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Teaching signal and image reconstruction algorithms

Paulo J. S. G. Ferreira

Abstract — Signal and image reconstruction are among the
problems most often faced by whoever works in the broad
field of multidimensional signal processing. Thus, an intro-
ductory course on this subject would probably be of interest
to advanced Electrical Engineering students, specially those
interested in telecommunications, information theory, or sig-
nal / image processing in general. This paper is a report of my
experience in teaching one such course, pointing out some of
the difficulties that arose, and discussing the effectiveness of
tools such as Matlab or Octave. Some the ideas that are usu-
ally explored by the students as part of their assignments are
also detailed.

I. INTRODUCTION

Signal and image reconstruction are among the problems
most often faced by anyone working in the broad field of
multidimensional signal processing. A relatively large frac-
tion of the signal processing literature is devoted to prob-
lemns which fall in the scope of multidimensional signal re-
construction, and which includes sampling theory, interpo-
lation, extrapolation, signal and image conditioning, inter-
active image repair, deconvolution and other inverse prob-
lems, the tomographic reconstruction problem, filter de-
sign, and much more.

For this reason, an introductory course focusing on mul-
tidimensional signal reconstruction is likely to be useful
to advanced Electrical Engineering students, specially to
those interested in telecommunications, information theory,
or signal / image processing in general. In this paper I
report on my experience in teaching one course in signal
and image reconstruction to final year undergraduates and
M.Sc. students at the Electronics and Telecommunications
Department of the University of Aveiro.

I discuss some of the difficulties that I have met, and the
role played by tools such as Matlab [1] or Octave [2]. Talso
outline some of the problems that the students are given to
solve. These play a fundamental role in the learning pro-
cess; the lectures devote as much attention to the practi-
cal implementation details as to the main theoretical issues,
such as convergence and error analysis.

II. OUTLINE OF THE COURSE

The course has been offered to final year undergraduates
and M.Sc. students at the Electronics and Telecommunica-
tions Department of the University of Aveiro for the past
three years. It is assumed that the students have a back-
ground in Fourier analysis and digital signal processing in
general.

The course aims at preparing the students to deal with sit-
uations in which there is incomplete knowledge regarding a

desired signal or image, coupled with some a priori knowl-
edge (for example, the signal might be bounded in ampli-
tude, or in energy, or perhaps band-limited, or duratjon-
limited). The typical task is to estimate the signal, using
whatever knowledge is available. However, it soon be-
comes clear that there are many other problems which can
be solved using techniques similar to those studied. during
the course.

The course starts with a few mathematical preliminaries
that are useful to handle signal and image reconstruction
tasks. These preliminary concepts include an overview of
some of the most elementary concepts of functional anal-
ysis, presented using a simple and suggestive geometrical
language, whenever possible. For most of the topics the ex-
position is restricted to Hilbert spaces. Attention is drawn
to the meaning of the concepts in finite-dimensional spaces,
and their interpretation in the context of matrix theory.

Following this initial study the concepts of contractive,
non-expansive and strictly non-expansive operators, and
some well-known fixed-point theorems (the ones due to Ba-
nach, Brouwer and Schauder), are introduced. Although the
course primary aim is not mathematical rigor, the students
are given access to rigorous proofs and reviews of these the-
orems [3], [4]. The proofs of Brouwer’s and Schauder’s
theorems, which are somewhat lengthy, are not presented
in the classes.

The meaning of the theorems in finite-dimensional spaces
is examined in the context of matrix theory. The role of ma-
trices with spectral radius less than unity is outlined, and a
few well-known iterative methods for solving linear equa-
tions are mentioned. This includes the method of Jacobi,
the Gauss-Seidel iteration, the JOR and SOR methods, con-
jugate gradients, and O(n?) and O(nlogn) specific meth-
ods for Toeplitz matrices.

The next step brings the student into contact with recon-
struction problems. Instead of probing deeply into a given
topic, I try to overview a reasonably large class of recon-
struction problems. In this way, hopefully, the course may
appeal to as large an audience as possible. The course
includes computer simulations and problems, and the stu-
dents are free to choose from the set of possible tasks those
that they find more interesting.

The theory of constrained iterative restoration, based on
the approach described in [5], is mentioned. At this stage
I discuss applications to deconvolution and the Landau—
Miranker theory, which concerns the recovery of com-
panded band-limited signals. The wide-band FM demod-
ulation problem is also addressed, as is the (mathematically
similar) nonuniform sampling problem [6], [7].

The band-limited interpolation and extrapolation problems
are among the topics to which more time is devoted. The
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connection between the constrained iterative restoration ap-
proach and the Papoulis—Gerchberg [8], [9] algorithm is es-
tablished as a first step. Modifications of the basic algo-
rithm are addressed as the next step (for example, a nonlin-
ear modification which requires thresholding of the spec-
trum [10]).

Careful examination of the Papoulis-Gerchberg algorithm
leads to Youla’s alternating projection method, whose in-
teresting geometrical interpretation {11] is discussed. The
method of projections onto convex sets (POCS), which
counts so many applications in image processing [12], [13],
is a natural follow-up. For all of these topics I strongly em-
phasize geometrical principles.

A number of additional topics may optionally be discussed
(for example, the composite mapping approach [14]). To-
mography and algebraic reconstruction methods in tomog-
raphy are also mentioned, and usually they attract a great
deal of attention. The method of Kaczmarz is described
in this context, stressing its geometrical interpretation (the
method consists of alternating projections onto hyperplanes
defined by each of the equations to be solved, and therefore
fits very well in the framework of alternating projection al-
gorithms).

Finally, the approach described in [15] is presented, un-
derlining its applications to deconvolution problems, and
providing an example of a non-stationary iteration.

The presentation of these topics includes, whenever pos-
sible, the discrete finite-dimensional case. This is the
case, for example, with the Papoulis—-Gerchberg algorithm,
which is complemented with some of the results presented
in [16]. The disadvantages of the basic iteration are pointed
out, and two classes of minimum-dimension methods are
proposed to overcome them: the approach described in
[17], which leads to algorithms with minimum dimension
in the time domain, and the one discussed in [18], which
also leads to minimum dimension algorithms, but in the fre-
quency domain. The duality between the two methods [19]
is one of the points that is underlined. Some attention is
given to the stability of the problems using methods similar
to those described in [20].

The problem of detecting the positions of corrupted sam-
ples or pixels in band-limited signals or images is also dis-
cussed. The modification of the basic Papoulis-Gerchberg
iteration suggested in [10] can be used for this purpose, if
the time and frequency domain are interchanged. This is
a good example of a method originally intended to solve a
certain problem, but that can be successfully applied to per-
form a rather different task. A different algorithm, which
reduces the problem to the solution of a set of Toeplitz
equations, is also discussed.

To emphasize the practical interest of these techniques
I discuss the connection between some of the techniques
commonly used in coding theory and signal reconstruc-
tion. This connection goes much deeper than could prob-
ably be expected: it is shown that band-limited signal re-
construction in the complex field is equivalent to certain
error-correcting codes in Galois fields.
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ITI. THE ROLE OF MATLAB OR OCTAVE

Computer simulations and problems are an extremely im.
portant part of the course. They allow the student to teg
the depth of his/her knowledge of the subjects. I try to of.
fer a large choice of computer projects, in order to address
specific interests of the students.

It takes time to master some of the concepts, some of
which demand a certain amount of mathematical sophis-
tication. Moreover, some of the algorithms are not sim.
ple, and implementation using a language like C or Pasca]

might take some time. Displaying and comparing results js

another problem.
To overcome these difficulties I recommend the use of
Matlab or Octave, two computer programs endowed with

powerful but easy-to-use matrix manipulation capabilities, -
coupled with a rather complete graphical interface. I dg -
not force the students to use these tools, or in fact any too]
in particular. Indeed, I insist that they implement the al.
gorithms using languages, compilers or programs of their
own choice. I do recommend that they check Matlab or Oc-
tave, since they may allow them to work more rapidly and

to obtain graphical representations of the results quickly.
Most of the students adopt these tools to implement the al- -
gorithms and display and compare the results. The student
reports usually include a disk with the code used to imple-

ment the algorithms.

Examples of the use of these computer programs as tools
to solve reconstruction problems are given in the appendix

(these examples are usually given to the students as hints).
They address the problem of estimating a subset of the sam-

ples of a low-pass signal = with a total of NV samples, and -
whose discrete Fourier transform (DFT) has only 2M + 1

nonzero harmonics. This means that

1 M
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Nsin(m(i — k)/N)
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Two techniques are used to achieve this task. The first is

the iterative, finite-dimensional Papoulis-Gerchberg algo-

rithm [16], [21]. The second is the noniterative, minimum’
dimension method studied in [17]. The code uses a separate
command Sincp to compute the “periodic sinc” function
Flz) = sin(7r(2'M + l)x/N)’
Nsin(mz/N)
that is, the Dirichlet kernel. The Papoulis-Gerchberg
method requires a filtering and resampling operation in
each iteration, both of which are easily implemented us-
ing Matlab or Octave. The minimum dimension method
consists in solving the equations

u = Su+h,
where u € C" is the vector of unknown samples. The ele-
ments of the n x n matrix S are
sin(m(2M + 1)(u; — ug)/N)

Nsin(m(u; —ug)/N)

S, =
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whereas the elements of the vector h € C* are

B sin(m(2M + 1)@ — ug)/N)
hk_z;% Nsin(n(i — ug)/N)

Here, the sum extends to all known samples. The necessary
matrix and vector manipulations are easily accomplished
using Matlab or Octave.

The appendix also demonstrates the implementation of
the nonlinear iterative method that can be used to estimate
the number of sinusoids, their frequencies, amplitudes and
phases, in a signal of the form

N
fmzz%mmwm.

=1
The same algorithm can be used to detect and correct cor-

rupted samples in oversampled data.

APPENDIX A — OCTAVE CODE

function result = Sincp (x, N, M)

o© of

gincp: sin(pi* (2*M+1)*x/N) / (N*sin (pi*x/N))

o

if (nargin != 3)

error ("Sincp needs 3 arguments\n");
endif
[nr, ncl = size(x);

nels = nr*nc;
x = reshape (x, nels, 1);

result = ({(2*M+1)/N) * ones(nels, 1};

i = find(rem(x, N) != 0);

if (!isempty(i))

result (i} = sin(pi* (2*M+1)*x(i)/N) ./

(N*sin(pi*x (i) /N));

endif

result = reshape(result,nr,nc);

end

d° o

Random low-pass filtered signal x

o

=
|

= 128; % total number of samples
M = 20; % keep 2M+1l nonzero harmonics

x = rand (1, N);

X = fft(x);

X(M+2:N-M) = zeros{l, N-2*M-1});
X = real (LfE£L (X))}

o

Sampling set d

o° o

threshold = 0.5;

d = rand(l, N) > threshold;

2@

I

Papoulis-Gerchberg iteration
Result: vector xpg

@

o°

% recorded signal
% known samples

[

% iterations
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XPG = fft(xpg);
XPG(M+2:N-M) = zeros(l, N-2*M-1);
xpg = real (1fft(XPG));

9° o°

Restore the known samples

°

]

xpg (ks) = y(ks);

Error

o° &P o°

err (i) = norm(xpg - X);
end

plot{1:N, x, 1:N, xpg);
pause;

plot (err);
pause;

P of

Minimum dimension method
Result: vector xmd

of

o

us = find{(d == 0); % unknown samples

a ==
n = length(us);

[

% interpolation matrix S

for i=1:n
S§(i,:) = Sincp(us(i)-us, N, M};
end

o,

% vector h

H = ffr(y):
H(M+2:N-M) = zeros(l, N-2*M-1};
h = real (ifft(H));

o°

find the unknown samples
u = {(eye(n)-S) \ h{us)';
% known + unknown samples

xmd = y;
xmd (us) = u’;

plot(1:N, x, 1:N, xmd);

pause;

%

% Nonlinear iteration (Papoulis & Chamzas}),

% applied to the problem of determining a sparse
% signal "e" with a partially known Fourier

transform "E" (it is assumed that E(m+2:n-m)
is known} .

80 of

¢

©

5 k iterations
for i=1l:k

o of

insert the known samples of E into G

¢

(]

(m+2:n-m) = E{m+2:n-m);

e

inverse Fourier transform G to find g

a° o°

g = iffe(G):

; select the threshold L

E = 0.2 * max(abs(g));

; positions of the incorrect samples
3 = abs(g) > L;
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3 o

¢

end

® Q
It

Q

*

@

zero all g(i} that do not exceed L

@

u;

Fourier transform and repeat

P

= fft(qg);

APPENDIX B — COMPUTER PROJECTS

. Develop a coding strategy for sending critical data
over a transmission channel subject to impulsive noise.
Use the DFT, and try to detect and correct up to 20 er-
rors per data block.

. Design a filter subject to the usual frequency response
requirements, and to constraints (i) in the amplitude of
the time domain impulse response (ii) in the position
of the zeros of the time domain impulse response.

. An oversampled voice signal is sent through the Eth-
ernet, in packets of fixed size. Design an algorithm to
recover the signal without error in the event of a packet
loss, or excessive delay.

. Interpolate, extrapolate or predict the evolution of the
tides.

. A slowly-varying signal is aperture modulated. De-
sign an algorithm to recover the original signal.

. Simulate wide-band FM demodulation.

. Apply Kaczmarz method to real tomographic data,
and display the images obtained. Try convergence ac-
celeration.

. A band-limited signal is clipped. Design an algorithm
to recover the original signal. _.

. A band-limited signal is distorted by a nonlinear func-
tion and then band-limited. Design an algorithm to re-
cover the original signal.

0. A band-pass signal, with a bandwidth of less than

1

one octave, is quantized using a single bit (the bit pre-
serves the zero crossings of the signal only). Design
an algorithm to recover the original signal.

1. Implement deconvolution using the iterative non-
stationary technique [15].

12. Implement deconvolution using the iterative con-

1

straint / distortion approach [5].

3. Determine a signal of known bandwidth, given a
subset of its samples. (use the iterative Papoulis-
Gerchberg iteration),

14. Given a subset of the samples of a signal that is the

superposition of an unknown number of sinusoids, of
unknown frequencies, initial phases, and amplitudes,
determine the signal.

15. Determine an image of known bandwidth, given a

subset of its pixels (use the 2D iterative Papoulis-
Gerchberg iteration).

16. Determine a signal of known bandwidth, given a

subset of its samples. (use methods of minimum di-
mension in the time domain [177]).

17. Determine a signal of known bandwidth, given a

1

subset of its samples. (use methods of minimum di-
mension in the frequency domain [18]).
8. Determine an image of known bandwidth, given a
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subset of its pixels (use methods of minimum dimep,.
sion in the time domain [22], [23]).

19. Determine an image of known bandwidth, given 4

20. Study the minimum dimension interpolation meth.

subset of its pixels (use methods of minimum dimer,.
sion in the frequency domain [247).

ods, in the time and frequency domains [19].

21. Study the practical consequences of the ill-posed na-

ture of some band-limited signal and image interpola-
tion problems [20], [23].

22. Design an algorithm to recover an image from the

modulus of its Fourier transform and 1 bit of the phase,

IV. CONCLUSION

I have summarized an introductory course on signal and
image reconstruction algorithms, which is being offered to
final year undergraduates and M.Sc. students at the Elec-
tronics and Telecommunication Department of the Univer-
sity of Aveiro.

The subject of signal and image reconstruction was born
out of practical problems, its main algorithms are being ap-
plied in many fields, helping to solve a large variety of en-
gineering problems. Therefore, computer projects and as-
signments should play a fundamental role in any course on

this subject. These assignments and problems also help in -

motivating the students, testing their knowledge of the sub-
ject, and addressing their specific interests within the broad
field of signal and image restoration.
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