Revista Do DETUA, VoL. 1, N° 4, SETEMBRO 1995

299

Volume Rendering Based on Oblique Projections

Hubert W.J. Borst Pauwels, Oscar Mealha, Beatriz Sousa Santos, José M.R. Nunes

Resumo - Este artigo introduz um método novo para vi-
sualizar dados representados por voxels utilizando projeccoes
obliquas. Em vez da abordagem tradicional em que os objec-
tos sao rodados e depois ortogonalménte projectados, inves-
tigamos a possibilidade de de usar projeccoes obliquas para
visualizar um objecto de varios pontos do espaco com ga-
nhos significativos em velocidade de cilculo. Provamos que
projec¢oes obliquas conduzem a uma superficie igual a que
¢é gerada quando o objecto é rodado no espaco 3-D em torno
dos eixos Z- e X- seguido de projeccio ortogonal. Quando
desejado a distor¢do da superficie pode ser retirada com uma
transformacio geométrica sobre a imagem final. Indicamos
como determinamos e exploramos projecgdes obliquas es-
pecificas com a propriedade de projectar os vertices dos voxels
exclusivamente em coordenadas discretas de forma a obter
uma representacio precisa da superficie.

Abstract - This paper introduces a new method for visualiza-
tion of voxel represented data based on oblique projections. In-
stead of the traditional approach in which objects are rotated
and then orthogonally projected, we investigated the possibil-
ity of using oblique projections to view an object under mul-
tiple different viewing positions with a speed advantage. We
prove that oblique projections will lead to the same surface
that is rendered when an object is rotated in 3-D space about
Z- and X- axes followed by orthogonal projection. Moroever,
when desired, the oblique distortion of the surface can be re-
moved by a geometrical transformation of the final image. We
will indicate how we can determine and exploit specific oblique
projections with the property of mapping vertices of voxels ex-
clusively on discrete coordinates in order to obtain very accur-
ate rendering of surfaces.

I. INTRODUCUCTION

Nowadays scientists can choose out of a range of differ-
ent methods for visualizing 3-D data. According to the tax-
onomy of Elvins, [1] two main streams of algorithms can be
distinguished, surface fitting algorithms and direct volume
rendering algorithms.

Surface fitting algorithms detect surfaces in 3-D data and
subsequently transform them in polygonal descriptions.
The geometric primitives involved are usually triangles
which can be used either to connect previously detected
surface contours [2] or more directly, to describe surfaces
within logical cubes [3]. In [4] an alternative approach is de-
scribed as the cuberille model where surfaces are modeled
with faces of cubes instead of triangles.

Direct volume rendering methods project surface elements
directly into screen space without using geometric primit-
ives as an intermediate representation. Surface elements can

be projected either directly from the volume array into the
image plane or in the reverse way by casting rays from an
image plane into the volume array. An early direct volume
rendering method that projects surface elements is described
by Frieder et al. [5]. Their method traverses slices in back-
to-front order whereby the image coordinates of voxels are
calculated according to a 3-D rotation matrix and scaled to
avoid artifact holes. More recently developed direct volume
rendering methods that are based on orthogonal projections
use so called splats as projection primitives [6], [7].

In this paper we describe a new direct volume rendering
method based on oblique projections that can be used for
back-to-front display of voxel based data. We prove that a
surface obtained by rotating an object about Z- and X- axes
in 3-D space, and then orthogonaly projected can also be
obtained by an oblique projection followed by a 2-D trans-
formation, essentially a 2-D scaling, which results in a speed
advantage. Furthermore, we will indicate how we can de-
termine and exploit specific oblique projections with the
property of mapping vertices of voxels exclusively on dis-
crete coordinates in order to obtain very accurate rendering
of textures on objects.

II. OBLIQUE PROJECTIONS

An oblique projection of an object is obtained using pro-
jectors that are not perpendicular to the projecting plane
[8]. We can describe an oblique projection as shown in fig-

[001]
z

Fig. 1 - Oblique projection on projection plane z=0.

ure 1, by the values « and f where f (the foreshortening
factor) is the projection of the unit z-axis vector [001] on
the projection plane (z=0) and « is the angle between this
projection and the x-axis. Figure 1 also shows 3 the angle
between the oblique projector (direction of projection) and
the plane of projection, 3 = cot~}(f). Representing points
by row matrices and using homogeneous coordinates, the
transformation matrix for producing any parallel projection

300

of 3D object on the projecting plane z=0 is defined as:

1 0 00
0 1 0 0
7] = —fcosa —fsina 0 0 &
0 0 0 1
THEOREM 1

Let

1-X be a 3-D object

2-[3D RPZz] be the transformation matrix that rotates X an
angle ¢ about the local z'-axis, followed by a rotation ¢
about the local z'-axis and subsequently followed by an or-
thogonal projection on the z = 0 plane Then, there exists
an oblique projection [POz] and a 2-D transformation [2D)]
such that

[X][8DRPz] = [X][PO2] [2D]

end of theorem 1

For a proof of theorem 1 see appendix A.

The significance of theorem 1, for visualizing voxel-
represented objects, is twofold. Provided the voxels are pro-
jected in the same order as if they were projected with the
rotation matrix:

1. The same set of visible surface faces obtained after ro-
tating an object about Z- and X- axes followed by or-
thogonal projection can be obtained by a specific ob-
lique projection.

2. The same set of visible surface faces with the same
geometrical proportions obtained after rotating an ob-
ject about Z- and X- axes followed by orthogonal pro-
Jjection can be obtained by a specific oblique projection
followed by a specific 2-D transformation.

III. THE DISCRETE COORDINATES PARADIGM

Important for the quality of a 3-D visualization method is
the accuracy with which coordinates in 3-D space (object
space) can be transformed in a discrete 2-D space (image
space). In methods that use a 3-D rotation matrix we al-
ways encounter the problem that 3-D coordinates may be
transformed into non-discrete coordinates, which will have
to be rounded or truncated. In this section we will indicate
how we can avoid the occurrence of non-discrete coordin-
ates during a 3-D to 2-D transformation by using a set of
specific oblique projections with the property of projecting
vertices of voxels exclusively onto discrete coordinates. We
will indicate how to choose particular values @ and f to ob-
tain this property by means of the following theorem.

THEOREM 2

Let Sy be an axis aligned square of size R with its left bot-
tom vertex positioned on point (0,0) (figure 2).

Let Sz be a square obtained from S using a translation vec-
tor (T, Ty).

Let C' be an axis aligned cube of size R, with one of its ver-
tices on the origin and the others with positive coordinates
(figure 2).

Then an oblique projection defined by:

T,
a = arctan -~ (2)
€T

REvISTA DO DETUA, VoL. 1, N° 4, SETEMBRO 1995

and T
T 3)

—Rcosa
projects the vertices of C onto the vertices of Sy and S,

(T ,T)
x oy

y/sz

z

Fig. 2 - An oblique projection of a cube can be described as a translation
of a square.

end of theorem 2.

For a proof of theorem 2 see appendix B.

With the help of theorem 2, we can now establish a set
of oblique projections with the property of projecting voxel
vertices exclusively on discrete coordinates. The procedure
is simple. Draw an oblique projected voxel of size R on a
grid using a translation vector (T, T},), using integer values
for R, T, and T}, calculate the oblique parameters o and f
withequations 2 and 3. According to theorem 1, we can sub-
sequently calculate the associated 3-D rotation angles with
equations 17 and 18, as described in appendix A.

For example, from an oblique voxel defined by T, = T, =
—land R = 1 we can calculate the oblique parameters
o and f and therefore the associated 3-D rotation angles,
which in this case will lead to an isometric projection. In
contrast with this oblique projection an isometric projection
does not exclusively map voxel vertices onto discrete co-
ordinates.

1V. THE OBLIQUE VOXEL METHOD

The oblique voxel method taverses a 3-D volume slice by
slice starting with the slice furthest away from the observer.
Voxels in each slice are traversed in back-to-front order
guided as in case the object was rotated by the associated
3-D rotation matrix. We can use different discrete project-
ing voxels as projection primitives as can be identified with
theorem 2. In order to avoid artifact holes each voxel is scan
converted on its bounding rectangular area as depicted in the
example of figure 3.

Fig. 3 - Back-to-front display of oblique projected voxels. Each voxel is
scan-converted on its bounding rectangular area to avoid artifact holes.

Using one specific oblique transformation or projection
primitive, 24 different projections can be obtained by com-
bining both traversal and projecting order of voxels. Spe-

REevisTa Do DETUA, VoL. 1, N°® 4, SETEMBRO 1995

cifically, projection of slices can take place in 3 different
ways as shown in figure 4.

Fig. 4 - Three different ways of projecting oblique slices in back-to-front
order.

Traversal of slices can take place either in first-to-last or
last-to-first order and traversal of voxels within each slice
can take place in 4 ways by alternating the start point of
reading at one of the four corners of a slice.

The final step in the method consists of a 2-D transforma-
tion, a 2D warping post-process, of the image in order to re-
move the oblique distortion. We use the transformation mat-
rix [2D] of equation 4 with matrix parameters as can be cal-
culated with equations 11 and 12 as described in appendix
A.

V. COMPUTATIONAL COMPLEXITY OF OBLIQUE VOXEL
METHOD

The computational complexity of any direct volume ren-
dering method that projects voxels in back to front order
without pre-processing of the volume data can be expressed
as a time function O(f(n®)) where n stands for the max-
imal dimension of the volume data and f is the time func-
tion expressing the computational effort to calculate the im-
age coordinates of a voxel and to scan-convert its associated
projection primitive on a display.

In the oblique voxel method, calculation of image coordin-
ates is a relatively inexpensive procedure since no 3-D mat-
rix is required. Image coordinates of voxels are determined
while traversing the volume data by tracking two pointers
yielding the projected coordinates of the currently accessed
voxel. The bottle neck in the computational complexity of
the method can be found when it is applied with oblique pro-
jections leading to large dimensions for the rectangular pro-
jection primitives (see theorem 2). However, significant op-
timisation for these critical oblique projections could be ob-
tained when the display system supports either software or
hardware for fast scan-conversion of rectangles.

VI. RESULTS

We tested the method’s expected abilities of rendering sur-
faces with voxel precision by applying it on several objects.
For example, we created a 64x64x64 cube covered with a
texture of numbers (figure 5), on each of its faces.

A distance image was produced with the oblique voxel
method using the following parameters T, = T}, = —1 and
R = 1, from which we can calculate the oblique paramet-
ers v and according to theorem 2. By means of equations
(17) and (18) the associated 3-D rotation angles can be cal-
culated, which in this case will lead to an isometric projec-
tion. The oblique distortion can be removed by 2-D trans-
formation with a scaling factor and rotation angle as can be
calculated with equations (12) and (17). Figure 6 shows the

301

ek
MJ
Lo
B
o

my
-
!
(]
—

Fig. 5 - Image displaying numbers to be used as a texture.

oblique distance image processed with an image space shad-
ing operator [9].

Fig. 6 - An oblique projection of a 64x64x64 cube with a texture of num-
bers.

The oblique distortion was removed by a transformation
using a bi-cubic interpolation of the oblique image leading
to an isometric projection of the cube as displayed in figure
7.

Fig. 7 - Resulting image after transforming the oblique projection into an
isometric one by means of a 2-D transformation based on a bi-cubic inter-
polation.

Figure 8 shows the same isometric projection of the cube
obtained after applying a direct volume rendering method
that uses a 3-D rotation matrix and projects voxels as pixels.
The resulting z-buffer image was processed with the same
image space shading operator as in the case of the oblique

302

tmage displayed in figure 6. The significant loss in texture
information, which is clearly visible at all three faces of the
cube, can be explained by the fact that pixels are not very
suitable projection primitives for the hexagonal shape of ro-
tated and orthogonally projected voxels and by the fact that
the image coordinates of the rotated voxels may have to be
rounded.

Fig. 8 - Isometric projection obtained with a method that uses a 3-D rotation
matrix and projects voxels as pixels.

Figure 9 shows the same isometric projection of the cube
obtained after applying a ray casting method that uses
nearest neighbour interpolation. The ray caster is capable
of preserving the texture information but some irregularit-
ies are visible, for example in the boundary of the numbers
and the “false” edgés on the originally smooth surface parts
of the cube.

Fig. 9 - Isometric projection obtained with a ray caster that uses nearest
neighbour interpolation.

A second test object consisted of a 256x256x129 volume
containing data of a human thorax (obtained by Computar-
ised Axial Tomography). A distance image was produced
with the oblique voxel method using the following paramet-
ers, T, =T, = —1 and R = 1 which, as described above,
is equivalent to an isometric projection. Figure 10 shows the
oblique distance image after being processed with the image
space shading operator.

The oblique distortion was removed by transformations
based on a bi-cubic interpolation and a bi-linear interpola-
tion of the original oblique image. The resulting image (fig-
ure 11) is far more sharper than the slightly blurred image
resulting from transformation based on bi-linear interpola-
tion (figure 12).

REvisTA DO DETUA, VoL. [, N° 4, SETEMBRO 1995

Fig. 10 - An oblique projection of a 256x256x129 volume containing CAT
data of a human thorax.

Fig. 11 - Image resulting from transforming the oblique projection into an
isometric one using a 2-D transformation based on a bi-cubic interpolation.

However, in contrast with the transformation based on bi-
linear interpolation, the transformation based on bi-cubic in-
terpolation leads to some “false” dark spots or pixels at the
edges of the ribs due to interpolation with the background
colour of the image. In comparison with the image produced
by the direct volume rendering method that uses a 3-D ro-
tation matrix and projects voxels as pixels (figure 13) some
differences with the oblique voxel method are visible espe-
cially in the texture of the shoulder blade and spine.

The image produced by the ray casting method that uses
nearest neighbour interpolation (figure 14) is comparable in
quality to the images produced by the oblique voxel method.

All the methods described in this section were implemen-
ted in the C fanguage on a Silicon Graphics, Iris Indigo Elan
4000 with 80MByte of memory. We have measured the av-
erage time of 10 trials for each method in order to produce a
distance image of the thorax after the entire volume was read
into memory. The oblique voxel method used 1.2 seconds,
the direct volume rendering method which projects voxels
as pixels used 3.3 seconds and finally the ray caster that uses
nearest neighbour interpolation used 166.5 seconds. Addi-
tionally, we measured the time needed by the oblique voxel
method in order to generate a distance image of the same
volume but now with oblique parameters T, = T, = -1
and R = 2 which can be associated with a rotation of 45
degrees about both z and x axis. As expected, due to the lar-
ger dimension for the rectangular projection primitives, we

Revista Do DETUA, VoL. 1, N° 4, SETEMBRO 1995

Fig. 12 - Resulting image after transforming the oblique projection into an
isometric one using a 2-D transformation based on a bi-lincar interpolation.

Fig. 13 - Isometric projection obtained with a method that uses a 3-D rota-
tion matrix and projects voxels as pixels.

measured a slightly larger time of 1.3 seconds.

In relation to the results we refer briefly to the discussion in
[10] describing the specific advantages and disadvantages
of oblique projections in comparison with orthogonal pro-
jections. Oblique projections may be particularly suitable
for objects with much detail or irregular shapes on one prin-
cipal face since they have the property of displaying the ex-
act shape of one face of an object. For example, see the front
face of the oblique projected cube in figure 6 which dis-
plays the numbers with preservation of angles and lengths.
A disadvantage of oblique projections is the typical oblique
distortion which may lead to an unrealistic perception of
the object, however our 2D warping post-process eliminates
this problem. For example the oblique projected cube in fig-
ure 6 appears to be a parallelepiped object instead of a cube
as is perceived correctly in the orthogonal projection in fig-
ure 7.

VII. DISCUSSION

In addition to the current spectrum of volume rendering
methods, oblique projections can be helpful to render voxel
data with voxel precision. We gave the mathematical found-
ations for a direct volume rendering method allows a 3-
D object to be viewed under different viewing positions
without using a 3-D rotation matrix. We have indicated how

Fig. 14 - Isometric projection obtained with a ray caster that uses nearest-
neighbour interpolatioray caster that uses nearest-neighbour interpolation.

we can use specific oblique projections, that project ver-
tices of voxels exclusively onto discrete coordinates, in or-
der to avoid the introduction of rounding errors of coordin-
ates while the surface is generated. As a consequence, sur-
faces are rendered with hardly any loss in texture inform-
ation. A unique property of the method is that it produces
two images displaying the same sct of points of an object,
with both an oblique and an orthogonal projection with the
advantage that cach projection has its specific characterist-
ics.

We conclude that the oblique voxel method is capable of
very fast and accurate volume rendering with the constraint
that it allows an object only to be viewed under a limited
set of different rotation angles corresponding to specific ob-
lique projections. As future work we intent to investigate
the possibility of a more general projection method that al-
lows the user to view the volume from any angle, allowing
for example, quick rendering of images or real time anima-
tion sequences.

ACKNOWLEDGEMENTS

This work was partially funded by the Portuguese Agency
for Cientific Research and Technology (JNICT) with a
scholarship BD/1733/91-1A.

REFERENCES

[I] T Todd Elvins, “A survey of algorithms for volume visualization”,
Computer Graphics, vol. 26, no. 3, pp. 194-201, Aug. 1992.

[2] H. Fuchs, Z. M. Kedem, and S. P. Uselton, “Optimal surface recon-
struction from planar contours”, Comunications of the ACM, vol. 20,
no. 10, pp. 693-702, Oct. 1977.

{31 WilliamE. Lorensen and H. E. Cline, “Marching cubes: A high resol-
ution 3d surface construction algorithm”, ACM Computer Graphics,
vol. 21, no. 4, pp. 163-169, July 1987.

[4] Gabor T. Herman and Hsun Kao Liu, “Three-dimensional display of
human organs from computed tomograms”, Computer Graphics and
Image Processing, vol. 9, pp. 1-21, 1979.

[5] Gideon Frieder, Dan Gordon, and R. Anthony Reynolds, “Back-to-
front display of voxel-based objects”, IEEE Computer Graphics &
Applications, pp. 52-60, Feb. 1985.

304

[6] J. Wilhelms and A.V. Gelder, “A coherent projection approach for
direct volume rendering”, Computer Graphics, vol. 25, no. 4, pp.
275-284, 1991.

[7] Lee Westover, “Footprint evaluation for volume rendering”, ACM
Computer Graphics, vol. 24, no. 4, pp. 367-376, Aug. 1990.

[8] Ludwig Adams, Werner Krybus, Dietrich Meyer-Ebrecht, Rainer
Rueger, Joachim M. Gilsbach, Ralph Moesges, and George Schloen-
dorff, “Computer-assisted surgery”, IEEE Computer Graphics &
Applications, pp. 43-51, May 1990.

[9]1 Dan Gordon and R. Anthony Reynolds, “Image space shading of 3-
dimensional objects”, Computer Vision, Graphics, and Image Pro-
cessing, vol. 29, pp. 361-376, 1985.

[10] 1. Carlbom and J. Paciorek, “Planar geometric projections and view-
ing transformations”, Computing Surveys, vol. 10, no. 4, pp. 465-
502, 1978.

APPENDIX A

Proof of theorem 1

Consider X to be oblique projected with [POz] followed
by a rotation about the z axis with an angle 3, subsequently
followed by a scaling along the y axis with a scaling factor
Sy and finally followed by a translation along the x axis and
y axis with factors T, and T}, respectively. The combined
transformation is then described as:

[PO22D] = [POz][2D] 4)
where
1 0 0 0
[PO22D] = -f coos « —fslin « 8 8 °
0 0 01

cosfp Sysing 0 0
~sing Sycosf 0 0)

0 0 00

T, T, 01

(Note that although [2D] describes a 2-D transformation it
is written in the form of a 3-D transformation matrix) for
which we calculate

cos@ Sysinf 0 0
_ | =sing Sycosf 0 0
[POz2D] = A S,B 0 0 (6)
T T, 01
where

A= —fcosacosfB+ fsinasin
and
B = —fcosasinf — fsinacosf

Now consider X to be rotated about a local axis system
x'y’z’ with its origin on C. Where C = (C,,C,,C,) is
the centroid of X. A rotation of X about the local z’ axis
with angle § followed by a rotation about the local x’ axis
with angle ¢ can be performed by translating X to make

RevisTa Do DETUA, VoL. I, N° 4, SETEMBRO 1995

C coincident to that of the origin of the global axis sys-
tem, susequently followed by the required rotations and fi-
nally by translating X back with C to its original position.
After rotation, X will then be projected orthogonally onto
the z = 0 plane. The combined transformation is then de-
scribed as:

[3DRPz) = [3DR][Pz] (7)
where
[3DR] = [TR][Rz|[Rz][TR]™"
specifically
cosd cos¢sind singsind 0
| —sind cos¢cosd singcosd 0
(BDR] = 0 —sin ¢ cos ¢ 0 ®
C D E 1
where
C =~-C,cosd+ Cysind + C,
D = cos¢(—C; sind — Cy cosé) + C. sin g + C,
and
E =sin¢(—Cycoséd — Cypsind) — C,cosp + C.
cosd cos¢sind singsind 0
_ | —sind cos¢cosd singcosd 0
[3DRPz] = 0 —sin ¢ cos ¢ 01°
C D E 1
1 000
01 00
000 0 ©)
0 0 0 1
from which we calculate
cosd cosgsind 0 0
_ | —siné cos¢cosd 0 O
[3DRPz] = 0 Cend 0 0 (10)
C D 0 1

The equation [PO22D] = [3DRPz] will hold a solution
if:

B=0 (1
Sy = cos¢ (12)
T, = =Cypcosd + Cysind + C, (13)

T, = cos¢(—Cysinéd — Cycosd) + C,sin ¢ + Cy (14

~fcosacosff+ fsinasinfB =0 (15)

Revista Do DETUA, VoL. 1, N° 4, SETEMBRO 1995

Sy(—fcosasinf — fsinacosf) = —sing (16)

Applying a fixed @ and f we can derive 3, 6 and ¢. Since
f # 0 equation 15 yields

cosacos 3 = sinasin 3

Using the identities £22 = tan « and i;‘:g = tan § yields
tanatan g =1

From which we derive
§=8= g ~a a7

From equation 16 we can derive ¢
Applying equation 12 in 16 yields

cos ¢(—fcosasinB — fsinacosfB) = —sin¢g
Using the identity i:)';‘; = tan ¢ yields
~fcosasinf — fsinacosff = —tan¢

From which we derive
¢ = arctan(f cosasin B + f sina cos 3)

Using the identities sin # = cos o and cos 8 = sin a con-
form equation 17 yields

¢ = arctan(f(cos® a + sin® 3))
Using the identity cos® a + sin® 8 = 1 yields

¢ = arctan(f) (18)
Applying a fixed § and ¢ we derive « and f

) (19)

a = arctan(:

an o

f =tang¢ 20)
APPENDIX B

Proof of theorem 2

See figure 2 for symbols.

Let S; be defined by the set {(0,0)(0, R)(R, R)(R,0)}
and S, defined by the set {(T;;, Ty)) (T, R+Ty)(R+T,, R+
Ty)(R+ T:,Ty)}

Let o be
defined by the coordinates formed by the union of C; and
Cy. Where C; = {(0,0,0)(0, R,0)(R, R,0)(R,0,0)} and
Cy = {(0,0,R)(0,R,R)(R, R, R)(R 0,R)}.

Givena = arctan(T)and f = —F=—

Applying equation 1, the coordinates of any oblique pro-
jected point can be expressed as:

T, =T —zfcosa (21)

305

yp =y — 2fsina (22)
Applying equation (21 and equation (22) with z = 0 yields

Ty =1 (23)

Yp =Y (24)

Equations (21) and (22) will transform C in Sy
Applying equation 21) with z = R, a = arctan(%) and

f= _RTCOSQ will give

T, =1 — R(————)cosa
P (—Rcos a) “
which yields
zp=a+ T, (25)
Applying equation (22) with z = R and f = m will
give
T,
=y — R(—="—)si
=Y —Rcosa) ma
which yields
sin
- T,
U =¥t sa
Using the identity 2 Sine — tan o yields y, = y + T tan o

Applied with a = axctan(%) will givey, =y + T, %—
which yields]

yp=y+Ty (26)
Equation (25) and (26) will transform C5 into S,

