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Resumo - Este artigo descreve um sistema robótico móvel 
realmente implementado e que é capaz de construir 
representações instantâneas do espaço livre circundante e de 
as usar para fazer navegação. As representações do espaço 
livre são feitas usando mapas de percepção especialmente 
concebidos para conter e combinar dados de ultra-som. Os 
mapas são construídos usando redes neuronais treinadas 
para minimizar erros de medição devidos a reflexões 
especulares; isso é conseguido tirando partido da 
redundância dos dados sensoriais. O conceito de navegação 
local é desenvolvido como uma nova abordagem da 
navegação completamente independente do ambiente 
contando simplesmente com os dados sensoriais. O 
movimento local é gerado de acordo com simples descrições 
de comportamento: as estratégias de navegação local. O 
sistema implementado garante movimento local no ambiente 
com segurança  e sem qualquer informação a priori ou 
qualquer trajectória pré-definida. Uma arquitectura de 
navegação integra todo um conjunto de módulos, entre os 
quais a navegação local, de forma a permitir tarefas 
completas de navegação. Os resultados obtidos são muito 
prometedores para o desenvolvimento de sistemas 
autónomos. 
 
Abstract - This paper describes a mobile robotics system 

that was implemented and is capable of building 
instantaneous representations of the free space available, and 
use those representations to perform navigation. The free 
space representations are done by means of perception maps 
specially designed to hold and combine ultrasonic data. The 
maps are built by neural networks appropriately trained to 
minimise undesired ranging errors due to specular 
reflections; that is achieved by taking advantage of the 
redundancy of sensorial data. The concept of local 
navigation is developed as a new navigation approach, and is 
based on full independence on the environment, relying 
purely on sensorial perception. Local motion is generated 
according to simple generic behaviour descriptions: the local 
navigation strategies. The system, which was implemented, 
guarantees a safe local motion throughout the environment, 
requiring no a priori information nor any pre-defined path 
to follow. An adequate navigation architecture integrates the 
local navigation module within a framework of other several 
modules for more complete navigation tasks. The results 
obtained are quite promising in pointing the way to an 
autonomous system. 

I. INTRODUCTION  

Traditional navigation of mobile robots does not clearly 
separate local actions from global concerns. Motion 
commands, namely those intended for obstacle avoidance 
always take into account the final target, hence the current 
point in space and the location of the goal [1, 2, 3, 4, 5]. 
In those approaches, the problem of obstacle avoidance is 
dealt with the caution of keeping motion toward the 
navigation goal. This means that the component 
performing the obstacle avoidance must have a permanent 
and continuous knowledge of the robot position in the 
environment. That information may not be always 
available considering that the localisation procedures may 
not provide a correct positioning and the dead-reckoning 
system is not reliable enough to count on (as it often 
occurs). During these conditions motion has to be 
suspended. Furthermore, most traditional methods seek to 
avoid obstacles in robot path; some others try to follow 
walls, such as in [6], or the simpler approach in [7], but no 
significant integrated approach, meeting all conditions, 
has been developed, to our knowledge. 
The idea is then to develop a concept of navigation 

requiring no a priori knowledge of the environment nor 
any pre-defined path, and capable of doing motion simply 
interpreting the free space around the robot. Moreover, 
the module responsible for this type of navigation should 
be easily integrated in a global navigation scheme 
(architecture) in order to allow virtually all types of task 
execution a mobile platform can do. These specifications 
lead to what we call the Local Navigation concept, which 
consists of two main components: the perception and 
representation of the free space around the robot by means 
of perception maps, and a set of navigation strategies, 
which are simple primitive behaviours for reacting to 
free/occupied space. 
In this approach, the obstacle avoidance problem is 

managed as a sort of reflex behaviour. It should be noted 
that the local navigation concept needs no distinctions 
between obstacles and the environment: they all represent 
occupied space. 
This work uses and improves previous results on 

perception map construction with neural networks [8]. 
The ideas left open by then for actual robot navigation are 
now developed and carried out with very good practical 
results as it will be described. 
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The work has been developed as part of a larger project 

on mobile robotics for remote verification of storage areas 
[9]. The perception equipment for this component of the 
project is mainly a belt of 24 ultrasound sensors of the 
Polaroid™ type carried by a Robuter™ platform. 

II. SONAR PERCEPTION MAPS 

In spite of the very well known and sometimes 
misleading problems that characterise the use of 
ultrasound sensors [10, 11], the popularity of sonar as a 
ranging method in robotics is undeniable. Matters of cost 
and ease of use overwhelm the specularity and cross-talk 
risks, as well as the speed limitations of ultrasonic 
perception. As individual sensor reading do not guarantee 
correct measurements, a possible solution is to try to 
combine multiple values of range, preferably from 
different sensors [8]. 
The idea is to conceive perception maps to represent 

accurately, to the maximum extent possible, the free space 
in the surroundings of robot, as opposed to a global map 
of the environment where the robot moves. 
To represent the space around the robot an appropriate 

concept of perception map was used and adapted to this 
application. The main idea is to conceive a special grid 
(Generalised Geometry Grid—GGG) adapted to the 
nature of ultrasonic ranging that will serve as the skeleton 
for the map (fig. 1). It is worth remarking that this type of 
grid is centred on the robot and is suited to constructing 
maps from the robot viewpoint (i.e. “perceived” by the 
on-board sensors), and not a view of the environment 
such as the occupancy grids developed by Moravec and 
Elfes  [12, 13]. 
Reduced versions of entire are of greater utility for 

navigation (fig. 3); when moving forward, there is little 
need of wasting resources trying to map the back of robot. 
If there is the need of moving backwards, map orientation 
can simply be swapped and algorithms of cells and sensor 
selection are adjusted for the new configuration. The 
properties of this type of grid are discussed and explained 
in [8]. 

Robot

1 m
 

Fig. 1 - A generalised geometry grid with robot in centre. The grid is 
adapted to sensors' and data characteristics. 

III. NEURAL NETWORKS AND PERCEPTION MAPS 

The task of building a map (of cell occupancies) after 
raw ultrasound data should take into account, among 
others, data redundancy. For that, a neural network has 
been found to be good method. 
The reasons for choosing a neural network to map raw 

ultrasonic data into cell occupancy include the following: 
• neural networks have proved to give very good 

results in complex mapping problems [14, 15]; 
• neural networks are a flexible tool in the sense that 

distorted data can still be successfully processed; 
• neural networks provide faster outputs, when 

compared to most geometric algorithms.  
The global mapping problem can be stated as a process 

of transforming complex (perhaps also erroneous) 
ultrasonic data (ultrasound measurements) into a 
relatively simple description of the environment 
(occupancy of cells on a special map). The well known 
feed-forward architecture with back-propagation training 
algorithm can be used in the formulation given to the 
problem. Being of the supervised type, this network 
requires training pairs of data: the raw ultrasound data as 
input and cell occupancy as output. 
Early results [8] were obtained with an interpolating 

network (that is, a continuous function approximation 
network), which was capable of  building the entire map 
at each set of 24 data measurements. The limitations 
found by then persisted for a while, namely the difficulty 
in creating correct maps when the robot was closer to the 
obstacles. The solution was to divide the map in several 
sub-maps, each covered by its own (smaller in size) neural 
net [16]. 
The fragmentation of the entire map into smaller sub-

maps implies the need of smaller nets. Furthermore, it was 
also decided to use networks as pattern classifiers rather 
than as interpolating systems. This means that an 
intermediate representation of the output data is used. 
That is, the network will not have to find individual cell 
occupancies, but patterns of occupied and free cells, 
instead. The most convenient fragmentation resulted in 
groups of 6 or 8 cells covered by 3 sensors each. 

 
Pattern 0 

 
Pattern 1 

 
Pattern 23 

Fig. 2 - Examples of occupancy patterns for one type of sub-region on 
the perception map. 

When compared to early networks and maps of 24 
sensors for 60 cells, it is clear how simpler representations 
became. This intermediate representation demands more 
from the neural net (more complex mapping), but on the 
other hand it always ensures coherent results of 
occupancy. In summary, the net is now trained to 
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determine a pattern number (from a set of 25 for 4-layered 
regions and 16 for 3-layered ones). 

Performance and generalisation with pattern 
classifiers improved when compared to the early 
interpolating networks. Results of convergence are given 
at the end. 

IV. LOCAL NAVIGATION 

The local  navigation can be viewed as a two component 
procedure: the evaluation of occupancy perception maps, 
and the generation of local motion commands taking into 
account some behaviour. The behaviours are simple and 
intuitive, for example, move by “following the free space” 
or move by “following the environment on the side (right 
or left)”. The behaviours can be set by a higher level 
module which is aware of eventual directions to take or 
goals to reach. In the absence of such module, the system 
can still subsist in a sort of wandering mode, or endless 
environment following. 

Robot Front

Right

Sector 2 of
front region

Sector 1 of
front region

Safety layer

 
Fig. 3 - Reduced GGG and some details taken into account by the local 

navigation algorithm. 

A. Navigation strategies 

The behaviours mentioned above are the actual kernel of 
the local navigation, and are designated as Strategies of 
Local Navigation. Executing motion under a strategy 
consists in evaluating the amount of free cells and their 
location on the map and compute a new direction and 
speed for the robot. 
The number of strategies is not vast, mainly because 

behaviours are qualitative and their number quite limited. 
In fact, the base actions that can be taken relative to the 
perceived environment are to look for obstacles or to 
avoid them. 
When following the environment on one side, the local 

navigation algorithm tries to maintain distances to 
environment in a way that a given number of layers 
counting from the robot (1 or 2 layers as in the map of 
figure 3, and depending on algorithm status) is kept free. 

As mentioned, the navigation algorithm must take into 
account the free cell distribution, but also some special 
circumstances of navigation such as dead-locks or 
oscillations in the new direction to take. There, simple 
counting of cells is not sufficient. The algorithm must 
possess some short-term memory, or some sort of 
hysteresis: it cannot simply be a simple reflex. Figure 4 
shows a simplified flowchart for the local navigation 
algorithm. 
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Fig. 4 - Main steps of local navigation algorithm. 

V. TOWARDS FULL NAVIGATION 

A higher level module may select combinations or 
sequences of strategies in order to perform some 
navigation task, or simply try to follow a pre-planned path 
until an unexpected obstacle appears in path and switch to 
local navigation mode to avoid or contour it. Further path 
recovery or path re-planning may be needed once the 
obstacle is avoided. For those actions to be possible, the 
architecture will require components of localisation and 
path planning in a global navigation structure. 
Navigation architectures have evolved from “serial 

reasonings between sensors and actuators” to the layered 
arrangements proposed by Brooks in his subsumption 
model [17]. The term reactive also emerged to stress the 
behaviour of system in presence of decisive sensorial 
data: decisions can be taken at the level of the sensing, 
before reaching the actual perception and higher analysis 
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levels. The architecture proposed (fig. 5) acts at the 
sensing level for collision avoidance, at the perception 
level for Local Navigation and at higher levels for more 
complex navigation tasks. 
The architecture contains several loops regulating the 

navigation itself: the first, at the lowest level, can be 
classified as “reflex” and is related to imminent collision 
detection based on continuous analysis upon ultrasound 
data. The second loop can be classified “reactive”, and is 
mainly composed of the local navigation module. Motion 
commands are generated as reactions to free space only 
without any superior reasoning interference. Finally, we 
have the last loop (of highest level) whose functions 
include those of trying to follow a given trajectory or find 
alternatives to one turned impossible by the presence of 
unknown obstacles dealt by the local navigator. 
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Fig. 5 - Complete architecture for navigation including a collision 

prevention watch-dog. 

VI. RESULTS 

The results are quite abundant and in multiple 
components, so follows a summary of the most 
significant. The first results are related to the neural 
network convergence, that is the ability of neural net to 
learn the training pairs and also its generalisation 
capabilities. Neural net classifiers converged well: for 
example, a 3::15::25 neural net (15 hidden units) trained 
with back-propagation with momentum (a=0.05, i=0.2) 
learned 99% of the 910 training pairs with a maximal 
recognition error of 20% on every pattern. Patterns are 
binary, and an error of 20% means that an output of 0.8 is 
considered to be a 1 and an output of 0.2 is considered to 
be a 0. Anyway, the average convergence error often 
dropped below 5%. It must be said that training data was 
pre-filtered in order to eliminate contradictory 
samples/occupancy pairs that sometimes occur with real 
ultrasound measurements, and complemented with 
synthesised (theoretically expected) training pairs for 
those situations impossible or very difficult to obtain in 
practice. 
In the operation phase, neural nets were able to build 

correct maps using ultrasound data never seen before. 
About 95% of the generated maps were correct, even 
when one sensor on a group of 3 failed due to specular 
reflection. 
A second set of results compares the neural net to two 

specially developed alternative methods for calculating 
the perception map: one of them, named Intersection with 
the Polygon of Free Space (IPFS) is purely geometric, and 
the other which is a rule based approach, is very simple 
and fast, but not general enough once it is difficult to 
provide all the rules governing the behaviour of 
ultrasound measurements. The method of the neural net 
performs better than both alternatives in most parameters 
except the speed when compared to the rule based 
method: on a Motorola 68020@20 MHz, the neural net 
system managed to calculate a little less than 2.5 
maps/second, and the rule based method achieved more 
than 10 maps/second. Considering that this is higher than 
the actual ultrasound data rate (which reached at most 
3 Hz for full scans), it can thus be said that map 
construction speed if of secondary importance. 
The third important set of results concerns the algorithm 

that implemented the local navigation strategies. Two 
examples of real robot behaviour can be seen in figure 6. 
The robot was left to follow the free space as it appeared 
on its path. Maximal speeds were limited to 0.3–0.4 m/s 
for safety reasons, though 0.5 m/s was also tried without 
any collisions. More complex paths were also performed. 
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VII. DISCUSSION AND FUTURE WORK 

The differences between some existing wall-following 
systems, as mentioned earlier, and these strategies for 
local navigation lays at more than one level. First, there is 
a coherent representation of the free space resulting from 
the natural combination of multiple sensors as opposed to 
individual sensor ranging; this property has further 
advantages because of the absence of “gaps” on the 
perception map. Secondly, the local navigation module is 
conceived in such a way that it can actuate with or 
without a master selector of strategies. This property 
allows the development of a navigation architecture with 
several levels of decision making. 
Still, the proposed approach, though being different from 

most existing navigating and obstacle avoidance methods, 
shows similar or better performance. 
For what has been said, perception maps keep their 

reliability if the speed of robot does not increase. 
Maps' smallest cell is 12 cm long, allowing therefore 
measurement errors of that magnitude. As the top 
ultrasound data rate (in our set-up) barely reaches 3 Hz, it 
can be said that the robot is allowed to move up to 
3×12=36 cm/s for maps to remain valid. For the angular 
motion, measurements are more sensitive but the angular 
aperture of ultrasonic beams have here a useful role of 
spatial integration; assuming an aperture of 20° [11], the 
robot can rotate at a maximal angular speed of 
3×20=60°/s (π/3 rad/s) without invalidating the perception 
maps. 
Future developments of this work will involve several 

essential issues: i) higher ultrasonic data rate and more 
maps per second, allow larger robot speeds (possibly up 
to 0.8 m/s) ii) The development of the remainder modules 
of the architecture, in particular the path follower, will 
allow very high level robot control, hence complete 
autonomous navigation tasks. ii) Extending the principles 
and methods for another type of robot, a circular platform, 
for example. 

VIII.CONCLUSIONS 

The main conclusions of this work can be summarised as 
follows. 
The perception maps are suited for ultrasonic data 

representation because they follow physically based 
principles and their use for navigation was successful. 
The method of the neural net to map raw ultrasound data 

into occupancy maps gave very good results. Neural nets 
seem to be able of coping with sensorial data failure. 
The Local Navigation concept proved to be adequate 

both for standalone activity (robot wandering in the 
environment), and as part of a global architecture of 
navigation, with the successful role of automatic obstacle 
avoidance and contouring. 
Besides these, it is worth mentioning that the proposed 

modular navigation architecture is a valid approach that 
eases individual module development, and provides 
robustness to the tasks of mobile robot navigation. This 
has a second consequence which is the possibility of 
separating processing from the hardware point of view, 
which was also done in practice [16]. These distributed 
processing capabilities push further the limits of parallel 
module development and the expansion and 
implementation of the architecture itself. 
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Fig. 6 - Real paths executed by the robot under a strategy of following the free space. In both cases the robot started on the same location, but the 

environment was slightly modified by moving a box in the robot’s path. 
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