its dimension. Hence it is important, both for chip 
area and for processing speed, to keep the SRAM 
small. 

 
• Addressing Unit - according to the tag coming 

through the bus, the neuron being processed and the 
type of data involved (weight, update or activation), a 
memory position has to be determined. This is a 
frequent operation, therefore the addressing scheme 
is of crucial importance to the processor's 
performance. 

 Two addressing modes are supported. An absolute 
mode with no arithmetic required and a displacement 
mode involving the summation of the incoming tag, 
the neuron base address and their dimensions. 

 
• Floating-Point Unit - the neurons intrinsic 

calculations (summation and multiplication) are 
executed by a 16-bit floating-point unit (FPU). The 
short mantissa greatly contributes to the feasibility of 
such FPU. 

 
• Sigmoid Table Look-up - by using the exponent bits 

and the sign value, a 64-position SRAM 
implementing the non-linearity, is directly accessed. 
Another implementation choice would involve heavy 
calculations. 

 
Other important relevant parts are: 

 
• Integer Arithmetic Unit - the integer arithmetic unit is 

meant, basically, for pointer and index calculations 
needed to implement loops in the algorithms. Since 
the addressing unit also uses a 16-bit adder, a 
hardware multiplexing scheme was implemented so 
that some silicon area can be saved. 

 
• Register Bank - there are 8 general purpose registers. 

Although this number represents a good tradeoff, a 
few more would allow for a slight decrease in 
memory traffic. 

IV. VERILOG AND VERILOG-XL 

Verilog (Verify Logic) is the HDL most used in 
industry, particularly in the US. Introduced in 1983 by 
Gateway Design Automation it was later acquired (1989) 
by Cadence Design Systems that offered it to 
standardization (1991). As a result a number of third-
party simulators, most of them running on PCs, is now 
available. 
The early availability of an efficient simulator supporting 

all the language constructs and well supported by the 
system environment (Verilog-XL), together with its 
similarity to the C programming language, were 
instrumental to its widespread acceptance. Its availability 
to universities under EUROCHIP, and its easy integration 
with Cadence Design Framework, together with the 
characteristics mentioned, led to the decision to choose 
Verilog as the HDL to be used. 
The logic simulation process with Verilog-XL, involves 

three separate steps: creation of a system model, 
providing stimulus to exercise the model and indicate the 
format in which results are to be viewed. The simulation 
sessions may be interactive allowing the user to monitor 
the system variables, forcing new stimulus or changing 
the previous ones. The simulation may then proceed 
normally, step by step with or without trace [5]. 
Input/Output of data from and to files under the 

operating system, is possible. Such features allow the 
gathering of statistics, register final values, etc, and the 
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reading of data values to memories, PLA contents, etc. 
The output display includes normal printing in the 
working window, fixed position textual printing, bars or 
waveforms. The last three are updated as time evolves. 
Past events can be viewed moving a cursor in a time bar. 
The output facilities and the great simplicity of the related 
commands, are undoubtedly a further strong motivation to 
use Verilog-XL. 

The language basic concept is the module. It represents 
a piece of hardware connected with other modules 
through inputs and outputs, called ports. Such modules 
can be part of a hierarchy as a block of hardware that can 
be used one or more times in another module. 
The modules functioning can be described either 

behaviorally or structurally. Behavioral descriptions can 
be done at the register transfer, algorithmic or 
architectural levels. The structural, netlist type, may be 
described using primitives such as gates or through 
transistor models (switch level). 
All levels, behavioral or structural, can be mixed in a 

same description and submitted together to simulation. 
Thus high level behavioral descriptions of parts being 
designed, can be simulated together with the structural 
description of already implemented blocks. 
 
The time concept constitutes the main particularity of 

HDLs. Since every piece of hardware works in parallel 
through time, Verilog code is executed in an event-driven 
way. Every action is triggered by specific user-defined 
events or through the value of a global variable 
representing the system simulation time. 
The package language+simulator could be used as a 

standalone product or integrated in Cadence Design 
Framework. Before going to the implementation phase, 
for practical reasons, the standalone use is advised. 

V. NODE DESCRIPTION 

As referred, the first stage toward the neuroprocessor 
implementation was the C language neural network 
simulator. By defining the processor's data format, the 
basic specifications were finally achieved. 
Design and description are indivisible. Naturally, ideas 

come first to light through scratches on paper. However, 
by creating models of the pieces of hardware, whatever 
the description level is, such ideas can easily be judged, 
for invalidation or for adoption. The advocated 
architecture is the basis for this kind of development. In 
the present design, by architecture one refers not only to 
the system but also to the node's architecture. 
Level independent, the description structural detail is 

also a matter of concern. Using behavioral constructs one 
can build a module either modeling its function with 
behavioral procedural blocks and register transfers, or by 

detailing its constitution. By other words, one may use 
only the behavioral level to model the block function or, 
in a structural way, implement it with smaller and simple 
behavioral level modules. This latter type of description 
can be easily and automatically transformed into an 
ordinary schematic by mapping those simple modules, to 
the correspondent standard or user-developed cells, of a 
specific technology. 

The system design flow will be exposed as the sequence 
of its main subparts description and their linking 
procedure (fig.4). All the description top hierarchical 
modules and the ones resulting from joining them, were 
simulated before being linked again. Some requirements 
and consequences of such procedure can also be viewed 
in fig.4. 

A. Communication Unit 

In the communication unit design, the first step was to 
implement the bus protocol. Thus, an arbiter and a 
controller for the 3-wire Daisy Chain, were built. The 
controller is part of the communication unit while the 
arbiter belongs to the host interface. An extra line 
(inhibition line) is included to prevent the arbiter to grant 
the bus if any of the input buffers gets full. 
Having validated the bus protocol scheme description, 

the remaining bus communication unit functions were 
then described. Since its control will be a PLA-based state 
machine, it wasn't important to go deep in detail. At this 
stage, spending time describing the PLA contents and 
surrounding logic, was unnecessary. Instead, there were 
written some behavioral code lines to implement all the 
block functioning. 
For an initial communication unit test, statistical 

distributions were used for representing the items 
processing time and the time interval between production 
of two consecutive activations. Besides the waveforms 
display, graphical output bars monitor the buffers 
occupation through time and the maximum number ever, 
in them. Statistics such as mean inter-arrival or longest 
wait times, are also generated. 

Apart from validating the basic architectural concepts, 
several important conclusions could already be obtained. 
It was shown that the fixed priority established by the 
Daisy Chain protocol, had no effect unless the input 
buffers got full. However, such situation only affects 
performance if the output buffers are also filled up, which 
rarely occurs if the buffer lengths are well dimensioned. 
Some description related details and possible deadlock 
situations were identified. Communication aspects since 
they depend on algorithms, topologies and relative 
processing times between nodes, were not studied at this 
stage. 
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B. Control Unit 

Independently from the bus communication module, the 
processing control state machine was specified. The main 
purpose of this first version was to validate its functioning 
principles and related clocking strategy. By supplying the 
host lines and emulating the conditions coming from the 
datapath, not yet built, all the unit synchronization was 
defined. 
The description detail was such that behavioral models 

were only applied to pieces of hardware as simple as 
multiplexers, latches and registers. In some constituting 
blocks the detail evolved from less detailed descriptions. 
Behavioral code with no detail, was used first to 
determine or prove the effectiveness of the functional 
specifications of those blocks. This illustrates a 
development process starting from a high abstract level 
and ending with a schematic equivalent structural 
description. Thus, it will be quite fast to go from such a 
description to implementation. 

 
At this stage it was important to question the feasibility 

of having SRAM for the control memory on-chip, though 
the details for the µword format were not known yet. In 
order to have an idea about the physical aspect of such 
memory, ES2's parameterized SRAM cells were used. 
The respective access protocol and timings, were 
followed. 

 

C. Addressing Unit 

A first module version was created so that the addressing 
scheme under the adopted clock strategy could 
immediately be validated. Separate parts descriptions 
constitutes not only a way to immediately verify the 
idealized architecture but also a safe way to develop the 
top hierarchical modules, as they grow up by integrating 
smaller ones. 
A second version was finally built which combines the 

arithmetic unit and the addressing unit in the same 
module, and implements the 16-bit adder multiplexing 
scheme. 

D. Datapath Parts 

Having in mind the advocated generality, though it will 
be directed to the BP algorithm, a first version of the 
instruction set was defined through translation of pseudo-
code algorithms into assembler-like code. The required 
datapath's transfers and operations determine the 
hardware to build and to optimize. 
The basic datapath parts are: the FPU, the integer 

arithmetic unit, a bank of general purpose registers, the 
addressing unit, the function table and a special register 
— TAG register. The corresponding modules were 
independently developed though there are some common 
building blocks. 

 
After specifying the modules synchronization and 

interfacing, the µword format could finally be defined. 
Since this processor is user-microprogrammed, the 
possible µword's bits combinations give rise to a huge 
instruction set dimension. The allowed instruction set, 
assuring machine integrity, will be a small subpart of all 
the combinations. 
The simulation of all the parts working together was 

quite extensive since the µword lines had to be emulated. 
Incorrect synchronization of the applied stimulus allowed 
some defects to pass, being detected later. 
The final description detail is similar to the control unit 

one. It requires a small step to implementation. For 
instance, the FPU was fully designed. Its basic building 
blocks are well known pieces of hardware (ex.): 
 
module arith_unit(out,ovw,undw,op1,op2,sub/add,enable); 
 ... 
 exponent_comp exp_comp(diff,exp1,exp2); 
 sign_detector s_det(out,signA,carry_add,diff); 
 normalizer   ... 
 ...   ... 
endmodule 
 
module sign_detector(out,signA,carry_add,diff_signs); 
 ... 
 assign #delay out=(diff_signs &&   
            ~carry_add)?~signA:signA; 
 //Implemented with simple combinatorial logic. 
endmodule 
 
 

 
The FPU project is certainly an excellent example to 

illustrate the importance of using an HDL and simulation. 
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By including high level constructs to perform the data 
format conversions, the result could be displayed in both 
machine and neuroprocessor representations. The 
conversion between floating-point formats was done 
building specific Verilog code functions used just as in C. 
Their existence facilitates enormously the full FPU test 
and, in case of error, ease for determining its location. 

E. Joining Control and Addressing+Arithmetic  Units 

Joining these parts, was the next phase. Well defined the 
cycles and synchronization of the respective instructions, 
by filling the correspondent µword bits, the whole scheme 
was then tested. Imperfections mainly relative to the 
interfacing, could now be fully detected and corrected. A 
working processor able to perform addressing and 
arithmetic operations, and branch according to the 
resulting conditions, was obtained. The external SRAM 
interfacing was also included. 

F. Joining the remaining Datapath Parts 

The complete synchronization scheme was defined and 
verified, at this stage. As a new piece of hardware was 
included, the new datapath transfers involved were 
immediately simulated and tested. It wasn't as hard as 
testing the units separately because the stimulus were now 
filled as the respective µword fields. 
The occurring errors were normally and easily detected, 

either by consulting the register values permanently 
displayed on screen or by messages originated in 
modules. Such fault detection messages were quite useful. 
When a hardware error was detected, such as a floating 
line on which the next µword address depends, then a 
warning message was sent  or an interrupt was generated. 
To simulate "all" the specified instruction set, it was only 

necessary to emulate the communication unit 
asynchronous signals and the respective buffers. 

G. Joining Communication Unit 

Finally, the communication module was joined to the 
processing unit description, creating a complete neural 
node. By making instances of several neural node 
modules connected to the bus and its arbiter, the system 
simulation would then be done. 

 
The external SRAM requirements had to be evaluated. 

Through a few calculations involving the number of 
neurons and connections foreseen, and being aware about 
constraints such as the limit number for the nodes on the 
bus, the capacity and speed of current commercial 
SRAMs were found to satisfy the needs (64K words, 
<20ns Tacc). 
Designing with the target technology permanently in 

mind, is fundamental. The impact of some of the crucial 
system subparts on the final design, was studied whenever 
it was possible. Such study was normally supported by the 

ES2 design tool kit, as in cases of the multiplier, function 
table and PLAs. 

VI. SYSTEM SIMULATION 

The simulation of the complete system required more 
than the description of its parts. A system module 
integrating the various neural processor modules, the 
external SRAMs and the global bus arbiter, was created. 
It is necessary to provide a practical way for adapting the 

Verilog system description according to the topology and 
configuration in use. The system module uses the Verilog 
include directive to include the configuration dependent 
parts. Those parts, such as node instances, output 
commands, node port variables, programming, etc, are 
automatically generated through C code. The C routines 
also fill the external SRAM with the global configuration 
data and random weights, if specified. 
The function table is created by generating in C, the 

sampled function values, and then, converting them into 
the specified 16-bit floating-point format. If the function 
and the number of points to represent it remain 
unchanged, this procedure has to be executed only once. 
Since programming directly in microcode would be 

extremely difficult and time consuming, an assembler 
was built which implements a subset of the allowed 
instructions. If a special instruction is required or an 
optimization through merging consecutive µwords, is 
desired (e.g. within cycles), it can always be done using 
one of the assembler directives which specifies explicitly 
in hexadecimal format, the contents of a control memory 
word. Further capabilities include the use of labels and 
comments. 
The test module, representing the host computer actions, 

resulted quite complex. The host tasks had to be emulated 
in Verilog. Such module implements the mode transitions, 
drives the items into the global bus, snoops the bus for 
activations, controls the supervision line (e.g., to 
command the update operation), collects statistics and 
measurements of various system parameters, monitors the 
system variables for on screen visualization, etc. In 
addition to the described complexity, almost all the tasks 
above require re-writing the code whenever there is a 
configuration modification or a change in some other 
system parameters. 

 
The devised functional description for the complete 

system, can be illustrated as in fig.5. Configuration and 
application data are situated at a different entry level since 
the algorithms shall be provided as part of a set of neural 
software and other tools. 
Through distinct interface routines, the host front-end 

which comprises the assembler and all the configuration 
routines, controls both the hardware implementation and 
the HDL description. The HDL simulation is useful not 
only while the system is being developed but also during 
the future practical applications. It will be used for new 
algorithms validation and characterization. 
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Accomplished the HDL description, several performance 
measurements can finally be made toward performance 
prediction and architecture evaluation. Communication 
and processing balance are dependent on algorithms, 
number of cycles to consume an item, number of cycles to 
produce an item, network configuration and network 
neurons correspondence to nodes, number of nodes, 
buffers length and bus protocol. A deep investigation on 
such matters demands extensive variation of system 
parameters and network configuration which may result 
in a huge simulation time. Additional data such as 
instruction use measurement for code optimization (size, 
efficiency) applied to the algorithm crucial parts, can be 
obtained. 
Some predefined tracing analysis were provided: bus 

utilization vs time, node processing vs time and buffer 
status vs time. In such conditions, one can verify how 
different is the bus utilization during the various operating 
phases and its dependency with other parameter settings. 
The buffers length dependency on the network 
parameters, network partition and number of nodes, was 
appreciated. 
The load distribution and its dependency on the 

simulation conditions, can be analyzed. For instance, 
different partitions of the same network can be tried 
toward a more even load balance. The number of output 
requests with the output buffer full and the waiting time 
for an item with the input buffer empty, may be counted. 
It measures the processing units forced latency. 
Through the measurements in various simulation 

conditions, some architecture's parameters, such as its 
granularity and load balancing, can be evaluated. The 
HDL description and simulation can be used for full 
architecture performance characterization. 

 
The following examples illustrate the importance and 

type of information possible through system simulation. 
Figure 6 is an example of bus utilization and nodes 
processing monitorization versus time, during the 
backward step of the BP algorithm (network 2x7x2 — 2 
input neurons, 7 hidden and 2 outputs). The buffers size 

was 5 which allowed the output buffers to remain not 
completely full 
 
The execution time constitutes a direct measure of 

system performance. It allows algorithm codifications 
appreciation, to qualify the network partitions, to optimize 
the system parameters (such as number of nodes and 
buffers size) for a particular application, etc. An example 
of performance versus number of nodes is presented in 
figure 7, for two distinct networks during the forward step 
or recall functioning mode. 
The speed-up non-linearities are due to inevitable 

distinct number of neurons implemented by the different 
nodes in each simulation. 
In relation to the buffers dimension analysis (figure 8 

shows the direct graphical output in a specific simulation 
moment) several conclusions were obtained. 
The maximum input buffer occupation is in fact imposed 

during the forward step for networks with hidden 
dimension higher than the output dimension. For the 
backward step the situation reverses. 
The output buffer occupation is minimum as long as the 

input buffers are well dimensioned. Otherwise the 
maximum number of items possible is determined by the 
number of neurons implemented by the respective node. 
Therefore, a programmed solution for a possible deadlock 
when both buffers get full, is justified. Since such 
situation will be rare, a hardware solution would be too 
costly. 
By locating the microprocessor control state machine 

eventual bottlenecks and by investigating their foreseen 
operation delays (e.g., consulting the ES2 tool kit), 
besides conducting the improvement efforts toward the 
most influent hardware aspects, it gives an idea about the 
future processing unit clock frequency. Among the cycle 
time constraining parts that may exist, it can be included 
the external SRAM access time, the ALU/ADDR unit 
operations or the FPU. Parts such as the function table, 
were eliminated as eventual bottlenecks. 
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To run the simulation only one terminal command is 

necessary. It indicates the system parts location (generally 
in separate code files), and what type of simulation delays 
is going to be used (min, typ or max). 

VII. SIMULATION DIFFICULTIES 

The main drawbacks of such system simulation, arise not 
from the testing and validating design phase but from 
building the whole system description so that its 
performance and architectural solutions, could be 
evaluated. Thus, the algorithms had to be machine 
programmable right away, the configuration (neural 
network and number of nodes) had to be automatic, 
programming issues and host control had to be emulated, 
etc. The creation of the surrounding environment (mainly 
host jobs) in conjunction with the various successive 
system parts test, constituted the less interesting and most 

time consuming phases. 
The assembler had to be created to allow faster, lexical 

and syntactic error free code writing, floating-point 
format conversions were programmed, instances and 
variables in Verilog code had to be automatically created 
through specific C routines, the function table was also 
generated automatically, etc. A small modification, easy 
to accomplish on the HDL description, may have a much 
bigger impact on the configuration dependent routines. 
The code for collecting data, such as the statistics, had 
also to be automatically generated. However, 
Programming Language Interface (PLI) could certainly be 
used, in this case. 
Verilog doesn't allow multidimensional constructs to be 

applied to variables and instances, otherwise, the 
configuration process could be practically automatic. 
Although such efforts should be unnecessary at this stage, 
one must notice that many of the configuration work is 
useful for the future host front-end package. 

 
The simulation time is too long for learning procedures 

limiting the simulations to few epochs (learning iterations 
over the entire training set). It certainly is not at all 
surprising, since even with the C language simulator, the 
algorithm could be, for large networks, very time 
consuming. For accelerating the simulation, the graphical 
output may be disabled. 

VIII. CONCLUSIONS 

Several HDL general advantages were proved and 
illustrated throughout this system's development. The 
description and simulation, easy to accomplish, are 
fundamental for a methodic and coherent design flow. 
They constitute a "helping rope" linking the former 
development stage, to state the specifications, to the final 
test design step. 
Through the use of Verilog HDL, by clearly specifying 

the different modules and their interconnections, division 
for independent parts design, can easily be done. 
Therefore, it represents an adequate development tool for 
a design group job division, the way successful 
commercial products are currently developed. 
The initially proposed architecture, could be validated in 

its principal aspects. The built HDL description 
constitutes a powerful framework for measuring, testing 
and, consequently, improving the system. In particular, 
several fundamental design decisions and optimization, 
mainly related to communication aspects, this system 
typical bottleneck, were supported by the built simulation 
framework. 
 
The possibility for creating the surrounding environment 

and emulating the real stimulus to the processors, gives 
more credibility to the simulated tests. Also, being aware 
of the target technology, there is no separation from 
realizability even when high level models are used. 
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The choice of level and description detail shall always 
consider, besides the modelling purposes, minimization of 
time to produce the code. For an immediate great detail 
description the schematics method would be preferable. 
To pass to implementation will be an easier task. The 

designer can now concentrate his efforts onto the 
implementation aspects rather then worrying about the 
architectural solutions to be devised. 

 
In parallel with the physical system, the HDL description 

will be useful for future use. Apart from end applications 
use, it is proper for investigation and teaching purposes. 
In addition, it will be fundamental for validating future 
user programmed software, before running it in the nodes. 
Verilog HDL reveals serious handicaps to deal with 

varying configuration models. In the future, it should 
feature multi-dimensional constructs for variables and 
module instances. Mainly due to configuration dependent 
code, a great deal of C code is necessary for achieving the 
proposed objectives. 
The user-friendly simulator graphical output, very 

attractive, constitutes an extra motivation for Verilog use. 
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