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Teaching Signal Analysis to Electrical Engineering Students

Paulo J. S. G. Ferreira, Ana M. P. Tomé, Francisco Vaz

Abstract — The techniques of harmonic analysis play a cru-
cial role in Electrical engineering practice today. Any teacher
knows that conveying these techniques is usually far from be-
ing an easy task. As for students, they do not exactly regard
the subject as the simplest part of their curricula. One of the
difficulties faced by the teacher concerns the number of con-
cepts and tools that need to be taught. They include classical
Fourier series, the DFT, the Fourier integral, the Laplace and
s-transforms, and more. A second difficulty is to convey the
role of each of these tools and explain how they are related.
A third obstacle appears when simulations or computer ex-
periments need to be carried, since this often occurs at a time
when the student does not have sophisticated programming
skills. In this paper we report on our experience in teaching
this subject, describe the approach that we have adopted, and
how to overcome some of these difficulties.

1. INTRODUCTION

The techniques of harmonic analysis play such a crucial
role in Electrical and Electronics engineering theory and
practice nowadays that justification of their importance is
hardly necessary. As any teacher knows, conveying these
techniques is usually far from being an easy task. Students
often express views of harmonic analysis that clearly show
that they do not regard the subject as the most straightfor-
ward part of their curricula.

Anyone that teaches harmonic analysis, including its ap-
plications to signal processing and the theory of linear sys-
tems, must face several difficulties.

1. The number of concepts and tools that need to be
taught is high (browse through [1], [2], for example).
2. The exact role of each of the tools and the way in
which they interact is not always easy to describe or
summarize.

3. Simulations and computer experiments may have to
be performed at a time when the student does not have
sophisticated programming skills.

The first difficulty is obvious: the main tools of har-
monic analysis required in engineering include the classi-
cal Fourier series, the discrete Fourier transform (DFT), the
discrete cosine transform (DCT) and other “discrete” trans-
forms, the Fourier integral, the Laplace and z-transforms,
the two-dimensional versions of some of these transforms,
and more.

Such a diversity of tools leads to the second obstacle, that
of conveying the role of each one of them and explaining
how they are related. -

Often, the teaching of these concepts starts at an early stage
in the curricula. This explains the third obstacle: when sim-

TABLE 1
COURSES RELATED TO THE FIELD OF SIGNALS AND SYSTEMS.

Course Year
Applied Mathematics 2nd
Probability and Stochastic Processes  2nd
Systems Theory 3rd
Signal Processing [ 3rd
Control Systems 4th
Signal Processing 11 4th

ulations or computer experiments need to be carried, the
student may not have acquired sophisticated programming
skills yet.

Overcoming these problems is a hard task. The present
work is an attempt to describe the approach that we have
adopted, and how it allows some of these difficulties to be
removed or at least attenuated.

II. THE APPROACH

In this section we summarize the approach adopted to
teach harmonic analysis to second and third year students
of Electronics Engineering, at the Department of Electron-
ics and Telecommunications, University of Aveiro.

The courses in table I are closely related and part of the
broad field of Signals and Systems. In this context, the
role of the course Applied Mathematics is fundamental. Its
primary aim is to present the basic elements of classical
and discrete Fourier analysis, the Laplace and z transforms,
and their applications to the study of continuous-time and
discrete-time linear systems. Two follow-up courses, Sig-
nal Processing I and 11, as well as Systems Theory and Con-
trol Systems, use and complement these fundamental con-
cepts. A course on Probability and Stochastic Processes is
taught in parallel with Applied Mathematics.

Several other courses require a solid background in Fourier
analysis. For example, Modulation Theory, Fundamentals
of Telecommunications, and, to a lesser extent, Electron-
ics. Again, this background is provided mostly in Applied
Mathematics. Not surprising, our chief concern here will
be this particular course. However, t0 keep the discussion
down to a reasonable length, we will only outline the main
ideas, skipping the details, and concentrating on those as-
pects that are unusual or perhaps even original. Although
we owe a great debt to influential and excellent works such
as [ 1-4], the overall structure of the course follows a pattern
that is quite different from that implicit in those works.

The cornerstone of Applied Mathematics is the concept of
eigenfunction of a linear, time invariant system. This 1s the
basic concept upon which the presentation is built.
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The fundamental concepts (signals, systems) are presented
first, of course, and both the continuous-time and the
discrete-time frameworks are discussed. Next, the concept
of a linear time-invariant system is introduced. Most engi-
neering textbooks define linearity in a purely algebraic way,
that is, the system H is called linear if and only if

Hloz + By) = aHz] + SH[y], (1)

for any scalars « and § and signals z and y. This defini-
tion 1s not satisfactory because it completely overlooks the
topological aspects, and allows for very ill behaved linear
systems. To avoid this possibility, aspects such as continu-
ity and closedness are discussed in the course, using very
simple and intuitive terms.

To stress the essential role played by these continuity con-
straints some counterexamples are given. Let z,, be a se-
quence of signals that are fed to the system H, and let ¥,
be the sequence of outputs thus obtained. Intuitively, one
expects that if z,, converges to, say, «, then y,, converges to
H{z]. However, there are systems satisfying (1) for which
yn does not always converge, and there are systems for
which y,, may converge but not for H|[z].

As an example, there is a system satisfying (1) that re-
sponds to any continuous signal with the zero signal, and
therefore to any sinusoidal signal with the zero signal. Nev-
ertheless, its response to a unit step is the unit step itself!
The same is true of any staircase signal.

After this brief digression on the mathematical subtleties
of the definition of linearity, the course proceeds to its cru-
cial point. Using elementary arguments and working out
directly from the definitions, it is shown that the eigen-
functions of linear time-invariant systems are exponential
functions. This is shown for continuous-time systems and
discrete-time systems, and leads to the idea of expressing
signals as linear combinations of exponential functions.

As a consequence, orthonormal sets of exponentials are
built. Links are established with the ideas of linear algebra,
and concepts such as eigenvectors and eigenvalues, with
which the students are already familiar. At this point it
could be discussed, for example, how linear systems de-
fined with respect to finite-dimensional discrete-time sig-
nals arc mathematically described by matrices. This would
introduce the student to the concepts of Toeplitz and circu-
lant matrices.

The task of building orthonormal sets of exponentials leads
at once to the classical Fourier series and to the discrete
Fourier transform (DFT). Starting from these concepts, we
introduce the Fourier integral and the Fourier transform of
a discrete signal with an infinite number of samples (and
point that the latter is mathematically similar to the classical
Fourier series). All of these tools appear not as the result
of abstract definitions but as a natural consequence of the
steps previously taken, and therefore provide an answer to
the often asked question — why Fourier analysis?

The construction of orthonormal sets of exponentials in
[0, N — 1] (discrete-time case) or in [0, 1] (continuous-time
case) is easy. The exponentials e* or e®?, with a real,
must be excluded because they are everywhere positive, and
therefore cannot be orthogonal to each other. This leads to
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the consideration of exponentials €% or ¢®® with a com.
plex. The simplest possibility is to let a be purely imag;.
nary.

The inner product for complex discrete-time signals i
[0, N —1]is

N-1
(:v,y) = Z -'EkyZ'
k=0

The signals are orthogonal if the inner product is zero. Thig
immediately shows that two exponential signals

:c(n) — ejan’
y(n) — ejbn’

are orthogonal if a —b is a nonzero multiple of 27 /N Sincg -
the norm of any exponential signal such as these is v/N, it
is necessary to scale them by 1/+/N to achieve orthonor-
mality. This yields, of course, the expansion A

cp = (1: ek § —J Nnk

nO

A similar approach is followed to arrive at the classical
Fourier series expansion, :

1 = Lkt
7(t) = 7= > e TR
k=—00

¢k = {z,ep) \/_/ “JT“dt
whose analysis captured the attention of the best mathe
maticians for over 150 years. The Fourier series of a func
tion of finite energy! converges in the mean-square sense
to the function. The geometric interpretation of this f’lCtl
discussed.

Pointwise convergence and summability are not discussed
However, the subtlety? of the pointwise behavior of Fourie
series is shown through examples.

The next step is to introduce the discrete Fourier transform
for sampled signals with a finite or infinite number of sam:4
ples, and the classical Fourier transform. Once again, th
analysis is limited to finite-energy signals,* and the geo
metric interpretations are stressed.

!'Also called a square-integrable function, or a function belonging to L
2Mean-square convergence is also called strong convercence or conve?
gence in norm, or in energy, or just “convergence in the mean”
xEngineexing books and instructors often forget that a Fourier se
need not converge in the pointwise sense to the function that it represe
The series may diverge even if the function is continuous! On the Othe
hand, there are startling functions, such as Weirstrass everywhere contit
uous but nowhere differentiable function, whose Fourier series convefg
absolutely and uniformly.
“Even in this case there are certain difficulties, due to the limitations ‘5 :
the Riemman integral. These difficulties disappear if the Lebesgue integrdis
is used instead.
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Fig. 3 - Modulus of the Z transform G(z) of f(k) = exp(—kT), with T" = /16, plotted as a function of 7 and w, z = reiw.
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Fig. 4 - Same as figure 3, but now T = 7 leads to serious aliasing.
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Fig. 5 - A cut of the Z transform modulus surface through the unit circle z = el yields the modulus of the Fourier transform. In this case, f(k) =
exp(—kT), T = m. Top: the cut on the modulus surface. Bottom: the modulus of the Fourier transform.
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Fig. 6 - Same as figure 5, but now T = 7. Top: the cut on the modulus surface. Bottom: the modulus of the Fourier transform (the scale of the graphics is

important to appreciate their significance).
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Fig. 7 - Sampling the Z transform on the unit circle yields the DFT. Again,
f(k) = exp(—kT) with sampling period T = 7/16. In this case, the
number of samples was 42. Top: the modulus of the DFT samples. Bot-
tom: the modulus of the Fourier transform.
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Fig. 8 - Same as figure 7, but now f(k) = exp(kT), with T = .

A. Relations among the transforms

After defining and studying the classical and discrete trans-
forms, the connections among them are examined in detail.
For example, the problem of computing approximate values
for the coefficients of a Fourier series can be solved using
the DFT. Samples of the Fourier transform of a continuous-
time signal can also be approximately found using the DFT.
This highlights the DFT as a practical tool, and helps in giv-
ing a connected and coherent view of Fourier analysis.

B. The Laplace transform and the z-transform

The Laplace transform and the z-transform are studied
next. They are introduced as one of the ways to solve
the existence problems of the Fourier integral and of the
Fourier transform of discrete signals. Their applications to
the study of differential and difference equations are ex-
amined. Once more, the connections between these two
transforms and Fourier analysis are studied. These studies
make clear that a linear time-invariant system described by
a differential or difference equation is easily described us-
ing the Laplace and z-transforms and the concept of “trans-
fer function”. The concept of stability is introduced, and
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the conditions for stability in terms of the transfer functjgy ;
are discussed. ff
We proceed to recall that linear systems defined on finite. -
dimensional discrete-time signals are mathematically de.
scribed by matrices, and investigate the specific form that:
the matrices take if the system is time-invariant as we]] -
This leads to circulant matrices and the concept of cirey. ;
lar convolution. Extension of this investigation to discrete
signals with an infinite number of samples leads to the cop.
cept of an infinite Toeplitz matrix, and to the convolutiop, -
sum. Finally, the extension to continuous-time signals leaq
to convolution kernels and the classical convolution equa.:
tions. It is shown how the transforms studied bring these -
equations into much simpler (diagonal) form. ;
At this point, our main objectives have been fulfilted. The
student has a fair background in harmonic analysis and lip- |
ear system theory and is ready to tackle other problems (the
synthesis of linear systems, spectral estimation, multirate -
systems, and so on). This is done in Signal Processing [ 4
and II, as well as in the other courses that have been mex-
tioned. Among the relevant references for these two courses
we quote [5-12]. ,
A number of complementary and important topics (the -
FFT, fastconvolution algorithms, equations with a Toeplitz
matrix) need also be introduced, of course, but the timing -
is usually not too critical. They fit in the curricula at any of
several points. :

III. THE ROLE OF COMPUTER SIMULATIONS

One of the difficulties that we have met when teaching hat- .
monic analysis has to do with the programming skills and .
general background of the students. It is generally accepted :
that the omission of practical work (computer simulations.:
and exercises), even at the earliest stage, has serious dis-
advantages. The students are clearly more motivated when
asked to do challenging practical or simulation work, in-"
stead of just paper work and routine exercises. However,
at the earliest stages in their curricula, they usually have
not acquired sophisticated programming skills yet. Conse- -
quently, the computer works may easily lead to frustration.

By using tools such as Matlab [13] and Octave_[14], the
students may concentrate on the problems, and almost for- :
get about the programming. Prototyping and experimenting
require comparatively little effort. We hope that the stu-
dents may come to regard these tools as aids to self-study.

The potential of these tools is not limited to helping the
students to carry out the usual simulations (such as filtering, -
for example). We encourage them to use the tools at their
disposal to fully appreciate theoretical concepts as well, For
example, the student is asked to use Matlab to visualize
the connection between the Laplace and Fourier transforms ™
(figs. 1 and 2), as well as these and other transforms and
series (figs. 3,5,7). The role played by the sampling period
is also studied (compare with figs. 4,6,8). :

2

IV. CONCLUSION

In this paper we outlined an approach to harmonic analysis
aimed at Electrical Engineering students. The difficulties
met when teaching concepts and tools such as the classical *
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Pourier series, the DFT, the Fourier integral, the Laplace
and z-transforms, are many. We explained how we iry to
overcome some of these problems, and the role played by
computer simulations. Our experience has been positive
and encouraging, and confirms the feeling that practical ex-
perhnentadon and simulation at the earliest stages provide
an invaluable contribution towards a deeper understanding
of harmonic analysis.

APPENDIX — MATLAB CODE

% modulus of the Laplace transform of
o F(t)=exp(-t), that is, H(s)=|1/(s+1)}]

[xs,ys]=meshgrid(~2:0.1:2);
H=abs {1l ./ (xs+j*ys+1));
figure (1)

mesh {(xs,ys, H)

% cut a section through the imaginary axis
% to display the Fourier transform modulus
L=size(H,1);

Hl=zeros (L) ;

L=ceil (L/2)

Hl(:,L)=H(:,L);

figure(2)

subplot (211) ,mesh(xs,ys,H1);

subplot (212) ,plot(ys(:,L) H(: L))

% modulus of the z transform z/(z-a), with

% a = exp(-T)

T=input (*sampling period:"};

r=0:.1:2;

N=40

t=-2*pi:2*pi/N:2*pi;

{rs, ts]=meshgrid(r,t); % (r,theta) grid

z=rs.*exp(j*ts);

H=abs ((T*z) ./ (z-exp(-T)));
figure(3)

mesh(rs, ts,H)

% cut a section through the unit circle
% to display the Fourier transform modulus

figure(4)

[i,9)=size (H)

Hl=zeros(i,J};

Hi{:,11)=H(:,611);

subplot (211) ,mesh(rs, ts,Hl);
subplot (212) ,plot(ts(:,11) ,H(:,11)
% DFT of the sampled signal (42 samples)
n=0:1:41;

X=exp (-T*n)

xf=abs (F£L(x))

asmax (xf) ;

figure(s)

subplot (211),stem(xf./a)
subplot (212) ,plot (H(:,11))
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