
REVISTA DO DETUA, VOL. 1, NO. 5, DEZEMBRO 1995 1 

 

 

The Simulation of Systolic Array Implementation Schemes 
for Hopfield Neural Nets 

Jacek Mazurkiewicz1 
Institute of Engineering Cybernetics 

Technical University of Wroc³aw 
Poland 

————— 
1 Jacek Mazurkiewicz stayed at the Departamento de Electrónica e Telecomunicações da Universidade de Aveiro from 14 June to 13 July 1995 within 
TEMPUS Project S_JEP 07648-94. The work presented was realised during this visit. 

Abstract- The paper describes the simulation of systolic 
array schemes for Hopield nets. The implementation 
presented is based on completely digital circuits. Input data 
is passed through the neurones in a time shared basis, 
weights are stored in digital shift registers and no separate 
threshold detectors are used. The simulation was realised 
using EASE/VHDL ver. 2.2 and V-System/Windows ver. 4. 

 
Resumo- Este artigo descreve a simulação de uma 

arquitectura sistólica para redes neuronais de Hopfield. A 
implementação é puramente digital. As entradas são 
passadas sequencialmente através dos neurónios, enquanto 
os pesos estão armazenadas em registos de deslocamento e 
não são utilizados detectores de limiar. A simulação foi 
realizada com EASE/VHDL versão 2.2 e V-System/Windows 
versão 4. 

I. SYSTOLIC ARRAY IMPLEMENTATION 
OF HOPFIELD NEURAL NETWORKS 

The binary Hopfield net has a single layer of processing 
elements, which are fully interconnected - each neurone is 
connected to every other unit. Each interconnection has an 
associated weight. We let T ji  denote the weight to unit j 

from unit i. In Hopfield network, the weights T ij and T ji  
have the same value. Mathematical analysis has shown 
that when this equality is true, the network is able to 
converge. The inputs are assumed to take only two values: 
1 and -1. The network has N nodes containing hard-
limiting nonlinearities. The output of node i is fed back to 
node j via connection weight T ij . 

A. Architecture for training 

The training is realised in accordance with the Hebbian 
learning algorithm. The training patterns are presented 
one by one in a fixed time interval. During this interval, 
each input datum is communicated to its neighbour N 
times. 

 
Fig. 1. Hopfield Neural Network 

For the systolic implementation of the training algorithm 
using digital circuits, the input data are assumed to be 
binary values: 1 and 0 instead of bipolar 1 and -1. Table 1 
shows the required changes of weights for the bipolar and 
binary inputs respectively. 

Table 1. 

ix  jx  jiTΔ  

-1 -1 +1
-1 +1 -1
+1 -1 -1
+1 +1 +1

Update of weights for bipolar inputs 

ix  jx  i jx x⊕  
jiTΔ  

0 0 1 +1 
0 1 0 -1 
1 0 0 -1 
1 1 1 +1 

Update of weights for binary inputs 

 



2 REVISTA DO DETUA, VOL. 1, NO. 5, DEZEMBRO 1995 

 
 

Fig. 2. The implementation of the single neurone training algorithm 

The update of weights depends on the values of x i  and 
x j  as shown below: 

T k
T k if x x
T k if x xji

ji i j

ji i j

( )
( )
( )

=
− + ⊕ =

− − ⊕ =

1 1 1
1 1 0

 (1) 

where: 
 i j k N for j N and k M= + ≤ ≤ − ≤ ≤( )mod 0 1 1  
T T Mji ji= ( )where M is the number of patterns to be 
stored. 
The weights are initialised as: 

T for all j and iji ( )0 0= . 
Each weight is modified M times. Fig. 2 shows the 
implementation of single neurone. 
 
The activation values x i are moving on the main ring 

whereas the weights T ji are rotated in the array of shift 
registers through the up/down counter. At the up/down 
counter, the weight is incremented or decremented by 1 
and transferred to the register at the top of the array. The 
training patterns are loaded into the input register when 
ILP1  is present. 
 
The loaded data is transferred into the holding register 

with the control signal ILP 2 . The weight value in the 
lowest register of the array is loaded into the up/down 
counter using control pulse, SP. 
The count enable pulse (CEP) makes the counter count 

up or down depending on the value of x xi j⊕ . The 

modified weight is pushed downwards into the top 
register of the synaptic weight array using SP. At the same 
time SP is applied for shifting the input data clockwise 
once.  
 
This cycle is repeated N times and all the N weights are 

modified. The next training pattern is applied and weights 
are again changed accordingly. 
This procedure is repeated M times - M is the number of 

patterns - and training of the network is completed. 
B. Architecture for computation. 

The computation of Hopfield neural network considers 
the following data: 
• N 2  synaptic weights T ij  which contain the 

relationship between the neurones. These weights are 
obtained after training the network; 

• the binary input vector X i , i=0,1,...,N-1 describes 
the initial activation values of the neurone; 

• the partial sums which represent the system evolution 
and become, after the threshold function, the new 
activation values of the neurones. 

 
The input register is initialised with the input vector and 

each weight register is initialised with the synaptic 
weights produced during the learning phase.  
 
Then the products between each component of the input 

vector and the corresponding synaptic weights are 
computed. The result is transferred to the second stage 
where each cell computes a sum of these products.  
 
Following this step, a shift command is sent to the 

synaptic registers and to the input register. A new product 
is evaluated again. After N steps, the second stage  
contains values of the new output for the single node. The 
result is delivered to the evaluation part which applies a 
threshold function. 
 
Net k Net k T x where i j k Nj j ji j( ) ( ) ( )mod= − + = +1  

 (2) 
 

Net Net N and initial value Netj j j= =( ) : ( )0 0 

 (3) 

The answer of each neurone is described by the 
following equation: 

 

V
if Net
if Netj

j

j
=

≥
<

1 0
0 0

 (4) 

for i j N and k N0 1 1≤ ≤ − ≤ ≤,  



REVISTA DO DETUA, VOL. 1, NO. 5, DEZEMBRO 1995 3 

 

 

Fig. 3. The implementation of the single neurone for computation algorithm 

The architecture for computation consists of a projection 
of the T ij  components in N different shift registers for 
each neurone. 

 
The weight applied to the j-neurone along with the input 

element x i  in the k recursive step is T ji . The input vector 
is loaded into the input register when the input load pulse 
ILP is present. 

 
The contents of the input register and the weight register 

array are shifted once by the shift pulse SP, after one 
partial computation is over. 

 
The computational element consists of an 

adder/subtracter which is controlled by the input x i and 
an accumulator which is used for storing the partial sum 
PS. 

 
This computational element receives the synaptic 

weights one by one and, at each time, applies the value of 
the corresponding input and accumulates the result. 

 
There is no need of multiplier since the input x i is 

binary. The content of the lowest register in the weight 
register array is added or subtracted with the content of 
the PS register - accumulator - depending on the value of 
x i . 
 
The partial sum PS in the accumulator, which is cleared 

at the beginning of the computation with ILP, is obtained 
as follows: 

PS k
PS k T if x
PS k T if xj

j ji i

j ji i
( )

( )
( )

=
− + =
− − =

1 1
1 0

 (5) 

where: 
 
i j k N PS PS N PSj j j= + = =( )mod , ( ), ( )0 0 

Then the shift pulse SP is applied to the input register 
and to the ring array of synaptic weight registers. 

 
The same SP controls the accumulator to receive the 

partial sum from the adder/subtracter. After N-1 such 
cycles, one computation is over and the result - Net j - 
will be available in the accumulator. 

 
The N-stage change of the accumulator is ignored, since 

it is due to the synaptic weight w ii . The hard limiter 
thresholding has to be done with the Net j  output.  

 
The accumulator content is a 2's complemented binary 

number whose most significant bit is the sign bit. If the 
sign bit is inverted using a binary inverter, we get the 
required V j  output. 
 
After N-1 partial computations the sign bit of the 

accumulator is loaded into the output register. 
 

This is controlled by the output load pulse OLP, which is 
appeared after N-1 shift operations by SP. V j obtained 
after one computation is fed back to the input register and 
computations are repeated until convergence. 

 
The convergence is reached when SCP - stop 

computation pulse - becomes 0. 
 

A computation phase consists of the following steps: 
 

• each input x i is cycling from one neurone to its 
neighbour; 

• each x i going through a processing element is 
multiplied with T ji and the result is involved to the 
local partial sum; 

• the threshold function is applied; 
• this procedure is repeated until convergence. 



4 REVISTA DO DETUA, VOL. 1, NO. 5, DEZEMBRO 1995 

 
 

Fig. 4. The implementation both for training and computation. 

II. GENERALISED SYSTEM BOTH FOR 
TRAINING AND COMPUTATION 

The previous chapter described two architectures for 
implementation the training and computation part of the 
Hopfield neural net behaviour. 

 
The construction of physical system based on these 

foundations requires a solution to combine two parts of 
the Hopfield algorithm. It is necessary to add one control 
signal T/C to drive the right phase. When T/C is 1, the 
network receives the exemplar patterns for training and 
functions as explained earlier. 

 
When T/C is 0, the network receives the error pattern and 

computes the output till it converges to a stable state. 
While the network is doing the recognition process, the 
data in the weight register array bypass the up/down 
counter. 

 
During training weights go through the up/down counter 

and update their values according to the equations shown 
before. 
 
The previous chapter described how the single neurone 

is implemented and how it works. The whole Hopfield net 
is constructed as fully interconnected slabs like this one. 
Each slab is connected to another one using only two 
signals. The first signal connects input registers to satisfy 
the exclusive-or function to drive up/down counter during 
training part of the algorithm and to deliver the second 
datum for adder/subtracter when the net realises 
computation. The second signal generated during 
computation with the output of the single slab is necessary 
to produce SCP (Stop Computation Pulse). It seems that 
the structure can be in very easy way extended to any 
number of neurones, but it isn't true. We can notice at the 
Fig. 2. - related to training part - and at the Fig. 3. - related 
to computation part - a lot of different signals which are 
necessary for normal work. 
These signals have to be delivered to each slab. First of 

all - this is a systolic structure - so each slab has to be 
supported by SP (Shift Pulse) line. This line drives weight 

register array, input register and up/down counter in each 
cell. There are two signals to shift the component of the 
input pattern between Input Register and Holding 
Register: ILP1 and ILP 2 . The Output Register is 
controlled by the Output Load Pulse OLP, which is 
appeared after N-1 shift operations by SP. Finally it is 
necessary to pick CEP line to choose the direction of 
counting at the up/down counter and T/C line to 
distinguish training part and computation. 

III. PROJECT 

The project of the architecture presented above was 
realised using EASE/VHDL ver. 2.2. system. The 
conception of the simple neurone for training procedure 
and the simple neurone for ordinary work was translated 
into VHDL using this system. The results achieved were 
the inputs for the simulation package. 

A. Introduction to the system 

The system allows to create the hierarchical structure of 
the project. The top of this tree is the whole architecture 
which is treated as a black-box supported by all necessary 
inputs and outputs. The VHDL code is generated always 
for this level of implementation. Then the user starts his 
elaboration by creating the lower branches of whole 
structure. During each downstairs step system creates the 
proper inputs and outputs for the actual point of 
elaboration. The user can define the simple object of each 
level, except the top, as: a state machine, object which is 
defined by VHDL procedure written by the user or as a 
complex part, which is the root for the lower branch. So 
as the base leaves of the tree we can notice only two kinds 
of elements. 
The creation of each part of the structure is very similar 

to the composition of picture using CorelDraw for 
example or to elaboration of schematic file using OrCad. 
Very sophisticated and easy available by buttons menu 
makes every change or edition of each object as easy as 
possible. 
The user during composition of new state machine 

defines all necessary states first. Then he creates the 



REVISTA DO DETUA, VOL. 1, NO. 5, DEZEMBRO 1995 5 

 

 

transitions among the states and combines the activation 
conditions  to them. The conditions can be declared as 
clock dependent or asynchronous to drive different kinds 
of reset signals to states. The next step allows to write 
actions for each state to drive different output signals. 
Writing these conditions for transitions and actions 
requires the VHDL syntax among input and output 
signals. Of course it’s necessary to provide clock signal 
for state machine, which drives the moments of state 
exchange. 
If the user combines the simple object with the VHDL 

procedure system creates the skeleton of the procedure. It 
provides a header, footer and the interface of the 
procedure - the definitions of output and input signals and 
fix the way of calling the procedure. The user ought to 
create manually using his favourite text editor the body of 
the procedure. At the end system creates the special file 
for the ready-made procedure and links the file with the 
proper part of project. 
When the whole project is ready system checks if the 

elaborated structure if correct: if all inputs and outputs are 
driven and if all branches are created. If the results show 
no errors system generates VHDL code related to the 
project. 
Unfortunately these procedures which are written by the 

user aren’t checked. Also there is no warning if conditions 
of transitions and actions for state machine include syntax 
error. It means that the system is not created as a tutorial 
to VHDL. The user ought to know at least the basis of  
this language. 
The system also doesn’t contain the already libraries for 

the most popular and the most indispensable simple 
objects used for creation the complex structures. The user 
can define and store his own libraries. 

B. Implementation of single neurone for training 

The top level of implementation (Fig. 5.) is a definition 
of “black-box” supplied with all necessary input and 
output signals, which takes part of the structure shown at 
Fig.2. 
 

 
Fig. 5. Neurone for training procedure - top level 

The lower level illustrates how the simple parts of whole 
structure were mirrored into VHDL blocks. 
 

 
Fig. 6. Neurone for training - lower level 

The Input Register is a state machine which includes 
three states: Load, Zero, One. The Load state starts and 
restarts the normal work of the register. It allows to 
preload the simple component of training pattern - 
x i when there is a change at the ILP1 signal into register. 
In this state the output signal is provided directly by input 
x i . The Zero and One states correspond to normal work 
of the register. If x j - input signal - is 0 the structure is 
switched by the nearest change of clock signal SP into 
Zero state and 0 is generated as an output. If x j equals 1 
we can observe the same reaction but One state is the 
destination of switching and output is driven into logic 1. 
 

 
Fig..7. Input Register for training 

The Holding Register is created as an object with 
suitable VHDL procedure. When there is a change at the 
ILP 2 signal it loads itself by the output of Input Register 
and serves this value as its output continually. 
The Negative-Exclusive-Or Functor is also created as an 

object described directly by VHDL procedure. It 
generates the result of Negative-Exclusive-Or Function 



6 REVISTA DO DETUA, VOL. 1, NO. 5, DEZEMBRO 1995 

 
 

made at two inputs: x i and x j as a signal to drive the 
direction of counting. 
 

 
Fig. 8. Negative-Exclusive-Or function for training 

The Up/Down Counter is a 4-bit binary counter with 
parallel input enable and the possibility to change the 
direction of counting. It is implemented as a state machine 
of 17 states. 16 states are necessary to drive normal work 
of such counter and the last one is responsible for parallel 
input. The transitions among the base 16 states depend on 
the required direction and change the current state to next 
or previous when the change of logic state at the SP - 
clock signal is noticed. Each state drives the four output 
lines of counter to transmit the actual counted number: 
0..15. The change of states is driven by CEP - Count 
Enable Pulse, which ought to be created as clock shape. 
The Load state is created to load the value of weight 
transmitted by Weight Register Array by four lines. 
 
This state based on the loaded value makes the counter 

start counting from the proper state. This load is 
synchronised by SP - clock signal with the work of 
Weight Register. So the load into counter isn’t completely 
asynchronous, but it doesn’t depend on the CEP signal. 
The transition from the Load state to the one of the 16 
counter states is driven by the general clock signal SP: 
After the single change of state of the counter the updated 
value of weight is transferred to the top of Weight 
Register Array. 
The Weight Register Array is created as an object 

described directly by the VHDL procedure. It loads into 
the first cell of an array the updated value of weight 
transmitted from counter by four lines in parallel way 
when the change at clock signal SP is noticed. 
Simultaneously it shifts the previous weights to the next 

cells and drive the output lines by the proper at the 
moment weight which is the input for the counter 
described above. The whole array is constructed by four 
cells, each cell can store four bits of information. 

 
Fig. 9. Up/Down Counter for training procedure 

C. Implementation of single neurone for computation 

The top level of implementation (Fig. 11.) is a definition 
of “black-box” supplied with all necessary input and 
output signals, which takes part of the structure shown at 
Fig.3. 
 

 
Fig. 10. Weight Register Array 

 

 
Fig. 11. Neurone for computation algorithm 



REVISTA DO DETUA, VOL. 1, NO. 5, DEZEMBRO 1995 7 

 

 

The lower level illustrates how the simple parts of whole 
structure were mirrored into VHDL blocks. 
 

 
Fig. 12 Neurone for computation - lower level 

The Control Circuit is a state machine which includes 
three states: Load, Zero, One. The Load state starts and 
restarts the normal work of the structure. It allows to 
preload the simple component of input pattern - x i when 
there is a change at the GO signal into object. In this state 
the output signal is provided directly by input x i . The 
Zero and One states correspond to normal work of the 
Control Circuit. If v i  - input signal - is 0 the structure is 
switched by the nearest change of clock signal SP into 
Zero state and 0 is generated as an output. If v i equals 1 
we can observe the same reaction but One state is the 
destination of switching and output is driven into logic 1. 
The v i input signal is driven by the output generated by 
this neurone at the previous moment. This feedback is 
necessary to achieve a convergence. 
 

 
Fig. 13. Control Circuit for computation algorithm 

The Input Register is implemented exactly in the same 
way as Input Register for the structure for the training 
algorithm. The only differences are the names of input 
and output signals. 

The Weight Register Array is implemented using the 
same VHDL syntax as the Weight Register Array 
necessary for training algorithm. This structure works in 
the same way, but the top cell of array is loaded by the 
value from the lowest cell, because the task of the Weight 
Register Array is to serve the weights produced during 
training. 
 

 
Fig. 14. Adder/Subtracter for computation algorithm 

The Adder/Subtracter is the 4 bit adder/subtracter but the 
first argument of each function is stored using 8 bits. The 
result of each operation also requires 8 bits. This solution 
allows to expand the range of available values. The 
Adder/Subtracter works using U2 code for data. The 
device was created as an object directly described by 
VHDL procedure. The construction of 8-bit 
adder/subtracter is based on the idea of cascade n-bit 
adder. The partial sums are calculated using 1-bit adders 
or half-adders and the carry signals are transmitted to the 
next module and are used as the next arguments. The 8-bit 
subtracter compares the bits of arguments at the same 
position and drives the carry signals, modifies the values 
at proper positions of arguments and then subratcts them. 
The device has to work using U2 code - because the final 
value of net just before of the calculation of neurone’s 
answer can be positive or negative value. In case of this 
Adder/Subtracter follows the most significant and just 
previous carry signals to check if the result of operation is 
valid. SP - clock signal loads previous partial sum from 
accumulator and returns the modified value. The value of 
single component x j is the switch: add or subtract. At the 
beginning of the work the accumulator is set to zero by 
ILP signal. 
 
The Output Register is implemented also as a device 

with direct VHDL description. The only task of it is to 
load the value of MSB bit from the value stored in the 
accumulator and to serve as an output of the structure 
after translation by NOT functor and without any changes 
as an argument for block which generates SCP signal. The 
new value to Output Register is loaded when the change 
at the OLP line is noticed. 



8 REVISTA DO DETUA, VOL. 1, NO. 5, DEZEMBRO 1995 

 
 

 
Fig. 15. Output Register for computation algorithm 

To_SCP is the object to generate Stop Computation 
Pulse signal. This part which is also described as the 
VHDL direct procedure contains two functors: Or driven 
by Exclusive-Or. The first argument for this circuit is the 
signal from Output Register and the second is SCP signal 
produced by previous neurone. 

IV. SIMULATION 

The simulation of architecture of simple neurone for 
training and simple neurone for computation described 
above was realised using V-System/Windows ver. 4. As 
the inputs for simulator were used VHDL files generated 
by EASE/VHDL system. The main goal was to check if 
these two architectures work in accordance with the 
foundations. 

A. Introduction to the system 

The system is an integrated device, which allows to 
simulate and check the VHDL project. The first 
programme included is VHDL compiler with the 
mechanism to find any kind of errors and warnings. The 
user obtains very detailed information about the kind and 
position where something is wrong in project. 
 
Then if the compilation has no errors the user can start 

the simulation. It’s possible to simulate the whole 
structure or simpler parts and single components. The 
user’s decision about the kind of simulation makes the 
system to open the proper input lines to give a chance to 
drive them and also to open the proper outputs to check if 
the results are correct. 
 
The behaviour of the system the user can observe in 

many different ways. First of all system generates the 
wave forms of all input, output and interior signals at 
proper time scale. 
 
The user can follow all changes of signals using special 

cursors, rescale the wave forms. The same information is 

presented by textual version as a list of signals and the 
values related to them. 
 
At the same time system shows the state of variables 

defined in objects, actual position of simulation in whole 
structure, the active processes and the current position at 
VHDL source file. 
 
The user can change his requirements related to the 

simulation at every moment by every active console. 
There is no problem to force the inputs at the moment the 
user chooses. 
 

 
Fig. 16. Main screen of V-System/Windows 

The system also allows to trace the realisation of VHDL 
programme, it’s possible to drive the programme step by 
step, to pass by the procedures, to fix the breakpoints. 
 
In general the whole system is a very good and precisely 

created device for simulation even very sophisticated 
VHDL projects. The only fault is to small screen of 
typical monitor used with PC computers. It’s very hard to 
organise it in efficient and clear enough way. 

B. Simulation of single neurone for training 

The simulation of the architecture of single neurone for 
training was realised in two stages. First it was necessary 
to check if all simple objects work correctly. Then all 
inputs of whole structure were forced and the observation 
of behaviour and collaboration of objects was realised. 
 
The two first components of input pattern were force to 

1. The period of SP - clock signal was 100 ns, CEP - the 
second clock, which drives the counter worked with the 
same frequency as the base clock, which drives all state 
machines in the structure, but had the alternative phase. 
 
The input values x i and x j were loaded to Input 

Register and Holding Register during first 50 ns and 
during the second 50 ns by proper forcing ILP1 and 
ILP 2 signals. 



REVISTA DO DETUA, VOL. 1, NO. 5, DEZEMBRO 1995 9 

 

 

The line Net_3 is the output of Input Register and the 
input of Holding Register, line Net_0 is the output of 
Holding Register and the first argument of Not-Exclusive-
Or functor. Line Net_8 drives the direction of counting 
and the state of this line is produced by Not-Exclusive-Or 
functor. 
At lines Net_13-Net_10 is possible to observe the output 

of counter. It’s easy to notice that the counter counts up. 
These signals are the inputs for the Weight Register Array. 

 
Fig. 17. Simulation of single neurone during training procedure 

The states of lines Net_17-Net_14 present the same 
values as at the output of the Counter, but there are four 
cycles of clock signal of delay between the output of the 
Weight Register and the output of the Counter. This 
shows how the four cells Shift Register works. 

C. Simulation of single neurone for computation 

The simulation of the architecture of single neurone for 
computation was also realised in two stages. First it was 
necessary to check if all simple objects work correctly. 
 
Then all inputs of whole structure were forced and the 

observation of behaviour and collaboration of objects was 
realised. The first components of input pattern were force 
to 1. The period of SP - clock signal was 100 ns. 
 
This base clock drives all state machines in the structure. 

The input values x i and x j were loaded to Input Registers 
and Control Circuits during first 50 ns by proper forcing 
ILP signal. 
 
The same ILP signal sets the initial value of accumulator 

to zero. The line Net_8 allows to observe the output of 
Control Circuit and the input signal to Input Register. 
 
Lines Net_27-Net_30 describe the output value - the 

weight - from the Weight Register Array. The values you 
observe are the examples of weights fixed only for 
simulation in permanent way. 
 

The Weight Array Register serves the values step by step 
without any modifications, because for this stage of work 
the weights are constants used by Adder/Subtracter. 
 
Lines Net_17-Net_24 represent the output from the 

Adder/Subtracter, which is transmitted as a new value of 
partial sum. 
 
It’s easy to notice that the output from Accumulator - 

lines Net_25, Net_26, Net_14, Net_13, Net_12, Net_11, 
Net_0, Net_16 bring the same value which was taken 
from Adder/Subtracter. 
 
The only difference is the delay of one clock cycle. The 

accumulator is loaded by zero at the begin of work and 
then it serves the actual value of the product evaluated 
during computation. 
 
The OLP signal is forced as clock shape to give a chance 

to observe how SCP signal is produced by the last part of 
structure - line Net_5. 
 
The same signals we can notice during the analysis of the 

more complex structure which is a combination of four 
single neurones. 
 

 
Fig. 18. Simulation of single neurone during computation (1) 

 
Fig. 19. Simulation of single neurone during computation (2) 



10 REVISTA DO DETUA, VOL. 1, NO. 5, DEZEMBRO 1995 

 
 

V. CONCLUSION 

Systolic arrays are the simplest regular and modular 
structures with only local short interconnections. 

 
They are a good compromise between time consuming 

sequential realisation and silicon area consuming parallel 
architectures. In terms of silicon area required, a fully 
parallel implementation is very expensive. 

 
If N is the number of neurones required and S is the area 

of an individual physical cell, we need an area of 
O N S( )2  for a parallel implementation and we have 1 
cycle time for the evaluation. 

 
On the other hand, sequential algorithm requires a 

silicon area of O S( ), but the time of computation will be 
O N( )2 . 

 
A mean solution is provided by the systolic 

architectures with a silicon area O NS( ) and a time of 
computation O N( ) . 

 
If we are going to implement N neurones connected as 

Hopfield network we have to use 2N input registers, N 
accumulators to store the partial sums, N output registers 
to store the results, N multi-bit adders/subtracters and N 
up/down counters. 

 
In addition, it is necessary to install N weight register 

arrays. Each such device is composed of N cells and each 
cell is able to store single weight with standardised 
precision. 

 
The maximum speed of work of the structure depends 

on the technology of all functors and components were 
made and the speed is inversely proportional to the 
number of neurones. 

 
The systolic array implementation scheme for Hopfield 

neural network employs completely digital circuits. The 
network requires N clock cycles for updating its weights 
for each input pattern. 

 
The trained weights are stored in an array of shift 

registers for each neurone. 
 
The systolic architecture for the computation of 

Hopfield net initialises the input register with the input 
vector and communicates each element of the input vector 
to its nearest neighbour with each clock pulse. 

 
On the other hand there are a lot of limitations which 

are the serious problems if we want to extend this 
architecture to larger networks. 

VI. ACKNOWLEDGEMENTS 

The author would like to say thank the Departamento de 
Electrónica e Telecomunicações da Universidade de 
Aveiro, especially to Prof. António de Brito Ferrari for the 
possibility to realise the one month academic visit from 14 
June to 13 July 1995 within TEMPUS Project S_JEP 
07648-94. The work presented was realised during this 
stay. 

REFERENCES 

[1]  K. V. ASARI, C. ESWARAN: Systolic Array Implementation of 
Artificial Neural Networks, Indian Institute of Technology, Madras 
600 036, India, 1992 

[2] J. N. HWANG, S. Y. KUNG: Parallel Algorithms/Architectures for 
Neural Networks, Journal of VLSI Signal Processing 1, pp. 221-251, 
Kluwer Academic Publishers, Boston, 1989 

[3] R. TADEUSIEWICZ: Sieci neuronowe, Akademicka Oficyna 
Wydawnicza RM, Warszawa, 1993 

[4] EASE/VHDL Version 2.2 Installation Guide, User’s Guide, 
Reference Guide, Document Version EASE-IG-7, TRANSLOGIC 
BV, Ede, the Netherlands, November 1994 

[5] EASE/VHDL & EASE/VHDL Modeler Tutorial, Document Version 
EASE-T-1, TRANSLOGIC BV, Ede, the Netherlands, January 1995 

[6] V-System/Windows User’s Manual, VHDL Simulation for PCs 
Running Windows & Windows NT Version 4, Model Technology 
Inc., Beaverton, USA, November 1994 

 


