
REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 5 
 

 

Resumo - Este artigo descreve as técnicas fundamentais 
aplicadas no desenvolvimento de aplicações com a biblioteca 
ObjectWindows da Borland International Inc. O artigo 
destaca, as ideias básicas introduzidas pelo sistema 
Windows, descreve algumas regras para a escrita de 
programas em C++ no ambiente ObjectWindows e apresenta 
uma aplicação orientada a objectos, em particular da 
linguagem C++, foram descritas em [1]. 
 
Abstract - This paper discusses the basic approaches 

involved in the use of Object Windows Library for 
application development. It emphasises the basic ideas 
introduced in Windows and ObjectWindows and 
recommends some rules for writing C++ object-oriented 
programs based on ObjectWindows supporting 
environment. When I say Windows I mean the operating 
system (subsystem). The paper has been prepared with a 
tutorial approach that makes the material accessible to 
students at an introductory level. I assume that readers 
know the fundamentals of C++ and Windows. The basic 
ideas of object-oriented programming techniques in general, 
and the C++ language in particular, were considered in [1]. 
The paper formally introduces the basic concepts of 
ObjectWindows developed by Borland International Inc. It 
does not assume prior knowledge of ObjectWindows.  

I. AN INTRODUCTION TO THE OBJECTWINDOWS LIBRARY  

The Object Windows Library (OWL) contains a set of 
classes simplifying the creation and drawing of various 
components of a window on the screen. These 
components can be the following: 
- rectangular windows themselves; 
- dialog boxes (windows that support dialogue between a 

user and the computer); 
- controls (buttons, schroll bars, etc.); 
- menus (that enable you to specify some actions from a 

set of predefined actions); 
- icons, gadgets and other graphical objects, etc. 
ObjectWindows encapsulates a significant part of the 

Windows Application Programming Interface (the 
Windows API) allowing you to produce a Windows 
program very quickly and easily.  If you want to draw the 
simplest default window on the screen you should 
perform the following two steps: 
1. Define an object of the OWL class TApplication, for 

example: 
 

# include <owl\applicat.h> //including 

 // the header file for the TApplication 

 ..................................... 

  TApplication my_app; 
 
2. Send a message "Draw the window". This is done by 

calling the function Run which is a member of the 
TApplication class, for example: 
 
 my_app.Run(); 
 
As a result, the simplest ObjectWindows program will 

look something line the following: 
 
 # include <owl\applicat.h> 

 int OwlMain (int argc,char* argv[]) 

 { TApplication my_app; 

  return my_app.Run(); 

 } 
 
Much in the way that every C/C++ language application 

has a single function main, every ObjectWindows 
application has a single OwlMain function. In other words 
you must use OwlMain instead of main. The OwlMain 
function returns an integer. That is why we used the 
statement: 
 
 return my_app.Run(); 

 
The function Run also returns an integer. 

II. HOW TO CONSTRUCT THE MAIN WINDOW ON THE SCREEN 

When we are defining an object, we can make some 
initial settings by calling a special member function of a 
class that is called a constructor. A constructor is 
responsible for creating an object and initialising its data 
members. We could use a constructor to set the caption 
for the window in our example. Like many other 
ObjectWindows classes, TApplication has several 
constructors. The following constructor enables you to 
create an object (a class instance) from scratch: 
 
 TApplication ( const char far* name=0 ); 

 
The constructor has just one parameter which has a  

default value of zero. We can call this constructor to 

How to design applications using ObjectWindows 

Valery Sklyarov 



6REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994
  
 

define an object. Since a constructor is a function, you can 
call it like the following: 
 
 return TApplication().Run(); 
 
Finally our simplest example can be presented as 

follows: 
 
 #include <owl\applicat.h> 

 int OwlMain(int, char**) 

 {  return TApplication("New").Run(); } 
 
This program displays a rectangular window on the 

screen with the caption ‘New’. Let us look at the 
statement: 
 
 return  TApplication ( "New" ).Run(); 

 
The function Run() performs some predefined actions. 

Let us look at these actions in a little bit more detail. The 
call of the function Run in the statement above calls 
TApplication::InitApplication in the first instance, and 
TApplication::InitInstance for all subsequent instances. The 
expression TApplication::InitApplication says that the member-
function InitApplication belongs to the TApplication class. If 
there is no error during the initialisation process, the 
function Run calls the function TApplication::MessageLoop. 
The functions InitInstance and MessageLoop are very 

important, so let us look at them in more detail. 
The first function calls TApplication::InitMainWindow, 

TWindow::Create and TWindow::Show. 
The InitMainWindow builds a generic TFrameWindow object. 

The TFrameWindow class is responsible for controlling 
keyboard navigation, command processing for client 
windows, etc. Each window in an application has an 
associated TFrameWindow object, or an object of a class 
derived from TFrameWindow. You can override (redefine) 
the InitMainWindow function to build a customised main 
window object of TFrameWindow (or of a class derived 
from TFrameWindow). The functions TWindow::Create and 
TWindow::Show are used to create a window, and to display 
the window on the screen. If an error occurs, an exception 
is thrown. Both these functions belong to the TWindow 
class which enables windows to be created, and provides 
control of a window's behaviour supported by the 
Windows API routines. 
The MessageLoop function runs throughout the lifetime of 

the application program. Let us briefly consider the main 
ideas of Windows which are fundamental to its 
architecture. 
1. Windows and application programs communicate with 

each other through messages. The process of passing a 
message is achived by a function call. 
2. If an application wants to obtain service from  

Windows it calls a Windows API function. This is 
sending a message to Windows through the API function 
name and its argument values. 

3. Windows also sends messages to your application by 
calling a window procedure. If I say "Windows sends a 
message to the application", I mean that Windows calls a 
window procedure that belongs to the application, and 
passes a parameter to it  which defines this message. 
4. Messages can be either "queued" or "non queued". In 

the first case the messages are placed in an application's 
message queue by Windows, and then will be taken by the 
window procedure. In the second case the messages are 
sent to the application directly when Windows calls the 
window procedure. In both cases the application has one 
central point for message processing which is the window 
procedure. 
5. The OWL TApplication::MessageLoop function is 

responsible for processing incoming messages from 
Windows. The function queries Windows for messages. 
If a message is received, the function processes it by 

calling TApplication::ProcessAppMsg. Finally incoming 
messages will be retrieved from a message queue and 
dispatched to the window procedure supported by 
member functions of the TWindow class. For example, the 
TWindow::DefaultProcessing function installs a window 
procedure for the current application. The OWL window 
procedure is also used to respond to incoming messages. 
However the OWL introduces another mechanism which 
we will consider further. 
If there are no messages in a queue, the function 

TApplication::MessageLoop calls TApplication::IdleAction. You 
can override (redefine) this function to perform 
background processing.  
You can close an application by selecting the "Exit" or 

the "Close" item in the Windows menu or by pressing Alt-
F4. Whenever you want to close an application, the main 
window's CanClose function will be called. You can 
override (redefine) this function to give the user a chance 
to perform some actions before closing (such as saving 
files for example). 

III. BASIC STRUCTURES OF THE SIMPLEST APPLICATION 
PROGRAMS BASED ON OBJECTWINDOWS LIBRARY 

If you want to override a function that belongs to the 
TApplication class, you need to derive your own class from 
TApplication. For instance, let us change the last program 
given in the first section. 
 
#include <owl\applicat.h> 

class my_app : public TApplication 

{ 

public: 

 my_app(const char far* name) : 

    TApplication(name) {} 

}; 

int OwlMain(int, char**) 

{ return my_app("New").Run(); } 

  
The statement: 
 



REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 7 
 

 

 class my_app : public TApplication 

  
says that the user-defined class my_app is being derived 

from the OWL class TApplication.  The constructor for 
the new class (its name is also my_app) simply calls the 
base class constructor, TApplication, and passes the 
parameter "name" on to this constructor. The window to 
be drawn will be the same as in the previous example. 
In most circumstances, you need to override (redefine) 

the TApplication::InitMainWindow function for a useful 
application program. By default, InitMainWindow builds a 
frame window that is really useless because this window 
can not respond to any user input. Look at the following 
redefinition of the InitMainWindow function: 
 
void my_app::InitMainWindow() 

{  SetMainWindow(new TFrameWindow(0,”New”));  } 
 
Normally, InitMainWindow performs the following steps: 
1. Creates a TFrameWindow object (or an object of a class 

derived from TFrameWindow); 
2. Calls the TApplication::SetMainWindow function that takes 

the pointer to the TFrameWindow object being created in 
point 1. 
The function SetMainWindow returns a pointer to the old 

main window. In the case of a new application (the main 
window has not been set up yet), this function returns 0. 
The TFrameWindow class has two constructors. Let us 

look at the constructor which enables you to create new 
frame window from scratch. 
 

 TFrameWindow(TWindow *parent, 

       const char far *title = 0, 

       TWindow *clientWnd = 0, 

       BOOL shrinkToClient = FALSE, 

       TModule *module = 0); 

        
where: 
1. You specify the argument parent as 0 if you are 

creating the main window for your application which has 
no parent window. If you are creating a child window, the 
parent argument is a pointer to the parent window object. 
2. The argument title is a pointer to the string that will be 

displayed as your main window caption. 
3. The argument clientWnd is a pointer to an object 

associated with your client window. This object provides 
all necessary service. If clientWnd is 0, that there is no 
client window for your application. 
4. If you specify the argument shrinkToClient as 

TRUE, the frame window should shrink to fit the client 
window. If the shrinkToClient is FALSE, that it will not 
fit the frame to the client window. 
5. The argument module is a pointer to the TModule 

object for the TFrameWindow constructor. TModule objects 
encapsulate the initialisation and closing functions of a 
Windows Dynamic Link Libraries (DLL). 
In our previous example we called a TFrameWindow 

constructor as the follows: 

 
 TFrameWindow(0,"New"); 

 
The entire program will look something like the 

following: 
  
#include <owl\applicat.h> 

#include <owl\framewin.h> // header file for  

                       // TFrameWindow class 

class my_app : public TApplication 

{     public: 

 my_app() : public TApplication() {} 

 virtual void InitMainWindow(); // we want 

// to override default InitMainWindow function 

}; 

void my_app :: InitMainWindow() 

{  SetMainWindow(new TFrameWindow(0,"New")); } 

int OwlMain(int, char**) 

{ return my_app().Run();  } 

IV. INTERFACE ELEMENTS AND INTERFACE OBJECTS 

 Interface elements provide user input for an application 
program. They are windows, dialog boxes, and controls 
such as text controls, buttons, etc. Instances (objects) 
which are used to create interface elements and to support 
their behaviour are called interface objects. Generally 
interface objects contain member functions that are used 
for creating, initialising, managing, and destroying their 
associated interface elements. 
From a programmer's point of view, an interface object 

can be considered to be a logical window. On the other 
hand, associated with an interface element there is a 
physical window that is really displayed on the screen. 
All OWL interface objects are derived from the TWindow 

class which provides generic low-level functionality for a 
large variety of objects. 
Creating an interface object includes two basic steps: 
1. Calling the interface object constructor which builds 

the interface object ant sets its attributes. 
2. Creating the interface element by calling either the 

Create or the Execute member function belonging to the 
interface object. 
After the two steps described above,  Windows creates 

the window (the interface element) and in the process 
sends a WM_CREATE message. The OWL interface 
object intercepts the WM_CREATE message and calls its 
protected member function SetupWindow. 
 
Finally you can consider the interface object constructor 

as a place where you can do some initialisation before the 
interface element is created. In this case 
HWindow=NULL, where data member of the interface 
object, HWindow, provides an association between 
interface object and interface element. You can consider 
the SetupWindow  member function as a place where you 
can do some initialisation after the interface element has 



8REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994
  
 

been created. In this case HWindow is a handle for the 
interface element to be created. 

V. PARENTS AND CHILDREN 

The Windows desktop is a parent for all main windows. 
Each main window may have children. A child window is 
an interface element which is controlled (managed) by 
another parent interface element. The relationship 
between parents and children is supported through parent-
child links . 
You can construct a child window object in the body of 

the constructor of its parent window. Suppose we want to 
draw a button in the main window. In this case our 
program will look something like the following: 
 
#include <owl\button.h>  // header file for 

                         // TButton class 

#include <owl\applicat.h> 

#include <owl\framewin.h> 

class DrawButton : public TWindow 

{     public: 

 DrawButton(TWindow* parent = 0); // this 

          // is the constructor declaration 

     // for DrawButton class 

}; 

// see below the constructor definition for 

// DrawButton class 

DrawButton :: DrawButton(TWindow* parent) : 

                          TWindow(parent,0,0) 

{ new Tbutton(this, 

 -1,"my_button",100,50,80,30);   } 

 

class my_app : public TApplication 

{     public: 

 my_app() : TApplication() {} 

 virtual void InitMainWindow(); }; 

 

void my_app :: InitMainWindow() 

 { SetMainWindow(new  

       TFrameWindow(0,"New",new DrawButton)); } 

 

int OwlMain(int, char**) 

{   return my_app().Run(); } 

 
This very simple program really leads us on to several 

specific features of OWL programming, so we will 
consider this program in more detail. 
1. The first important part of our program is the 

following: 
 
void my_app :: InitMainWindow() 

{ SetMainWindow(new  

 TFrameWindow(0,"New",new DrawButton)); } 

 
where the third parameter of the TFrameWindow 

constructor is a pointer to an object associated with our 

client window (see the TFrameWindow class constructor in 
Section III). The C++ operator new allocates memory for 
the DrawButton object (constructs the DrawButton object) 
and returns a pointer to the DrawButton object that has been 
constructed. The DrawButton interface object is then 
responsible for our main window client area, and can be 
used to provide all necessary services.  
2. Now let us look at the DrawButton class constructor 
 
DrawButton :: DrawButton(TWindow* parent) : 

   TWindow(parent,0,0) 

{ new Tbutton(this, 

 -1,"my_button",100,50,80,30);   } 

 
2.1. It calls the TWindow base class constructor 

(TWindow(parent,0,0) ); 
2.2. It creates a child interface element by calling the 

TButton class constructor (new TButton(this,-
1,"my_button",100,50,80,30);). When you construct a 
child-window object in its parent window's constructor, 
the interface element for the child window will be 
automatically created. In our case we will see the button 
in our client area. 
The TWindow class has two constructors. We used a 

constructor that enables us to create the corresponding 
interface object from scratch. This constructor is: 
 
TWindow (TWindow* parent,  

  const char far* title, 

          TModule* module); 
 
where: 
1. You are setting parent=0 if you are creating the main 

window which has no parent window. In our example this 
value was assigned by default: DrawButton(TWindow* 
parent = 0). If you are creating a child window, the 
parent is a pointer to the parent window object.  
2. The title is a pointer to the string that is displayed as 

your main window caption. In our example we want to 
display the caption "New" taken from the 
TFrameWindow object. That is why we set the second 
parameter to 0. 
3. The argument module is a pointer to a TModule object. 

This parameter is used if we want to construct a TModule 
object which serves as the object-oriented interface for an 
ObjectWindows DLL. In our example this parameter was 
set to 0. 
Now let us look at TButton class constructor mentioned 

above. It enables you to define a button interface object 
from scratch. 
 
 TButton(TWindow *parent, 

     int Id, 

     const char far *text, 

     int X, 

     int Y, 

     int W, 

     int H, 



REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 9 
 

 

     BOOL isDefault = FALSE, 

     TModule* module = 0); 

 
where: 
1. The parent argument is a pointer to a parent window. 

Note the use of the pointer this in our example to link the 
TButton child window with the DrawButton parent window. 
2. The Id parameter is a unique identifier (ID) for the 

TButton instance (see the next section) sent by the button 
to its parent window. Passing a -1 value means that we 
don't want to respond to this message. 
3. The text is a pointer to the string that is displayed as 

your button's name. 
4. The X (horizontal position), Y (vertical position), W 

(width), and H (height) parameters define the location and 
dimensions of the TButton interface element. In our 
example: X=100, Y=50, W=80, H=30. 
5. The Boolean parameter isDefault specifies whether 

(TRUE) or not (FALSE) the button is the default button 
(pressing the Enter key on the keyboard is equivalent to 
clicking the default button). To emulate the keyboard 
interface for windows with controls mentioned above, you 
need to call the TFrameWindow::EnableKBHandler function 
before. 
6. The module parameter was explained earlier. 
This program is fairly useless. If you execute it in 

Windows environment, you will see the main window on 
the screen, but if you click the button, using the mouse, no 
actions will be performed. In a real application we want to 
respond to a button click. We can do so if we are able to 
do the following: 
1. To generate a message after our button is clicked. 
2. To respond to the message generated. 
The following section will explain the main ideas of 

ObjectWindows related to mentioned above questions. 

VI. GENERATING AND RESPONDING TO MESSAGES 

ObjectWindows introduces response tables which are 
used to handle all events in an application program. Let us 
demonstrate the main ideas behind this method by 
inserting the simplest response table in our example from 
the previous section. The source code of the example 
needs to be modified as follows. 
 
#include <owl\button.h>   

#include <owl\applicat.h> 

#include <owl\framewin.h> 

#define BUTTON_ID 101  

class DrawButton : public TWindow 

{     public: 

 DrawButton(TWindow* parent = 0);  

 void HandleButtonMessage();  // response 

   // function declaration 

 DECLARE_RESPONSE_TABLE(DrawButton);  }; 

 

DEFINE_RESPONSE_TABLE1(DrawButton,TWindow) 

   EV_COMMAND(BUTTON_ID,HandleButtonMessage), 

END_RESPONSE_TABLE; 

DrawButton :: DrawButton(TWindow* parent)  

{ Init(parent,0,0); 

 new TButton(this,BUTTON_ID,"my_button", 

                   100,50,80,30); } 

 

// see below the response function definition 

void DrawButton :: HandleButtonMessage() 

{ MessageBox("was pressed","Button"); } 

class my_app : public TApplication 

{     public: 

 my_app() : TApplication() {} 

 virtual void InitMainWindow(); }; 

void my_app :: InitMainWindow() 

{ SetMainWindow(new 

       TFrameWindow(0,"New",new DrawButton)); } 

int OwlMain(int, char**) 

{    return my_app().Run();   } 

 
The new version of our program has the following 

additions: 
1. Our TButton class object is constructed as follows: 
 
new TButton(this,BUTTON_ID,"my_button", 

       100,50,80,30); 

 
Here Id is equal to BUTTON_ID which is a constant 

defined by #define BUTTON_ID 101 (the value of the 
constant is 101). You can also replace the #define 
directive with the statement: 
 
 const WORD BUTTON_ID = 101; 

 
 where WORD is equivalent to unsigned short. You can 

choose any constant you want from those that are not used 
by the OWL. If you click the button, this button sends the 
message named BUTTON_ID. Since BUTTON_ID = 
101, the constant 101 is used by application program (by 
the window procedure) to identify this particular message. 
2. Our window class DrawButton has been declared as 

follows: 
 
class DrawButton : public TWindow 

{     public: 

 DrawButton(TWindow* parent = 0);  

 void HandleButtonMessage();   

 DECLARE_RESPONSE_TABLE(DrawButton); 

}; 
 
The class declares the 

DECLARE_RESPONSE_TABLE(DrawButton) 
macro, taking one argument which is the name, 
DrawButton, of the class. This macro tells the compiler to 
build an empty message mapping table. Along with the 
response table declaration, we must include in our 
program a response table definition. This can appear 
anywhere outside the class declaration body. The macro 
name, DEFINE_RESPONSE_TABLE1, ends with the 



10REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994
  
 

digit 1 indicating that the class (DrawButton) has just one 
parent class (TWindow). If you want to consider a class 
with two parents classes, then you must use the 
DEFINE_RESPONSE_TABLE2 macro (see below an 
example in the Section XI). Generally speaking, this 
macro is defined as DEFINE_RESPONSE_TABLE# 
and takes #+1 arguments: 
- the name of the class for which you are defining the 

response table; 
- a sequence of # names for each intermediate base class. 
In our case the definition is the following:  
 
DEFINE_RESPONSE_TABLE1(DrawButton,TWindow) 

   EV_COMMAND(BUTTON_ID,HandleButtonMessage), 

END_RESPONSE_TABLE; 
 
Where DrawButton is our class to be declared, and 

TWindow is its base class. The predefined name, 
END_RESPONSE_TABLE, ends the response table 
definition. Statements between the macros 
DEFINE_RESPONSE_TABLE# and 
END_RESPONSE_TABLE are the response table 
entries. In our example there is just one entry. You must 
always place a comma after each response table entry and 
a semicolon after the END_RESPONSE_TABLE 
macro. 
There are two basic kinds of entries: processing user-

defined messages and processing predefined (Windows) 
messages. In our example, we want to process our (user-
defined) message that is generated after our button is  
clicked. The EV_COMMAND macro mentioned above 
takes two arguments, and establishes a connection 
between the first and the second arguments. The first 
argument is the name of an incoming message. The 
second argument is the name of a function which is to be 
used to respond to the incoming message. This function 
belongs to the same class (DrawButton). Finally when we 
click our button, the HandleButtonMessage member 
function will be called. 
3. Let us now look at the HandleButtonMessage response 

function definition. 
 
void DrawButton :: HandleButtonMessage() 

{ MessageBox("was pressed","Button"); } 
 
The MessageBox is a member function of the TWindow 

class that displays a message box on the screen. 
We have looked at how we can handle the simplest user 

defined messages using the command message macro, 
EV_COMMAND. The basic syntax for this macro is: 
 
 EV_COMMAND(CMD, HandlerName) 

 
The macro calls the member function HandlerName when 

the command message CMD is received. The prototype 
for the response function HandlerName is: 
 
 void HandlerName(void); 

 
There are some extra types of command message 

macros. Some of them will be considered later. The 
following section is devoted to processing predefined 
(Windows) messages. 

VII. HANDLING PREDEFINED MESSAGES 

ObjectWindows has a set of predefined macros for all 
Windows messages which are automatically generated in 
various standard (predefined) situations, for instance: 
- if you press keyboard key; 
- if you click a mouse button; 
- if you move the mouse; 
- if you destroy a window; etc. 
Let us start with an example which demonstrates how to 

respond to a left mouse button click, and a right mouse 
button click. The program code will be the following: 
 
#include <owl\applicat.h> 

#include <owl\framewin.h> 

class my_app : public TApplication //** 

{                                  //** 

public:                            //** This is 

 my_app() : TApplication() {}  //** application 

protected:                       //**      class 

 virtual void InitMainWindow(void); //** 

};                                  //** 

 

class my_win : public TWindow     //## 

{                                 //## 

public:                           //## 

 my_win(TWindow* parent = 0); //##   This is 

protected:                        //##  window 

 void EvLButtonDown(UINT,TPoint&);//##   class 

 void EvRButtonDown(UINT,TPoint&);//## 

 DECLARE_RESPONSE_TABLE(my_win);  //## 

};                                //## 

DEFINE_RESPONSE_TABLE1(my_win,TWindow) 

 EV_WM_LBUTTONDOWN, 

 EV_WM_RBUTTONDOWN, 

END_RESPONSE_TABLE; 

void my_win :: EvLButtonDown(UINT,TPoint&) 

{ MessageBox("You pressed the left button"); } 

void my_win :: EvRButtonDown(UINT,TPoint&) 

{ MessageBox("You pressed the right button"); } 

void my_app :: InitMainWindow() 

{ SetMainWindow(new TFrameWindow(0,"New", 

                   new my_win)); } 

int OwlMain(int char**) 

{ return my_app().Run(); } 

 
The possible sequence of various actions during program 

execution could be the following: clicking the left mouse 
button; activating the EV_WM_LBUTTONDOWN entry 
of our response table; calling the message response 
function EvLButtonDown; displaying a message box on the 



REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 11 
 

 

screen. Nearly the same sequence of actions could be 
considered when you press the right mouse button. 
ObjectWindows sets a correspondence between 

incoming messages, response table entries, and member 
functions that respond to the messages. To write the 
correct macro to be used as an entry in the response table, 
preface the Windows message name with EV_. To find 
the response function name, remove the WM_ from the 
Windows message name, and convert the name to 
lowercase with capital letters at word boundaries. You can 
find the names of Windows messages in reference 
manuals. 
The functions EvLButtonDown and EvRButtonDown 

mentioned above, have the following prototypes: 
 
void EvLButtonDown(UINT modKey, TPoint& point); 

void EvRButtonDown(UINT modKey, TPoint& point); 
 
where: 
1. The modKey parameter of each function corresponds 

to the key flags parameter. 
2. The point parameter of each function is an object that 

keeps horizontal and vertical coordinates of your main 
window in which the left mouse button was pressed. You 
can have access to these coordinates as the following: 
point.x, point.y. For example, let us replace the 
EvLButtonDown function code in the previous program by 
the following code: 
 
void my_win :: EvLButtonDown(UINT, 

          TPoint& point) 

{ char str[30]; 

 wsprintf(str,"x = %d, y = %d", 

                    point.x, point.y); 

 MessageBox(str); 

} 

 
In this case, the current mouse coordinates will be 

displayed in your message box. The function wsprintf is 
almost the same as C/C++ function sprintf. 

VIII. HOW TO CLOSE YOUR APPLICATION PROGRAM 

TApplication and all Window classes have, or inherit, a 
CanClose member function. When you intend to close your 
application you select the "Exit" or "Close" item in the 
Windows menu, or press Alt-F4. Whenever you want to 
close an application, the main window's CanClose function 
will be called. You can override (redefine) this function to 
give the user a chance to perform some actions before 
closing (such as saving files for example). Let us consider 
an example. 
 
#include <owl\applicat.h> 

#include <owl\framewin.h> 

class my_app : public TApplication 

{   public: 

 my_app() : TApplication() {} 

    protected: 

 virtual void InitMainWindow(void); }; 

class my_win : public TWindow 

{    public: 

 my_win(TWindow* parent = 0) : 

   TWindow(parent,0,0) {} 

     protected: 

 virtual BOOL CanClose(); }; 

BOOL my_win :: CanClose() 

{ return MessageBox("Do you want to close?", 

                    "?",MB_YESNO) == IDYES;   } 

void my_app :: InitMainWindow() 

{   SetMainWindow(new TFrameWindow(0,"New", 

                             new my_win));   } 

 
int OwlMain(int, char**) 

{ return my_app().Run(); } 
 
If you click the YES button in the message box, then you 

confirm the close operation and your application program 
really will be closed (the overridden CanClose function 
returns TRUE value which allows the application to 
close). If you click the NO button in the message box then 
you want to cancel the close operation. In this case the 
CanClose function returns FALSE value which cancels 
closing the application. 
The CanClose function has the following prototype: 
 
 virtual BOOL CanClose(void); 

 
The function returns TRUE if the associated interface 

element can be closed. For a parent window, this function 
calls the corresponding CanClose member functions of its 
children, and returns FALSE if any of the child CanClose 
functions return FALSE. 

IX. WINDOW OBJECTS 

The high level interface objects are called window 
objects. These objects are dealing with windows and their 
children. They provide all necessary services. There are 
several different types of window objects: 
- frame windows; 
- layout windows; 
- decorated frame windows; 
- Multiple Document Interface (MDI) windows; 
- gadget windows. 
Window objects represent interface elements. Each 

window object and its corresponding interface element 
has the same handle which is stored in the HWindow data 
member of the window object.  
Setting up an interface element includes three basic 

steps: 
- constructing a window object; 
- setting attributes of a window interface element (size of 

window, etc.); 
- creating a corresponding window interface element. 



12REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994
  
 
Step 1. ObjectWindows provides you with a set of 

classes that are only an abstraction. On the other hand, the 
object to be constructed is a tangible entity which exists in 
time and in space. The key part of constructing a window 
object is related to allocation of computer memory for the 
object. After that you can find its data and function 
members in memory, and you can use them. However at 
the outset, some of the object's members have 
undetermined states. For example HWindow is equal to 
NULL meaning that it points to nowhere. 
Step 2. This step is related to setting specific values for 

members of  the window object to be created  that are 
undefined or have default values.  
Step 3. When you have constructed a window object, 

you should tell Windows to build the associated interface 
element. You can do this by calling the Create member 
function that belongs to the object to be constructed. This 
function performs the following actions: 
- builds the corresponding interface element; 
- sets HWindow to the handle of the interface element; 
- sets attributes for the actual state of the interface 

element; 
- calls the object’s SetupWindow member function. 
The main window of your application is automatically 

created by TApplication::InitInstance. You don't need to call 
Create to build the main window. 
Frame windows, that we have already considered 

previously, provide a service for a client window. They 
manage widely-used application elements such as menus 
and tool bars. A client window within a frame can be 
responsible for a single task. Many frame window 
attributes can be set after the object has been constructed. 
For instance you can attach a menu, or set a new icon for 
your application program. 
Decorated frame windows inherit all the functionality 

of frame windows and layout windows . In addition, they 
provide: 
- adding special controls called decorations to the frame 

of the window; 
- automatic adjustment of the children to accommodate 

the placement of decorations. 
Here is the single constructor for TDecoratedFrame: 
 
TDecoratedFrame(TWindow *parent, 

              const  char far *title, 

              TWindow *clientWnd, 

              BOOL trackMenuSelection = FALSE, 

              TModule *module = 0); 

 
There is only one parameter (trackMenuSelection) here 

that has not been considered yet. This parameter lets you 
specify whether menu commands should be tracked 
(TRUE value). When tracking is on, the window tries to 
pass a string to the window's status bar.  
MDI windows support the Multiple Document Interface 

for managing multiple windows or views associated with 
a single application. 

Gadget windows are used to hold a number of gadgets. 
Gadgets can be considered to be small software tools for 
various types of control. They look like icons and you can 
use them in nearly the same way as push buttons.  
Generally speaking the main difference between various 

window objects is determined by sets of member 
functions that belong to the corresponding window class. 
All window classes are derived from TWindow class.  
Let's consider some examples. The first example shows 

how to set attributes. 
 
. . . . . . . . . . . . . . .  

class my_win : public TWindow 

{ . . . . . . . . . . 

protected: 

 TStatic *my_static; 

  . . . . . . . . . . 

}; 

. . . . . . . . . . . . . . . . . . . . . 

my_win::my_win() : TWindow(0,0,0) 

{ . . . . . . . . . . 

 my_static=new Tstatic(this,-1,"text", 

                             200,50,200,15,50); 

 my_static->Attr.Style= 

(my_static->Attr.Style & ~SS_LEFT) | SS_CENTER; 

 . . . . . . . . . . 

} 

. . . . . . . . . . . . . . . . . . . . . 
 
In this example we declare a pointer my_static to the 

OWL class, TStatic, that supports working with static text. 
Then we create an object using the C++ operator, new. 
The expression: 
 
 my_static->Attr.Style & ~SS_LEFT; 

 
deletes SS_LEFT default style (the left-justified text). 

The expression: 
 
 Attr.Style |= SS_CENTER; 

 
adds the new style, SS_CENTER, that sets the text as 

centred. You can find various other attribute values in the 
Borland reference manuals. Consider another example: 
 
 . . . . . . . . . . . . . . . . . . . . . 

void my_app::InitMainWindow(void) 

{ SetMainWindow(new  

           TFrameWindow(0,"text",new my_win))); 

 nCmdShow = SW_SHOWMAXIMIZED; } 

 
Note the nCmdShow data member of the TApplication 

class. You can set this variable as soon as the Run function 
begins, up until the time you call TApplication::InitInstance. It 
denotes that you can set nCmdShow in the InitMainWindow 
function. As a result you can change how your main 
window is displayed. In our case the window will be 
maximised. 



REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 13 
 

 

The last example demonstrates how to attach an 
accelerator table to your application (the accelerators will 
be considered more detailed in the Section XI). 
 
. . . . . . . . . . . . . . . . . . . . . 

void my_app::InitMainWindow(void) 

{ SetMainWindow(new 

            TFrameWindow(0,"text",new my_win))); 

 GetMainWindow()->Attr.AccelTable = 

                                "MY_TABLE"; } 

 
Where the TApplication::GetMainWindow function returns a 

pointer to the application's main window. 

X. SKELETON OF AN OBJECTWINDOWS APPLICATION 
PROGRAM 

Let us try to consider a skeleton for an ObjectWindows 
application program which will be refined step by step 
later. The first version of this skeleton is shown in Figure 
1. There are 6 essential fragments in Figure 1, marked 
with 1,...,6. Let us consider each separate fragment in a 
little more detail. 
 

Including all necessary 
header files

ExamplesFragments 

#include <owl\applicat.h> 
#include <owl\framewin.h> 
#include <owl\button.h> 

Including user file 
containing definitions  
for all necessary ID

#include "my_h.h" 

#define BUTTON_ID 101 

Declaring a descendant  
of the TApplication class.  
Overriding InitMainWindow 
member function 

Defining the response table and 
new or (and) overridden member  
functions except the  
InitMainWindow

class my_app : public TApplication  
{ 
public: 
     my_app() : TApplication() {} 
     void InitMainWindow(); 
.   .   .   .   .   .   .   .   .   .   .   .   . 
};optional

Declaring a descendant of 
your client window class

Defining the response table and 
new or (and) overridden   
member functions

optional

class my_win : public TWindow 
{ 
.   .   .   .   .   .   .   .   .   .   .   .   . 
};

Redefinition of the 
InitMainWindow function 

void my_app :: InitMainWindow() 
{ 
   SetMainWindow(new TFrameWindow(... 
} 

Definition the main   
application function  
named OwlMain 

int OwlMain(int, char**)  
{   return my_app().Run();   }

 1

2 

3 

4 

5 

6 

Fig. 1.  
 
Fragment 1. Each class included into OWL has 

corresponding header file. If you use some classes in 
your application program, you must include all the header 
files for these classes in your application program. 
 
Fragment 2. Most application programs interact with the 

user through various window controls. Each control has a 
unique ID associated with it. If you use a control for 
interaction, the ID (notification message) will be sent by 

this control to Windows, and subsequently to your 
application program (directly or vie a queue). An ID is 
really a predefined constant. Since you want to respond 
to control notification messages, you must define all 
necessary IDs in your program. It is worth-while to collect 
all these definitions in a single user-defined .h file (file 
with extension .h). Fragment 2 includes this file in your 
application program. 
 
Fragment 3. The main task of an object that is derived 

from the TApplication class is to perform some default 
(predefined) actions to set up your main window. In most 
circumstances you need to override the 
TApplication::InitMainWindow function to customise your 
main window (add controls and decorations, change the 
default icon being used when your main window is 
minimised, and so on). In addition you can override some 
other functions that belong to the TApplication class. You 
can also consider the response table for this fragment. 
 
Fragment 4. This fragment is used to declare a class 

which serves your client window. This class could be 
TWindow or its descendant, TDialog or its descendant, etc. 
The declaration of this class usually contains the 
following groups of data and function members: 
1. Overridden version of the constructor. In the 

constructor body you can set some window interface 
element attributes, perform assignments for new data 
members, allocate memory for new data members, 
construct child windows, and so on.  
2. Overridden version of the destructor that is usually 

used to deallocate memory that is allocated in the 
constructor. 
3. New (usually protected) data members. 
4. New or overridden (usually protected) member 

functions. 
5. Overridden CanClose member function asking the user 

for confirmation that the main window should be closed. 
6. Declaration of various message response functions. 
7. Declaration of the response table. 
 
Fragment 5. You override the InitMainWindow function to 

customise your main window. For these purposes you can 
add  some statements in the function body that perform 
the following actions: 
1. Attach a menu to your main window. 
2. Construct a status bar. 
3. Construct a control bar. 
4. Insert the status bar and control bar into the frame 

(into your main window). 
5. Change your main window attributes. 
6. Set accelerators table. 
7. Set a new icon that is used instead of predefined icon 

when the window is minimised. 
 
Fragment 6. You define the OwlMain function instead of 

the main function in usual C/C++ programs. OwlMain has 
two arguments that are the same as the first two 



14REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994
  
 

arguments of the main function in C/C++ programs. You 
can use these arguments to pass the command line 
parameters onto OwlMain. 

XI. HOW TO SOLVE VARIOUS PROGRAMMING TASKS 

There are a number of  basic things you can do with a 
class such as  the following: 
 1. You can derive a new class from an existing 

class. You can refine the new class by extending its 
behaviour beyond that inherited from the base class. Let's 
consider an example: 
 
// This is a place for fragments 1 and 3  
class my_frame_win : public TFrameWindow  

 // the beginning of fragment 4  

{  public: 

my_frame_win() : TFrameWindow(0,"Caption")  {} 

   protected: 

// you can declare new member functions for this 

// class, response table, etc., for example: 

 void EvLButtonDown(UINT, TPoint&); 

 DECLARE_RESPONSE_TABLE(my_frame_win);  }; 

// you can define declared member function  

// and a response table as shown below   

DEFINE_RESPONSE_TABLE1(my_frame_win, 

                          TFrameWindow) 

   EV_WM_LBUTTONDOWN, 

END_RESPONSE_TABLE; 

void my_frame_win ::  

 EvLButtonDown(UINT, TPoint& point) 

{ MessageBox("You pressed the left button");}   

 // the end of fragment 4 

void my_app :: InitMainWindow(void)//fragment 5 

{ SetMainWindow(new my_frame_win); } 

// This is a place for fragment 6 

 
In this example, the TFrameWindow is an OWL class, and 

the my_frame_win is the new user-defined class which is 
derived from TFrameWindow. 
2. You can define an object of a class. Class is an 

abstraction and represents a set of objects that share a 
common structure and common behaviour. On the other 
hand an object is a tangible entity, existing in time and in 
space. Our objects are created in computer memory (in 
space) and we can use them to solve a particular 
programming task (in time). Consider an example. 
Suppose we want to draw a rectangle in our client 
window and then automatically move it on the screen. 
ObjectWindows encapsulates the Windows Graphics 
Device Interface (GDI) which is a very powerful tool for 
working with graphics. OWL TDC class is the root class 
for encapsulating GDI. You can create a TDC object 
directly or you can use derived classes. For instance, the 
TClientDC class provides access to the client area that is 
owned by a window, and has the following constructor: 
 
 TClientDC(HWND wnd); 

 
where wnd is the handle of the owning window. As a 

result we can define an object obj, of the class TClientDC 
as follows: 
 
 TClientDC obj(wnd); 

 
Usually we are defining this object for our window class, 

in which case we can use the pointer this prefixed with an 
asterisk as the parameter for the constructor above. To use 
a class, you must create an instance of it. There are a 
number of ways to do this that are considered below. 
1. You can use a standard declaration with arguments to 

be passed  to the corresponding constructor, for example: 
 
 TClientDC obj(*this); 

 
If a class has a default constructor you can omit 

arguments, for instance: 
 
 TMyApplication my_app; 
 
 2. You can define a pointer to an object, and then 

use the operator new to allocate space for an object, for 
example: 
 
 TDC *dc; 

 . . . . . . . . . . . .  . 

 dc = new TClientDC(*this); 

 
Since the TDC class is the root base class for other GDI 

classes (TClientDC included), we can use a pointer to the 
base class to allocate space for our object which is an 
instance of the TClientDC class. Let's look at the following 
example: 
 
// Fragment 1 

#define MY_ICON 100 // Fragment 2: the 

              // definition of ID for our icon 

// Fragment 3 

class my_win : public Twindow // The 

                     // beginning of fragment 4 

{  public: 

 my_win() : TWindow(0,0,0)  {} 

   protected: 

 TDC *dc;  // dc is a pointer to the TDC 

                 // object 

 int x,y; 

 void SetupWindow(); 

 void EvLButtonDown(UINT, TPoint&); 

 void EvTimer(UINT timerId);  // WM_TIMER 

                      // is the Windows message 

DECLARE_RESPONSE_TABLE(my_win); }; 

 

DEFINE_RESPONSE_TABLE1(my_win, TWindow) 

 EV_WM_LBUTTONDOWN, 

 EV_WM_TIMER, 

END_RESPONSE_TABLE; 



REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 15 
 

 

 

void my_win :: EvLButtonDown(UINT, 

                            TPoint& point) 

{  x = point.x; y = point.y; 

   dc = new TClientDC(*this); // Allocating 

                      // memory for the object 

   dc->Rectangle(x,y,x+100,y+100); 

   delete dc;    } 

 
void my_win::SetupWindow() 

{  TWindow::SetupWindow(); 

   SetTimer(1,1);  } // As fast as possible 

void my_win::EvTimer(UINT) 

{ dc = new TClientDC(*this); 

 dc->Rectangle(x++,y++,x+100,y+100); 

 if(x>500) x=y=0; if (y>800) x=y=0; 

 delete dc; } // The end of fragment 4 

void my_app :: InitMainWindow(void) // The 

                    // beginning of fragment 5 

{ SetMainWindow(new 

          TFrameWindow(0,"my_win",new my_win)); 

 GetMainWindow()->SetIcon(this,MY_ICON);  

}    // The end of fragment 5 

// Fragment 6 

 
In this example we derived the my_win class from the 

OWL class, TWindow. When you derive a new class, you 
can do three things: 
1. Add new data members. In our example we added the 

dc pointer and two integers x and y. 
2. Add new member functions. In our example we added 

two new member functions: EvLButtonDown and EvTimer. 
3. Override inherited member functions. In our example 

we overrode the SetupWindow inherited member function. 
We mentioned earlier (see the Section IV) that 

SetupWindow can be used to do some initialisation after the 
interface element has been created. In many cases you 
must first call the base class version of this function to 
make sure that the default process will be performed 
correctly. You can do this as follows: 
 
 TWindow::SetupWindow(); 

 
We override the SetupWindow member function to set up 

the timer. As a result the response table entry 
EV_WM_TIMER will be periodically activated (as fast 
as possible). Pressing the left mouse button forces a 
rectangle to be drawn in the window's client area. Then 
this rectangle will be periodically copied (see EvTimer 
function body). This will create the illusion that the 
rectangle is moving on the screen. 
Now let's consider how to solve some of widely-used 

programming tasks. We will look only at the basic ideas 
that can be used in various ObjectWindows applications. 
The restricted volume of this paper does not allow these 
questions to be considered in more detail. 

 1. How to attach an icon to your program  

Attaching an icon to a program was demonstrated in the 
previous example. We used the following statement: 
 
 GetMainWindow()->SetIcon(this,MY_ICON); 

 
where TFrameWindow::SetIcon function sets the icon in the 

module passed as the first parameter, to the icon passed as 
a resource in the second parameter. The second parameter 
is the icon's ID that was defined in fragment 2 and is used 
to associate the icon resource in a *.rc script file with the 
application. This file will look something like the 
following: 
 
 #define MY_ICON  100 

 MY_ICON  ICON  "i1.ico" 
 
where i1.ico is a file containing the icon's graphical 

image (bitmap). This file can be created using the 
Resource Workshop software (see below). 
 Suppose we want to move an icon on the screen 

In this case we can consider the following EvTimer 
function: 
 
void my_win::EvTimer(UINT) 

{  dc = new TClientDC(*this); 

   ic = new  

      TIcon(GetModule()->LoadIcon("NEW_ICON")); 

   dc->DrawIcon(x++,y++,*ic); 

   if(x>500) x=y=0; if (y>800) x=y=0; 

   delete ic; 

   delete dc;   } 

 
 
We used the OWL TIcon class to construct our icon from 

an existing icon handle. This handle is returned by 
TModule::LoadIcon function. The pointer to an object of the 
TIcon class, ic, is declared as a protected data member of 
the my_win class: 
 
 TIcon *ic; 

 
You must delete fragment 2 from the above program. In 

this case the resource script (*.rc) file will look like the 
following: 
 
  NEW_ICON  ICON  "i1.ico"  // just one string 

 2. Resource Workshop overview  

Resources are special components of Windows 
applications. Using resources you/ can change the text of 
messages, menus, icons, the cursor's shape and so on. The 
Resource Workshop enables you to create resources 
using visual programming techniques. As a result, you can 
draw the resources you need using the mouse and visual 
components displayed on the screen. The Resource 



16REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994
  
 

Workshop then creates the resource file, for example the 
script resource *.rc file. There are the following types of 
resources: 
- accelerators, that are used as hot keys; 
- bit maps, defining screen pictures; 
- cursors, defining the shape of the cursor; 
- dialog boxes, that are special windows containing 

controls; 
- fonts, which can be created to support different 

alphabets; 
- icons (small graphical images); 
- menus, that are used to select an action from a set of 

predefined actions (items); 
- string tables, that keep strings displayed, for example, 

as online help; 
- user-defined resources. 

 3. How to use dialog boxes  

Dialog boxes are windows that contain controls. We can 
consider a dialog box either as an entire window or as a 
child window. The first case is demonstrated in the 
following example. 
 
// Fragment 1 

#define VBX_CALL 100  // Fragment 2 

// Fragment 3 

class my_dlg : public Tdialog  // The 

                    // beginning of fragment 4 

{  public: 

   my_dlg(TWindow* parent, TResID ResId):  

  TDialog(parent, ResId), TWindow(parent) {} 

 // You must call all base class constructors 

 //  having non default arguments 

   protected:     

 void PressOK(); // The response function 

 DECLARE_RESPONSE_TABLE(my_dlg);   }; 

 

DEFINE_RESPONSE_TABLE1(my_dlg,TDialog) 

 EV_COMMAND(IDOK,PressOK), 

END_RESPONSE_TABLE; 

 

void my_dlg::PressOK() 

{  Parent -> SendMessage(WM_CLOSE); }

 // The end of fragment 4 

 

void my_app::InitMainWindow()  //Fragment 5 

{ SetMainWindow(new TFrameWindow(0, 

           "Example", 

 new my_dlg(0,VBX_CALL),TRUE)); } 

// Fragment 6 

 
The TFrameWindow class constructor sets up the my_dlg 

object as our client window (see Fragment 5). The 
my_dlg class declares a response table which is defined 
below. The table responds to IDOK notification message, 
and calls the Press message response function when you 
click the OK button in the dialog box. You can create the 

dialog box using the Resource Workshop. The function 
Press sends the message WM_CLOSE to the parent 
window. As a result the application will be closed. The 
following example demonstrates using a dialog box as a 
child window. 
 
// Fragment 1  

#define VBX_CALL 100 // Fragment 2 

// Fragment 3 

// The beginning of fragment 4 

class my_dlg : public Tdialog // Declaring the 

  // child window for user-defined my_win class 

{  public:  

 my_dlg(TWindow* parent, TResID ResId) : 

     TDialog(parent, ResId), 

          TWindow(parent) {} 

protected: 

 void EvRButtonDown(UINT, TPoint&); 

 DECLARE_RESPONSE_TABLE(my_dlg); 

}; 

// This table is used to respond to notification 

// messages for my_dlg object 

DEFINE_RESPONSE_TABLE1(my_dlg,TDialog) 

 EV_WM_RBUTTONDOWN, 

END_RESPONSE_TABLE; 

void my_dlg::EvRButtonDown(UINT, TPoint&) 

{    MessageBox("my_dlg"); } 

 

class my_win : public TWindow 

{ public: 

// Creating the dialog box as a child window 

// dlg is a pointer to my_dlg object 

 my_win() : TWindow(0,0,0)  

        {   dlg = new my_dlg(this,VBX_CALL); } 

protected: 

 my_dlg *dlg;   

 void EvRButtonDown(UINT, TPoint&); 

 DECLARE_RESPONSE_TABLE(my_win); 

}; 

// This table is used to respond to notification 

// messages for my_win object 

DEFINE_RESPONSE_TABLE1(my_win,TWindow)  

 EV_WM_RBUTTONDOWN,    

END_RESPONSE_TABLE;     

void my_win::EvRButtonDown(UINT, TPoint&) 

{ // Creation and execution of a dialog 

  // box interface element 

 dlg->Execute(); }  

// The end of fragment 4 

void my_app::InitMainWindow()  // Fragment 5 

{ SetMainWindow(new TFrameWindow(0, 

   "Example",new my_win)); }  

// Fragment 6 

 
After your dialog box has been created, you can use it to 

display various kinds of information and to input data. 



REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 17 
 

 

Suppose you want to change the shape of  the cursor for 
your dialog box. In this case you should add the following 
statement in your my_dlg class constructor: 
 
 {    SetCursor(GetModule(),C_ID); } 

 
where C_ID is an ID for resource defining the new 

shape. You can also use the GetApplication member 
function instead of GetModule. Both of them belong to the 
TWindow class. You can use almost the same technique to 
create customised cursors for different interface elements. 
Windows and ObjectWindows also support predefined 

dialog boxes which provide a user interface for some 
common tasks, such as inputting data, and opening files, 
etc. These dialog boxes are called common dialog boxes. 
 

4. How to attach a menu to you program   

We do this in two steps. In the first step we create a 
menu using the Resource Workshop. In the second step 
we call the TFrameWindow::AssignMenu function in the 
InitMainWindow function body (fragment 5). Let's consider 
an example: 
 
// Fragments 1 and 2 

class my_dlg : public Tdialog // The beginning 

                              // of fragment 4 

{  public: 

  my_dlg(TWindow* parent, TResID ResId): 

  TDialog(parent, ResId), 

         TWindow(parent) {} 

};  // The end of fragment 4 

class my_app : public TApplication // The 

   // beginning of fragment 3 

{ public: 

  my_app() : TApplication() {} 

  protected: 

  void InitMainWindow(); 

  void call_dlg(); 

  DECLARE_RESPONSE_TABLE(my_app); }; 

 

DEFINE_RESPONSE_TABLE(my_app,TApplication) 

  EV_COMMAND(VBX, call_dlg), 

END_RESPONSE_TABLE; 

void my_app::call_dlg() 

{ my_dlg(GetMainWindow(),VBX_CALL).Execute(); }

   // The end of fragment 3 

void my_app::InitMainWindow()   // 

The beginning of fragment 5 

{ SetMainWindow(new TFrameWindow(0, "Example")); 

  GetMainWindow()->AssignMenu("COMMANDS");} 

      // The end of fragment 5 

// Fragment 6 

 
The AssignMenu function sets the value of Attr.Menu to 

the supplied parameter which is the resource ID for the 
menu to be created. In our example, the menu is used to 

create and execute a dialog box interface element when 
you select the menu item associated with the VBX_CALL 
ID. The other item of the menu could be EXIT for 
instance. 

5. How to decorate your window 

 If you want to decorate your window you should use the 
TDecoratedFrame class, gadget windows (with gadgets) 
and their member functions. Consider an example: 
 
// Fragment 1, 2, 3 and 4 

void my_app::InitMainWindow()  // The beginning 

                               // of fragment 5 

{  // Construct the decorated frame window 

 TDecoratedFrame* frame = new TDecoratedFrame(0, 

                    "title", new my_win, TRUE); 

  // Construct a status bar 

  
  TStatusBar *sb = new TStatusBar(frame, 

       TGadget::Recessed); 

  // Construct a control bar 

  TControlBar *cb = new TControlBar(frame); 

  cb->Insert(*new TButtonGadget(CM_MINSK, 

                               CM_MINSK); 

  // Insert the status bar and control bar 

  // into the frame 

  frame->Insert(*sb, TDecoratedFrame::Bottom); 

  frame->Insert(*cb, TDecoratedFrame::Top); 

  // Set the main window and its menu 

  SetMainWindow(frame);  }   // The end of 

                             // fragment 5 

// Fragment 6 

 

The constructor for the TDecoratedFrame class was 
considered in the Section IX.  
The TStatusBar class is an indirect descendant of the 

TGadgetWindow class. Status bars provide a few display 
options, and let you include multiple text strings which 
can be used, as online help, for example. These string 
resources can be created using the Resource Workshop. 
The following constructor: 
 
 TStatusBar *sb =  

 new TStatusBar(frame, TGadget::Recessed); 

 
constructs the status bar for the parent window, 

accessed through the pointer frame. The value of 
TGadget::Recessed sets the border style. 
The TControlBar class is an immediate descendant of the 

TGadgetWindow class. Control bars provide access for 
different button gadgets, which can be used, for example, 
to duplicate actions activated vie menu items. Each 
particular button gadget looks like a small icon that can 
be used in almost the same manner as a normal button. 
Gadgets can be created using the Resource Workshop. 
The following constructor: 
 



18REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994
  
 
 TControlBar *cb = new TControlBar(frame); 

 
constructs the control bar for the parent window 

accessed through the pointer, frame. 
After you construct the status bar and the control bar, 

you must insert them in your window. For these purposes 
you can use the corresponding Insert member functions. 
The TGadgetWindow::Insert function inserts a gadget before 
or after a sibling gadget. In our case this function takes 
just one parameter which is an object of the TButtonGadget 
class, created by the C++ operator new. The TButtonGadget 
class constructor has two arguments. The first argument is 
an ID of a bitmap for the gadget created by the Resource 
Workshop. The second argument is the gadget's ID. The 
Insert function inserts the gadget after a sibling by default 
(the second argument of the Insert function can be 
assigned to either After or Before values). The 
TDecoratedFrame::Insert function inserts decorations (the 
status bar and the control bar in our case) above, below, to 
the left or to the right of the client window. In the 
program above, we inserted the status bar at the bottom 
(below), and the control bar at the top (above). 

6. How to use VBX controls 

 Visual Basic (VBX) controls are supported through 
Windows API functions, and OWL classes. When you 
use the Resource Workshop you must first install VBX 
control libraries that are contained in either *.VBX or 
*.DLL files (use, for example, the menu option Install 
control libraries in the Resource Workshop File pop-up 
menu). Let's consider the following example: 
 
// Fragment 1 

#include <owl\vbxctl.h>  // Fragment 1 

#include "vbxctlx.h"    // Fragment 2 

  // The beginning of fragment 4 

class my_dlg : public Tdialog, 

           public TVbxEventHandler 

{  public: 

  my_dlg(TWindow* parent, TResID ResId): 

  TDialog(parent, ResId), 

              TWindow(parent) {} 

  protected: 

  void EvMouseMove(VBXEVENT far* event); 

  void EvClick(VBXEVENT far* event); 

  DECLARE_RESPONSE_TABLE(my_dlg); 

}; 

 

DEFINE_RESPONSE_TABLE2(my_dlg, Tdialog, 

                             TVbxEventHandler) 

  EV_VBXEVENTNAME(IDC_BIPICT1,"MouseMove", 

                             EvMouseMove), 

  EV_VBXEVENTNAME(IDC_BIPICT2,"Click",EvClick), 

END_RESPONSE_TABLE; 

void my_dlg:: 

           EvMouseMove(VBXEVENT far * /*event*/) 

{  MessageBeep(0); } 

 

void my_dlg::EvClick(VBXEVENT far * event) 

{ for(int i=0; i<100; i++) 

 MessageBeep(0); }  

 // The end of fragment 4 

 

class my_app : public TApplication // The 

                     // beginning of fragment 3 

{ public: 

  my_app() : TApplication() {} 

  protected: 

  void InitMainWindow(); 

  void call_dlg(); 

  DECLARE_RESPONSE_TABLE(my_app); }; 

 

DEFINE_RESPONSE_TABLE(my_app,TApplication) 

  EV_COMMAND(VBX, call_dlg), 

END_RESPONSE_TABLE; 

 
void my_app::call_dlg() 

{  my_dlg(GetMainWindow(),VBX_CALL).Execute(); } 

 // The end of fragment 3 

void my_app::InitMainWindow() // Fragment 5 

{  SetMainWindow(new TFrameWindow(0,"Example")); 

   GetMainWindow()->AssignMenu("COMMANDS"); } 

 

int OwlMain(int, char**) // The beginning of 

                             // fragment 6 

{  TBIVbxLibrary vbxLib; // loading and 

                 //  initialisation the library 

 return my_app().Run(); } // The end 

                               // of fragment 6 

 
If you want to handle events from a VBX control, you 

should derive your class from the TVbxEventHandler OWL 
class. The TVbxEventHandler needs to be mixed in with 
your windows class because it receives events from the 
VBX control which we want to intercept in our windows 
class. In our example we have declared our my_dlg class 
as follows: 
 
 class my_dlg : public TDialog,  

   public TVbxEventHandler 

 
Since our class my_dlg has two parents, we have defined 

below the DEFINE_RESPONSE_TABLE2 macro (see 
also the Section VI). The macro 
EV_VBXEVENTNAME maps VBX events to handler 
functions. Let's consider an example: 
 
EV_VBXEVENTNAME(IDC_BIPICT2,"Click",EvClick), 

 
where the IDC_BIPICT2 is the event ID, the "Click" is 

the event name (a predefined VBX event argument) and 
the EvClick is the response function. There are many 
predefined VBX event arguments such as "Click", 
"DblClick", "GotFocus", "KeyDown", "KeyPress", 
"KeyUp", "LostFocus", etc., that can be used in your 



REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 19 
 

 

application programs. The MessageBeep is Windows API 
function which we call when we want to produce sound. 
You can define the VBX event ID as follows: 
 
 #define IDC_BIPICT1     101 

 #define IDC_BIPICT2     102 

 
Suppose you have created two VBX controls (pictures) 

in your dialog box, using the Resource Workshop. Then 
when you create and show the dialog box interface 
element, you will see these pictures. If you move the 
cursor along the first VBX picture, you will hear sounds 
generated. If you click the second picture you will hear 
the long sound. 

7 Transferring control data  

Windows supports a data transfere between windows 
(dialog boxes), and a buffer which is usually a data 
member of the parent window. The buffer is composed of 
data fields for controls that are the check box, combo box, 
edit box, list box, radio button and scroll bar. It can be 
declared as follows: 
 
 struct my_buf { 

  char fromEditBox[50]; 

  UINT RadioButton; } 

 
The basic rules for the buffer are: 
- you should include only fields for controls whose data 

will be really transferred; 
- declare fields in the same order that you define the 

controls in the corresponding constructor; 
- if the transfer mechanism is enabled (use EnableTransfer 

and DisableTransfer member functions to enable and to 
disable this mechanism), the corresponding data is 
automatically transferred either when a window is created, 
or when a dialog box is created or executed. 
You can define the transfer buffer as a public data 

member of your parent window class as follows: 
 
 my_buf transf_buf; 

 
If the transfer buffer was declared in the my_win 

window class, you should include the following statement 
in the corresponding constructor: 
 
 TransferBuffer = 

 (void far*)&(((my_win *)Parent) -> transf_buf); 
 
This statement assigns the address of the data buffer 

(transf_buf) to the predefined TransferBuffer pointer. It 
establishes the connection between the controls of the 
window (dialog box) and the buffer. 

8. How to use MDI  

The MDI makes it possible to open a number of child 
windows for different tasks, such as managing a database, 
or editing text. The MDI has the following components: 
- the visible MDI frame window, which is an instance of 

the TMDIFrame class or its descendants; 
- the invisible MDI client window, which is an instance 

of the TMDIClient class; 
- the visible MDI child window, which can be 

dynamically created and removed. The child windows are 
instances of TMDIChild class or its descendant. 
The sample structure of a program which involves the 

MDI mechanism is the following: 
 
// Fragment 1, 2 and 3 

class my_child : public TMDIChild // The 

   // beginning of fragment 4 

{  public: 

 my_child(TMDIClient& parent); 

. . . . . . . . . . . . . . . . . . . }; 

 
my_child::my_child(TMDIClient& parent): 

     TMDIChild(parent),TFrameWindow(&parent), 

 TWindow(&parent) 

{ . . . . . . . . . . . . . } 

class my_client : public TMDIClient 

{   public: 

 my_client() : TMDIClient() {} 

    protected: 

 virtual TMDIChild* InitChild(); }; 

TMDIChild* my_client::InitChild(void) 

{  TMDIChild* child; 

 . . . . . . . . . . . . . . . . 

 child = new my_child(*this); 

 child -> SetIcon(GetModule(),ICON_ID); 

 return child;    }

 // The end of fragment 4 

void my_app :: InitMainWindow(void) // The 

                     // beginning of fragment 5 

{ MainWindow = new TMDIFrame("MDI",  

  TResID(IDM_COMMANDS), 

  *new my_client);  }

   // The end of fragment 5 

// Fragment 6 

 
We have used the following TMDIFrame class constructor: 
 
 TMDIFrame(const char far *title, 

   TresID menuResId, 

   TMDIClient &clientWnd = 

                               *new TMDIClient, 

   TModule* module = 0); 

 
It constructs an MDI frame window using the caption 

(title) and resource ID (menuResId). The third parameter 
specifies the client window. 



20REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994
  
 

9. How to create Windows help 

Using Microsoft Windows you can create a customised 
online help system for your application program. Use the 
following basic steps for building a simple help file: 
- prepare the topics for your help file and save them as 

Rich Text Format (RTF) files. You can use any available 
word processor that supports RTF format for this 
purpose, for example Word for Windows; 
- prepare a contents topic and save it as RTF file; 
- prepare a help project (*.HPJ ) file and save it as a text 

file; 
- compile the topics into a help resource (*.HLP) file. 
You can then invoke the corresponding help topics from 

your application using predefined hot keys (to get extra 
information see cwh.hlp file containing 14 topics with 
explanations). 

10. Tasks common to control objects 

ObjectWindows introduces a number of controls, which 
are the following: 
- push buttons (see Section V); 
- check boxes that present two-states controls these are 

like flip-flops that are widely-used in various electronic 
devices; 
- radio buttons which are used to select one of several 

mutually exclusive operations; 
- group boxes that provide a means of grouping radio 

buttons or check boxes together; 
- static text controls supporting static text, which can not 

be easily changed; 
- edit text controls which support working with text that, 

unlike static text, can be readily changed; 
- scroll bar controls that support tools that enable you to 

select a value within a predefined range of values; 
- list box controls which support tools that enable you to 

select from a supplied list of items; 
- combo box controls which support tools that enable 

you to combine an edit box with a list box. 
The base class for controls is TControl, which is derived 

from TWindow. The following tasks are common to all 
control objects: 
1. To construct the control object you can add a control 

object pointer data member to the parent window; 
2. You can call the control object's constructor in its 

parent window’s constructor; 
3. You can change the Attr.Style data member inherited 

from TWindow, to set new control attributes using bitwise 
operations; 
4. You can initialise a control in the SetupWindow member 

function (don't forget to call the base class SetupWindow 
member function first). 
5. You can communicate with control objects by 

defining their ID which is one of the parameters for the 
object's constructor. 

 11. ObjectWindows technique common to 
various tasks 

 The following approaches are common to various 
programming tasks: 
- use GetXXXXX member-functions to obtain something. 

For example, you can use the GetMainWindow function, 
returning a pointer to the application's main window, the 
GetClientWindow function, returning a pointer to the client 
window, etc. As a result you are able to access many 
member-functions that belong to different classes, vie 
pointers returning by GetXXXXX member-functions; 
- use SetXXXXX member-functions to set something. For 

example, you can use SetIcon function to set the icon to 
the specified resource ID; 
- use EvCommand member-functions to simplify the 

handling of WM_COMMAND notification messages 
when you want to select an item from a set of supplied 
items; 
- use EnableXXXXX member-functions to enable 

something. For example, you can use the EnableKBHandler 
to enable keyboard navigation; 
- use DisableXXXXX member-functions  to disable 

something. For example, you can use the DisableTransfer 
function to disable the transfer mechanism; 
- use SendXXXXX member-functions to send something. 

For example, you can use the SendNotification function to 
send a message from a child window to its parent; 
- use LoadXXXXX member-functions to load something 

into memory. For example, you can use the LoadIcon 
function to load an icon resource into memory; 
- the above approach can be also used for another 

common OWL member-function's names; 
- when you override some member-functions, you must 

call the original member-function first. For example, 
you must do this when you redefine the EvLButtonDown 
function for the TEdit class. In this case the code looks 
something like the following: 
 
 void my_edit::EvLButtonDown(UINT modKeys, 

                                  TPoint& point) 

 {   TEdit::EvLButtonDown(modKeys, point); 

   . . . . . . . . . . . . . . . . . . } 

XII CONCLUSIONS 

We have discussed some common approaches to using 
ObjectWindows which provides very powerful tools for 
designing various kinds of application programs based on 
object-oriented technology. Briefly, the consequences 
resulting from what we have discussed are the following: 
1. One of the most powerful tools for managing 

complexity is hierarchical ordering, which is organising 
related concepts into a tree structure with the most general 
concepts at the root. You can consider the 
ObjectWindows class hierarchy as such a tree structure. 
2. When you are designing ObjectWindows applications 

you must focus on the following questions: 



REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 21 
 

 

- which OWL classes you should use in your application 
program and how to use them; 
- how to build a class hierarchy for your application 

program considering both single and multiple inheritance; 
- how to create objects that are instances of given 

classes, and how to refine them for your application 
program; 
- how to decompose your program into several simple 

parts which can be independently developed, and how to 
combine these parts later to produce your final (complex) 
program using parent-child links. 
3. When you want to implement some ideas related to 

Point 2, you must be familiar with ObjectWindows. This 
is not easy because Windows and the OWL are really very 
complex software systems. The article briefly discusses 
some commonly-used approaches and methods which can 
be applied to solving a variety of application programs 
problems in the Windows environment. You can refer to 
[2,3,4,5] to obtain more information related to particular 
section of the article. 

REFERENCES 

[1] Valery Sklyarov From Procedural to Object-Oriented 
     Programming. Electrónica e Telecomunicações, 1995, vol. 1, 
     N 3, pp 217-223. 
[2] Namir Clement Shammas What Every Borland C++ 4   
     Programmer Should Know. SAMS publishing, 1994, 898 p. 
[3] Borland ObjectWindows for C++. Reference Guide, Borland 
     International, Inc., 1993, 602 p. 
[4] Borland ObjectWindows for C++. Programmer's Guide, Borland 
     International, Inc., 1993, 418 p. 
[5] Valery Sklyarov The Revolutionary Guide to Turbo C++. 
     Birmingham, WROX, 1992, 352 p. 
 


