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Resumo - Este Artigo descreve algumas técnicas aplicadas 
no desenvolvimento de unidades de controlo baseadas em 
dispositivos de lógica programável (PLD). Combinam a 
teoria de maquinas de estados finitas com a programação 
orientada a objectos, permitindo a introdução de novas 
facilidades, tais como: extensibilidade, flexibilidade e 
reutilização, durante o desenvolvimento. Estas técnicas 
recorrem o mais possível a estruturas predefinidas. 
 
Abstract - This paper discusses some approaches to the 

design of control units based on programmable logic devices 
(PLD). They combine finite state machine theory with object 
oriented programming to allow control units to be designed 
with new facilities, such as: extensibility, flexibility and 
reuse. The techniques use predefined frames and basic 
schemes (templates) as far as possible.  

I. INTRODUCTION  

There are many kinds of devices that can be decomposed 
into a datapath (execution unit) and control units. The 
datapath is composed of storage units (such as registers, 
counters, etc.) and combinational (or functional) units. A 
control unit performs a set of instructions by generating 
the appropriate sequence of micro instructions that 
depends on intermediate logical conditions or 
intermediate states of the datapath. Each instruction 
describes what operations must be applied to which 
operands stored in the datapath (or in external memory). 
In real applications, the control unit is often the most 
complex part of the design [1].  
Consider the following problem: for a given set of 

instructions �={�1,...,�k} and constraints 
M={M1,...,Mp}, design the control unit which will 
perform � and satisfy the set of conditions, M. There are 
many methods of logical synthesis that can be applied to 
solve this general problem [1-4]. Suppose it is also 
necessary to broaden our problem. We want to provide 
extensibility, flexibility and reuse. This implies 
accommodating the following additional requirements: 
allow the set of instructions � to be extended after the 

control unit has been designed and produced; 
allow the instructions in the set � to be changed after the 

control unit has been designed and produced; 
enable previously designed components of the control 

unit to be used for future applications without redesigning 
it; 

enable exception handling.  
Let us discuss an approach that can be used to solve the 

extended problem. This approach is based on the results 
of earlier work, especially [3,4], and some of the ideas of 
object-oriented programming.  

II. BASIC STRUCTURE OF THE CONTROL UNIT AND THE  
DESCRIPTION OF ITS BEHAVIOUR 

The main objective of the design process can be 
expressed as follows: it is necessary to transform the 
given description of � to a scheme built from given 
functional elements. In order to describe the behaviour of 
the control unit we will use graph-schemes [3,4] that on 
the one hand are similar to algorithmic state machine 
notation [1] and on the other hand have some distinctions. 
Various kinds of graph-schemes allow you to describe 
sequential [3] and parallel [5] devices, the duration of 
clock pulses for synchronisation [6], the hierarchical 
ordering of operations to be performed [7], etc. They 
provide good separation of the control unit's interface 
from its implementation. Figure 1 shows an example of a 
graph-scheme which describes the behaviour of a control 
unit with 8 inputs and 11 outputs (see figure 2). Each 
node of the graph-scheme contains either a micro 
instruction Yj (a set of micro operations, that are 
executed at the same time assigned to the node) or a 
macro instruction Zi (a set of macro operations). Each 
macro operation can also be described using graph 
scheme notation [4,7].  
In order to transform a given description into a scheme, 

it is necessary to apply some methods of logic synthesis 
that generally lead to the design of an arbitrary scheme. 
The approach considered is based on the use of so-called 
predefined structures containing programmable (or 
reprogrammable) components [3,4] (like PLA, PALs, 
GALs etc.) . For example, figure 3 shows a one-level 
PLD-based predefined structure (here X = X1∪...∪XT - is 
the set of inputs, Y = Y1∪...∪YT - is the set of outputs, 
τ1,...,τR, D1,...,DR - are internal variables). Other 
predefined structures were considered in [3,4].  
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Figure 2. Control unit (external view)
 

This approach has several advantages. All groups of 
future connections are known and the complexity of the 
scheme only depends on the total number of components 
(PLAs, for instance). In practice, the final level of 
complexity can be assessed at the first stage of the design. 
The behaviour of the scheme (functional capabilities) can 
be extended by adding new components without 
reprogramming any of the components used (any addition 
does not change the structure). The behaviour of the 
scheme can be changed by replacing some components 
without reprogramming of the rest. Finally we can 
provide extensibility, flexibility and reuse. 

 PLD1  PLDT    Register

       X1                                      XT

  Y1                                      YT

 D1                  DR

 τ1                  τR

Figure 3. One-level PLD-based frame (PLD - is Programmable Logic
Device like PLA, PAL, GAL, ROM, etc.).  

III. BASIC STEPS OF LOGICAL SYNTHESIS 

The approach being considered is based on the following 
steps of logic synthesis. 
 Step 1. Converting a graph-scheme to special structural 

tables that are used in a similar way to state transition 
diagrams of a finite state machine. The objective is to 
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satisfy the given constraints. Consider, for example, how 
this step is carried out for the structure shown in figure 3 
For given graph-scheme Γ and PLA(n,m,q) (where n, m 
and q are the number of inputs, the number of outputs and 
the number of products PLA respectively) it is necessary 
to build a set of structural tables [3] such that: they 
describe the total behaviour represented by Γ, the number 
of tables is minimal; each table contains information for 
programming a corresponding PLA (it means that either 
all or part of the constraints have been satisfied). Let us 
consider the main ideas of the method which can be used 
to solve this problem [8]. Suppose we want to design a 
Moore machine and it is necessary to distribute input 
variables among PLAs (see figure 3). Consider a graph 
Gl. Vertices of Gl correspond to logical conditions (input 
variables). Edges of Gl express relationships between 
logical conditions. A relationship exists between two 
logical conditions if they must be included at least in one 
common product (in this case the weight of the edge is 
equal to 1). If they are included in more than one product 
the weight of edge is not equal to 1 (usually greater then 
1). In order to solve our task Gl must be cut into a minimal 
number of independent subgraphs such that: a) each 
subgraph satisfies given constraints for the PLA, b) the 
weight of edges to be deleted is minimal. When we delete 
an edge we add new state (or states, dependently on the 
real weight of the edge). Suppose we have a transition 
from am to as and X(am, as) is a product which forces this 
transition. In certain circumstances the approach 
considered enables us to replace this transition with two 
following transitions: X(am, ai) and X(ai, as), where ai is a 
new (intermediate) state (so we split the first transition 
using an intermediate state). Very often it leads to better 
results. Figure 4 demonstrates how to build Gl for an 
arbitrary fragment of a graph-scheme. There are three 
edges with fractional weighting numbers. The value 1/3 
for the numbers has been calculated because in figure 4,a 
the entry point of the rhombus that contains x3 is 
connected with three other rhombi (which contain x2, x6 
and x7 respectively). All formal rules for calculating 
weights were considered in [4,8]. The total weight of the 
edge linked xi with xj in Gl is a sum of values calculated 
from the graph-scheme. In this case it is necessary to 
consider all pairs of rhombus that contain xi (xj) and xj (xi) 
and there is a directed line from output of xi (xj) to input 
of xj (xi).  
The sequence of actions which are being performed is 

the following: 
� marking the given graph scheme with labels 

a1,...,aM. In order to do this we can use known 
methods [3,4]. For instance, if we are designing the 
Moore machine we are marking “Begin” and “End” 
nodes of the graph-scheme with a1 and all other 
rectangular nodes with a2,...,aM. Any two different 
rectangular nodes must be marked with different 
tokens. After marking, the tokens a1,...,aM are 
considered as the states of the Moore machine. Using 

this method for the graph scheme shown in figure 1, 
we have obtained the states a1,...,a19; 

� building the graph Gl. Figure 5,a shows the graph 
Gl to be built for the given graph-scheme (see figure 
1); 
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� splitting transitions if necessary. Consider 

PLA(9,8,25). In this case all constraints have been 
satisfied (R=]log2M[=5, n-R=9-5=4, our graph Gl has 
two non connected subgraphs, each subgraph 
contains not greater than 4 vertices). Therefore it is 
not necessary to delete some edges and to split 
transitions. Suppose we want to use another 
PLA(7,8,25). As a result it is necessary to cut Gl into 
sub graphs containing not greater than two vertices 
each (see figure 5,b). Now we have 4 sub graphs and 
it is necessary to add three extra states (a20,a21,a22) 
which are also shown in figure 1. For future 
explanations and examples we will use PLA(9,8,25) 
and figure 5,a; 
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Figure 5. The graph Gl built for the graph-scheme in figure 1 
in case of using PLA with 9 inputs (a) and with 7 inputs (b). 
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� building structural subtables. The number of 

subtables is equal to T+1, where T is the number of 
subgraphs in Gl (in our example we have 3 
subtables). Each subtable has 7 columns which are 
the following: am - is an initial state, Y - are active 
outputs (for Moore machines the column Y can be 
combined with the column am), K(am) is the code of 
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am, as is the next state, K(as) - is the code of as, 
X(am,as) - is a product of inputs that forces a 
corresponding transition, F(am,as) are active lines 
connected to a register (see figure 3). After the step 1 
only columns am, Y, as, X(am,as) will be filled. 
Tables 1-3 containts three structural subtables W1, 
W2, W0 for our example. Subtables W1 (table 1) and 
W2 (table 2) will be later used for programming PLA1 
and PLA2 respectively. Subtable W0 (table 3) 
includes just unconditional transitions which will 
be later distributed between PLA1 and PLA2.  

Table 1. W1 
am, Y K(am) as K(as) X(am, as) F(am, as) 

a1 
Y0=E 

00000 a1 

a2 

a5 

a6 

00000 

0100- 

10000 

1100- 

x x2 3  
x x2 3  
x x2 3  
x x2 3  

- 

D2 

D1 

D1D2 

a5 (Y1) 10000 a2 

a6 

a7 

0100- 

1100- 

10001 

x2  
x x2 6  
x x2 6  

D2   D5 

D1D2  D5 

D1  D5

a7 (Y2) 10001 a2 

a3 

0100- 

00001 
x7  
x7  

D2  D5 

D5

a8 (Y3) 01100 a9 

a10 

a11 

00010 

01010 

10010 

x6  
x x6 7  
x x6 7  

D4 

D2  D4 

D1  D4

a10 
(Y8) 

01010 a12 

a13 

a14 

00011 

01011 

10011 

x2  
x x2 7  
x x2 7  

D4D5 

D2  D4D5 

D1  D4D5

Step 2. State encoding (assignment). The objective is to 
reduce the functional dependency of outputs on inputs. 
This will allow us to reduce the number of output lines 
used in programmable components, and to simplify the 
scheme of the control unit. The method is based on the 
use of special tables that on the one hand look like the 
Karnaugh maps, but on the other hand are quite different 
(they were introduced in [9]). Consider all transitions 
A(am) from the state am. For any structural table the 
following expression is true: 

∨ ≡
∈a A a m s

s m

X a a
( )

( , ) 1 

Consider all codes K(am,as) for which as<A(am). If for 
given am bit k in all codes K(am,as) has values either 0 
and don’t care (-), or 1 and don’t care, then k does not 
depend on input variables from the set X [9]. It leads us 
to the following method of coding. For each structural 
subtable Wt (0<t≤T) it is necessary to find a bifurcation 
πH

t ={Ht1,Ht2}, for which  
Ht1∪Ht2=H={h1,...,hR}, Ht1∩Ht2=∅, and h1,...,hR - 
correspond to bits 1,...,R of codes from column K(as), 

H11∪...∪HT1=H, for all t∈{1,...,T}, |Ht1|=max.  If 
hr∈Ht2 then hr satisfies the requirement considered 
above. 
Figure 6 gives a simple example of state encoding, where 

πH
1 ={{h1,h2},{h3,h4}}, πH

2 ={{h4},{h1,h2,h3}}, 

πH
3 ={{h3},{h1,h2,h4}}, |{h3,h4}|=2, |{h1,h2,h3}|=3 

|{h1,h2,h4}|=3, {h1,h2}∪{h4}∪{h3}={h1,h2,h3,h4}=H 
Table 2. W2 

am, Y K(am) as K(as) X(am, as) F(am, as) 
a2 (Y2) 0100- a1 

a3 

a4 

a15 

a16 

a17 

00000 

00001 

00100 

00101 

00110 

00111 

x1  

x x1 4  

x x x x1 4 5 8

x x x x1 4 5 8

x x x x1 4 5 8

x x x x1 4 5 8
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Table 3. W0 
am, Y K(am) as K(as) X(am, as) F(am, as) 
a13(Y5) 01011 a14 10011 1 D1D4D5 

a14(Y9) 10011 a15 00101 1 D3D5 

a15(Y6) 00101 a16 00110 1 D3D4 

a16(Y7) 00110 a17 00111 1 D3D4D5 

a17(Y3) 00111 a1 00000 1 - 

a18(Y4) 11010 a19 11011 1 D1D2D4D5 

a19(Y5) 11011 a1 00000 1 - 

Finally the codes to be assigned enable for each am select 
a proper transition to as using only bits K(am,as) from Ht1. 
In order to perform state assignment, according to the 
rules considered above, we can use spesial tables μt [9], 
shown in figure 6 (table μt is used for the structural table 
Wt). Rows of each table μt correspond to various possible 
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codes of Ht1; columns of each table μt correspond to 
various possible codes of Ht2; all states of Wt from each 
set A(am) must be accommodated in the same column of 
μt. Figure 7 demonstrates states encoding for our example. 
All subsets A(am) are highlighted either with grey shading 
or with a double arrow header line pointing to 
corresponding states. The resulting codes are placed in 
columns K(am), K(as) of our tables (see tables 1-3). The 
tables μ1 and μ2 have been filled with the states according 
to the algorithm [4,9]. The bits of codes that depend only 
on states and don’t depend on inputs are highlighted in the 
columns K(as). The columns F(am,as) have been filled with 
characters D1,...,D5 on the assumption that the register in 
figure 3 is being composed of D flip-flops. The values of 
the components D1,...,D5 that depend only on states are 
highlighted in the columns F(am,as); 

A

 A

h3h4  00      01      10     11   h1h2h3 000      001     010     011    100    101   110    111

Figure 6. State encoding and PLAs programming

am    K(am)   as   K(as)   X(am,as)
a3     010-     a2  00  01      x3
                     a3  01  0-     x3x4
                     a4  10  01    x3x4

a7     0010    a4  100  1      x1
                     a10100  0      x1

a2     0001    a1   00  0  0    x5
                     a7  00  1  0    x5
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Figure 7. Encoding tables: a) for the first structural table; 
b) for the second structural table 

repearted states
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The code of the state a17 is:   00111.

 
Finally the PLA1 has outputs D1,D2 and the PLA2 - 

outputs D3,D4,D5. We have occupied 2+3=5 outputs and 
6+5=11 outputs are still free and can be used for 
assignment variables from the set Y. Fragments marked 
with 1 in figure 8 show the implementation of non 
highlighted functions D1,D2 from the table W1 for the 
PLA1 and non highlighted functions D3,D4,D5 from the 
table W2 for the PLA2.The highlighted functions D1,D2 
from W2 and W0 (tables 2,3) are implemented in the PLA1 
according to the following table: 

 
state state code D1D2 
a13 01011 1   0 
a18 11010 1   1 
a3 00001 0   1 
a4 00100 1   1 
a6 1100- 1   0 
a12 00011 1   0 

The highlighted functions D3,D4,D5 from W1 and W0 
(tables 1,3) are implemented in the PLA2 according to the 
following table: 

state state code D3D4D5 
a13 01011 0  1  1 
a14 10011 1  0  1 
a15 00101 1  1  0 
a16 00110 1  1  1 
a18 11010 0  1  1 
a5 10000 0  0  1 
a7 10001 0  0  1 
a8 01100 0   1  0 
a10 01010 0  1  1 

Now we can minimise D1,...,D5: 
state code D1D2 state code D3D4D5 
   0-011 1   0    0101- 0   1   1 
   11010 1   1    10011 1   0   1 
   00001 0   1    00101 1   1   0 
   00100 1   1    00110 1   1   1 
   1100- 1   0    11010 0   1   1 
     1000- 0   0   1 
     01100 0   0   1 
Fragments marked with 2 in figure 8 show the 

implementation of the highlighted functions D1D2 from 
the tables W2, W0 for the PLA1 and the highlighted 
functions D3D4D5 from the tables W1, W0 for the PLA2. 
 Step 3. Combinational logic optimization and 

designing the final scheme. The main ideas are based on 
a special decomposition aimed at using predefined frames 
in spite of constructing schemes with an arbitrary 
structure. Dependent on the particular structure to be 
selected, the following methods can be applied: 
distribution of variables (usually output variables) among 
components; adding new components and reorganizing 
the previous distribution; boolean function minimisation. 
Suppose that our micro instructions are the following: 

Y0=∅, Y1={y4,y7,y9,y11}, Y2={y1,y3,y7}, Y3={y4}, 
Y4={y5,y8}, Y5={y1,y9}, Y6={y10}, Y7={y5,y6}, 
Y8={y3,y7,y11}, Y9={y2,y5,y6,y8}, Y10={y2,y5,y10}, 
Y11={y2}. Let us attempt to distribute 11 output variables 
y1,...,y11 among 11 free outputs of the PLA1 and the PLA2. 
We can use for these purposes the method suggested in 
[3]. Consider such sets of states Qt, t=1,...,T which can be 
recognised on the outputs of our PLAs after their 
preliminary programming (see fragments 1 and 2 in figure 
8). These sets are given below in the form 
[state(s)]code_of_the_state(s) for the PLA1 and the PLA2 
respectively: 
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Q1={[a12∨a13]0-011, [a18]11010, [a3]00001, [a4]00100, [a6]1100-, [a5]10000}; 
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Figure 8. Final scheme of the control unit, described in figure 1 
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Q2={[a13∨a10]0101-, [a14]10011, [a15]00101, [a16]00110, 

[a18]11010, [a5∨a7]1000-, [a8]01100, [a3]00001, 
[a4]00100, [a9]00010, [a11]10010, [a12]00011}. 
For each set Qt consider the set Et that contains elements 

written in the form: output_variable(the set of states in 
which the output_variable has an active value). If the 
state(s) in Et belong(s) to one element of Qt then we strike 
out it (them). The sets E1 and E2, built for our example, 
are the following: 
E1={y1(a2,a4,a7,a13,a19), y2(a9,a12,a14}, y3{a2,a7,a10), 

y4(a5,a6,a8,a17), y5(a3,a9,a11,a14,a16,a18), y6(a11,a14,a16), 
y7(a2,a5,a7,a10), y8(a3,a14,a18), y9(a4,a5,a13,a19), y10(a9,a15), 
y11(a5,a10)}; 
E2={y1(a2,a4,a7,a13,a19), y2(a9,a12,a14}, y3{a2,a7,a10), 

y4(a5,a6,a8,a17), y5(a3,a9,a11,a14,a16,a18), y6(a11,a14,a16), 
y7(a2,a5,a7,a10), y8(a3,a14,a18), y9(a4,a5,a13,a19), y10(a9,a15), 
y11(a5,a10)}; 
If all states in Et for ym are struck out, then ym can be 

assigned to an output of the PLAt [3] without the use of 
any new products. When we apply this rule, the variables 
y2, y5, y6, y8, y10 will be assigned to outputs of the PLA2 
(see the right fragment 3 in figure 8). After that all outputs 
of the PLA2 are occupied.  
Micro operations y1, y3, y4, y7, y9, y11 to be left can be 

considered as boolean functions of the variables τ1,...,τ5 
which can be expressed after minimisation in the form of 
the following matrixes: 
 y1 y3 y4 y7 y9 y11 

10001 1   1   0   1   0   0 

0100- 1   1   0   1   0   0 
-1011 1   0   0   0   1   0 
01010 0   1   0   1   0   1 
01100 0   0   1   0   0   0 
00111 0   0   1   0   0   0 

These matrixes can be directly realised in PLA1 (see the 
left fragment 3 in figure 8). If some constraints for outputs 
and (or) products of PLAs are not satisfied we can apply 
other methods, considered, for example in [3,4]. They are 
aimed at adding new components and reorganising the 
previous assignment. 

IV. SYNCHRONISATION PROBLEM  

Let’s return to Step 1 (see section III). Suppose we want 
to use another PLA(7,8,25). In this case the graph Gl, has 
to be cut into 4 sub graphs, shown in figure 5,b. As a 
result we are adding three extra states (a20, a21, a22) in 
figure 1 and we are splitting some previous transitions. 
Consider, for example, the transition from a5 to a7 (see 
figure 9). Before splitting we had just one transition 
(a5→a7) and after splitting we have two transitions 
(a5→a22→a7). The final duration of the transition from a5 
to a7 has been increased twice. If it causes a problem we 
should change duration of the second transition (a22→a7). 
The main idea is the following. Consider the set of states 
A=Ar∪Ae, where Ar is the set of original states and Ae is 
the set of extra states. For our example we have: Ar 
={a1,...,a19}, Ae ={a20,...,a22}. Let us divide all transitions 
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into two groups. The first group is composed of 
synchronous transitions from am∈Ar. The second group 
is composed of asynchronous transitions from ai∈Ae. 
Asynchronous transitions are performed immediately after 
setting the register (see figure 3) in any state ai∈Ae and 
independently of clocks. The combinational part of the 
finite state machine has special output (indicator) which 
indicates setting the register in extra states. The signal 
from the indicator is used either to force an asynchronous 
transition or to decrease the duration of the clock for the 
next transition [6] (see figure 10). The last idea is also 
used for changing frequency of clocks if we want to 
change duration of various macro instructions. We can 
use for these purposes different engineering decisions 
(considered, for instance, in [6]) or self-synchronous 
approach. 

a5
a7

a5 a7

a22

x x2 6

 t

 t  t

2t

x2 x6

Figure 9. Transitions splitting problem
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Figure 10. Changing clocks duration or making asynchronous transitions
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V. MULTILEVEL SCHEMES BASED ON PREDEFINED FRAMES 

All multilevel schemes are based on the one-level 
scheme, shown in figure 3. The combinational part in 
figure 3 can be built from various reprogrammable 
elements, such as PLAs, PALs, ROMs, GALs and other 
PLDs. The common structure of the multilevel scheme is 
given in figure 11. Two non filled blocks of the structure 
(combinational scheme and register) are taken from figure 

3 with all the necessary connections. There are also three 
additional blocks that are a Coder (C), a Selector (S) and  
a Decoder (D).  These blocks can be either included onto 
the final structure or not, depending on the approach 
which we are going to use for logical synthesis [4,10]. 

c

c

d

d

b

Combinational scheme Register

a

Decoder (D)

N

N

Y1

Y2

Figure 11. Common structure of the multilevel scheme
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η1 ηf

F

The first approach is related to micro instruction 
encoding [4]. In this case we will use only one additional 
block D which can be constructed from either PLD [4] or 
standard decoders [11]. The connections b, c, d will be 
eliminated from figure 11 and the final scheme will be 
composed of the one-level sub scheme and the block D 
with the connections e. The process of synthesis can be 
separated into the following steps. 
Step 1. Building sub tables W0,W1,...,WT (see section III, 

step 1). 
Step 2. State encoding (see section III, step 2). 
Step 3. Micro instruction encoding. The characters 

Y1,...,YM are assigned codes containing ζ=]log2M[ bits, 
where ]a[ is the nearest integer greater than or equal to a. 
The combinational scheme generates components z1,...,zζ 
for the codes. The block D converts the codes to the 
corresponding values of micro operations. Some of the 
micro operations can be either assigned or not on outputs 
of the combinational scheme (see subset Y1 in figure 11). 
Finally Y1∪Y2=Y={y1,...,yM}. In order to perform micro 
instruction encoding we can apply the same method that 
has been already considered for the state encoding (see 
section III, step 2). 
Step 4. Distributing micro operations between subsets Y1 

and Y2 (if necessary). For these purposes we can use the 
approach to be considered in the section III (see section 
III, step 3). 
If we intend to build D from standard decoders, it is 

worth-while to minimise the total number of decoders. 
The corresponding task can be transformed into building 
and colouring the special graph which reflects the 
relationships between various micro operations [11]. 
The second approach is aimed at structural table lines 

encoding [10]. In this case we will also use only block D 
which can be based on PLD (ROM in particular). The 
connections a, c, d will be deleted from figure 11 and the 
final scheme will be composed of the one-level sub 
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scheme and the block D with the connections b and e. The 
process of synthesis can be separated into the following 
steps. 
Step 1. Building sub-tables W0,W1,...,WT (see section III, 

step 1). 
Step 2. Structural sub-table lines encoding. Each line of 

such sub-tables is assigned a token ei∈{e1,...,eI}, where I 
is the total number of lines in all structural sub-tables 
W0,W1,...,WT (see the column Ei of the tables 4-6 below). 
The characters e1,...,eI are assigned codes containing 
ζ=]log2I[ bits. The combinational scheme generates 
components z1,...,zζ for the codes. The block D converts 
the codes to the corresponding values of D1,...,DR and 
micro operations from the set Y2. As before, some of 
micro operations can either be assigned or not on outputs 
of the combinational scheme (see subset Y1 in figure 11). 
In order to perform line encoding, we can use the same 
method that has been already considered for state 
encoding (see section III, step 2). For instance, the results 
of line encoding for tables 4-6 is demonstrated in figure 
12.  
Step 3. Distributing micro operations between subsets Y1 

and Y2 (if necessary). For these purposes we can use the 
approach to be considered in section III (see section III, 
step 3). 

Table 4. W1 
am K(am) as K(as) Ei X(am, 

as) 
P(am,

as) 
a1 
 

0000- a1 

a2 

a5 

a6 

0000- 

010-0 

10-00 

110-0 

e1 

e2 

e3 

e4 

x x2 3  
x x2 3  
x x2 3  
x x2 3  

01 

00 

10 

11 

a5  10-00 a2 

a6 

a7 

010-0 

110-0 

1001- 

e5 

e6 

e7 

x2  
x x2 6  
x x2 6  

10 

01 

00 

a7 1001- a2 

a3 

010-0 

00010 

e8 

e9 
x7  
x7  

01 

00 

a8 00101 a9 

a10 

a11 

00100 

0110- 

11100 

e10 

e11 

e12 

x6  
x x6 7  
x x6 7  

00 

10 

11 

a10  0110- a12 

a13 

a14 

01011 

00011 

11011 

e13 

e14 

e15 

x2  
x x2 7  
x x2 7  

10 

01 

00 

 
Table 5. W2 

am K(am) as K(as) Ei X(am, 
as) 

P(am,
as) 

a2  010-0 a1 

a3 

0000- 

10001 

e16 

e17 
x1  

x x1 4

10 

01 

am K(am) as K(as) Ei X(am, 
as) 

P(am,
as) 

a20 11001 e18 x x1 4  00 

a20 11001 a4 

a15 

a16 

a17 

00110 

01110 

10110 

11110 

e19 

e20 

e21 

e22 

x x5 8

x x5 8

x x5 8

x x5 8  

00 

01 

10 

11 

a3  10001 
00010 

a8 

a10 

00101 

0110- 

e23 

e24 
x8  
x8  

01 

00 

a4  00110 a18 

a19 

10101 

11101 

e25 

e26 
x1  
x1  

01 

00 

a6 110-0 a5 

a11 

10-00 

11100 

e27 

e28 
x4  
x4  

01 

00 

a9 00100 a15 

a17 

01110 

11110 

e29 

e30 
x5  
x5  

01 

00 

a11 11100 a3 

a12 

10001 

010-1 

e31 

e32 
x1  
x1  

01 

00 

a12 010-1 a7 

a14 

1001- 

11011 

e33 

e34 
x8  
x8  

01 

00 

Table 6. W0 
am K(am) as K(as) Ei X(am, 

as) 
a13  00011 a14 11011 e35 1 

a14 11011 a15 01110 e36 1 

a15 01110 a16 10110 e37 1 

a16 10110 a17 11110 e38 1 

a17 11110 a1 0000- e39 1 

a18 10101 a19 11101 e40 1 

a19 11101 a1 0000- e41 1 

It should be mentioned that block D is especially useful 
for Mealy machines, because the values z1,...,zξ depend 
on both states and input variables. These variables can be 
directly used to generate micro operations on outputs of 
block D in Mealy machines. 
The third approach enables us to perform replacement 

of input variables from the set X={x1,...,xN}. In this case 
we will use only one additional block C which can be 
constructed from either PLD [4] or standard multiplexers 
[10]. The connections b, d, e will be eliminated from 
figure 11 and the final scheme will be composed of the 
one-level sub scheme and C with the connections c. The 
process of synthesis can be separated into the following 
steps. 
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Figure 12. Structural sub table lines encoding
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Step 1. Building structural table for the given graph-

scheme. You can use for these purposes any known 
method (see, for instance, [3]). 
Step 2. Replacing input variables with new variables 

from the set P={p1,...,pG}, G A a
a A

m
m

=
∈

]max|log ( )|[2
. The 

tables 4,5 above demonstrate such replacement (see the 
column P(am,as) ). As a result we have obtained the 
following boolean functions: 

p a x a x a x a x a x a x1 1 2 5 2 8 6 10 2 2 1 20 5= ∨ ∨ ∨ ∨ ∨ ;   
p a x a x x a x a x x a x x
a x x a x a x a x a x a x
a x a x

2 1 3 5 2 6 7 7 8 6 7 10 2 7

2 1 4 20 8 3 8 4 1 6 4 9 5

11 1 12 8

= ∨ ∨ ∨ ∨ ∨
∨ ∨ ∨ ∨ ∨ ∨

∨ ;
  

Step 3. State encoding. The objective is minimising the 
functions from the set P (the functions p1,...,pG). The 
particular methods of encoding were considered in [4].  
Step 4. Distributing micro operations between elements 

of the first level (see the section III, step 3). The methods 
of this step for Mealy machines were considered in [3,4]. 
The fourth approach is related to using of mutually 

exclusive elements in the scheme of the first level [10]. In 
this case we will use one additional block S which can be 
constructed from either PLD or standard decoders. The 
connections a, b, c, e will be eliminated from figure 11 
and the final scheme will be composed of the one-level 
sub-scheme and S with the connections d. Consider non-
intersecting subsets A1,...,AT and A1∪...∪AT=A. Let us 
perform separate state encoding in each subset At. Usually 
the length of code is less than in case of state encoding in 
the total set A. Consider the set O={γ1,...,γT} of variables 
such that γt=1 if and only if the control unit is in the state 
am∈At, and γt=0 in the opposite case (t=1,...,T). As a 
result, elementt knows a real state from the set A by 
analysing both the state from At and γt (see figure 11). In 
this case the number of inputs for each elementt of the 
one-level scheme is equal to ]log2|At|[+1 and often less 
than R (especially for complex control units). The 
methods of synthesis of such schemes were introduced in 
[4,10]. The element F in figure 11 allows us to reduce the 
total number of lines (r<R, f<R). For some schemes this 
element denotes just special connections, for instance, 

part ϑ1 of lines τ1,...,τR are connected to the combinational 
scheme and another part ϑ2 to either the Coder or the 
Selector. Depending on a particular scheme we can 
provide either ϑ1∩ϑ2≠∅ or ϑ1∩ϑ2=∅.  
The PLD can also include internal memory (internal 

register). They are called programmable logic sequencers. 
For such kinds of devices we can also consider one-level 
and multilevel structures. The corresponding methods of 
synthesis, based on using predefined frames, were 
suggested in [12]. 

VI. TEMPLATES (PREDEFINED BASIC SCHEMES) 

The idea of basic schemes for control units were 
introduced in [13] and later developed in [3,4,14]. They 
contain elements with changeable functions (like PLD) 
which are initially undefined. All external connections of 
elements are fixed and they can not be changed. Basically 
each particular scheme can be considered as a template 
for, generally speaking, an infinite number of different 
applications. The customising of the base scheme 
(implementing, for instance, a graph-scheme that 
describes a particular algorithm of control) is carried out 
by programming (reprogramming) its elements with 
changeable functions. 
In order to construct the basic scheme, it is necessary to 

estimate all the likely constraints for future applications. 
In other words we should define a class of applications 
and the constraints for the class. These constraints are the 
following [4]: the maximum number of input variables 
Lmax; the maximum number of output variables Nmax, the 
maximum number of states Mmax, the maximum number of 
flip-flops in the register Rmax, the maximum number of 
lines in the total structural table, etc. Consider, for 
example, the one-level basic scheme suggested in [13] 
(see the figure 13). 
The combinational part of the scheme is composed of 

PLAs and ROMs (the ROMs are used just in order to 
generate values of output variables and functions 
Dr+1,...,DR). The number of PLAs and ROMs is calculated 
by evaluating the given constraints. The value r 
determines the maximum number of transitions σ from 
one state (σ≤2r). In order to fix this value we can also test 
our constraints. The possible superfluity is eliminated by 
installing just the elements used in a particular scheme 
and erasing all extra components that are not required. 
This is possible without changing connections between 
elements. All assertions related to the scheme in figure 13 
were proved in [4,13]. So we just demonstrate how to 
apply known methods in order to implement given graph-
scheme (see figure 1) in the basic scheme (see figure 13) 
with the following parameters: T=2, Q=1, r=2, R=5, 
PLA(10,5,25), ROM(5,10), where for the ROM were 
given the number of inputs or address size (5) and the 
number of outputs (10). 
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Figure 13. One-level basic scheme
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The methods, considered in [4,13], include the following 

sequence of steps. 
Step 1. Building sub tables W0,W1,...,WT. 
Step 2. State encoding. 
Step 3. Distributing output variables and designing the 

final scheme. 
In order to build sub tables W0,W1,...,WT we can use the 

basic approach considered in Section III with trivial 
modifications [4,13]. Because r=2 it is not possible to 
perform six transitions from the state a2 (see table 2). So 
we have to split these transitions using the rules [4]. As a 
result a new state a20 has been added.  
The step 2 has some distinctions which are explained 

below in detail. Consider the graph Gξ which reflects the 
following relationships: 

(amξas) ⇔ A(am) ∩ A(as) ≠ ∅. 
Vertices of Gξ correspond to states from the set A. Two 

vertices am and as are connected with an edge if and only 
if (amξas). Each vertex am has been added with the set 
A(am) and all vertices for which |A(am)|<2 have been 
eliminated. Each edge has been assigned the set A(am,as) 
which is determined as follows: A(am,as)=A(am)∩A(as). 
The final graph Gξ is shown in figure 14. 
Let us build a new compressed graph ~Gξ  which contains 

joined vertices of the Gξ. The vertices am, as,...,ak can be 
joined if and only if |A(am)∪A(as)∪...∪A(ak)|≤2r. If am, 
as,...,ak are joined, the new common vertex corresponds to 
the set A(am)∪A(as)∪...∪A(ak). Each edge of the ~Gξ  

connected vertices vm and vs has the weight ρ(vm,vs) 
which is calculated as follows: 

 ρ(vm,vs) = | ( )|
( , )

A ak
a A v vk m s∈

∑ , 

where A(vm,vs) is the set of common states in vertices vm 
and vs. 
The final graph ~Gξ  is shown in figure 15. Let us mark 

the number of vertices of ~Gξ with δ. Our task can be 

solved if δ≤2R-r. In the most circumstances we can satisfy 
this constraint. In [4,13] was proved that the problem of 
state encoding can be transformed into the mapping of 

the graph ~Gξ  onto an R-r dimensional cube Cμ (see 

figure 16,a). If we are able to solve this task we can 
directly fill the single encoding table μ (see figure 16,b). 
 

Figure 14. Graph Gξ
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 Some states, such as a1, a2, a12, a10, a7, a5, a6, are repeated 
in the table μ twice. They are located in neighbouring 
corners of Cμ and therefore, they are assigned the codes 
having don’t care components. Just one (underlined) state 
a3 is located in the diagonal of Cμ and a3 was assigned 
two different binary codes that are 10001 and 00010. This 
is allowed, but all transitions from the state a3 are repeated 
twice (from two states 10001 and 00010). That is why 
when we map the ~Gξ onto the Cμ we aspire to minimise 

the total weight of diagonal (non neighbouring) edges [4]. 

a1 a6a8 a3a4

a5a7

a2a11

a10a12

a9a10

a1a2a5a6 a5a9a10a11 a8a10a18a19

a4a15a16a17
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a2a3a6a7

a7a12a13a14

a5 (3) a10 (3)

a
1  (4)a2a6 (5)

a3 (2)

a7  (2) a 12
 (2

)

Figure 15. Compressed graph    

| ( )|A am
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a vertexm

≤
∈

2∪

~Gξ

The results of state encoding are shown in the columns 
K(am), K(as) of the tables 4-6. All bits whose values don’t 
depend on input variables are highlighted with a bold 
font.  
The step 3 can be performed using the basic approach 

considered in Section III. Finally our scheme consists of 
two PLAs and one ROM. The PLAs can be directly 
programmed using the tables 4-6 and explanations given 
in Section III. Figure 17 demonstrates the ROM to be 
programmed just for the outputs D3, D4, D5. Consider 
some examples of programming. For all transitions from 
the state a5 we must set D4=1, D3=D5=0. Because the third 
bit of a5 has don’t care value we are using two addresses 



REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996 525 
 

 

of the ROM 10000 and 10100. For both addresses we are 
programming outputs as 010. For all transitions from the 
state a3 we must set D3=D5=1, D4=0. Because the state a3 
has two codes (each of them indicates the same state a3) 
we are using two addresses of the ROM 10001 and 
00010. For both addresses we are programming outputs as 
101. The same approach has been used to implement the 
transition from the set a3 in the PLA2. 
 

000 001

010 011

100 101

110 111

a1 a2a11

a5a7 a10a12

a6a8 a3a4

a9a10

Mapping

a1a2a5a6
a1a3a12a20
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a7a12a13a14

a5a9a10a11 a8a10a18a19

a4a15a16a17

a1
a2a6

a5

a3
a7

a12

a10

a1 a1 a3 a13 a9 a8 a4

a2 a12 a2 a12 a10 a10 a15

a5 a3 a7 a7 a5 a18 a16

a6 a20 a6 a14 a11 a19 a17

h1h2

h3h4h5    000       001     010       011      100      101      110    111

00

01

10

11

a)

b)

Figure 16. Mapping of the graph       onto the cube Cμ (a) and table μ (b)

~Gξ

~Gξ

μ

Cμ

 All predefined frames, considered in Section V, can also 
be investigated as a foundation for multilevel basic 
schemes. Some of them were suggested in [3,4]. Let’s 
examine, for example, the basic scheme shown in figure 
18 and based on the one-level scheme and the block C 
(see figure 11).  

0
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τ1
τ2
τ3
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τ5

Figure 17. The ROM of the basic scheme to be programmed for D3-D5
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The PLAs (PLA1,...,PLAT) are being considered as a 

PLA(z,q), where z=n+m - the total number of external 
pins which are either inputs or outputs. The ROMs 
(ROM0,ROM1,...,ROMQ) are being considered as a 
ROM(n,m), where n - is the number of inputs (an address 
size) and m - is the number of outputs. They are used in 
order to generate values of the functions D1,...,DR and 
output variables from the set Y. The basic function of the 
PLAs are a replacement of variables from the set X with 
new variables from the set P and |X|>>|P|.  
The input lines of ROM0 are p1,...,pG,τ1,...,τR. Some of 

the lines p1,...,pG can be logically connected to the lines 

τ1,...,τR providing the function OR. Such connections are 
admissible if and only if there is no ambiguity between 
various transitions. The obvious way to prevent ambiguity 
is the following. Consider a vector with the elements 
τ1,...,τr,cr+1,...,cR, pR-r+1,...,pG, where cr+1,...,cR are common 
variables. Suppose we are taking into account all 
transitions from a state ~a  having the code 
~τ 1... ~τ r

~τ r+1... ~τ R and ~τ r+1=...= ~τ R=0. If the vector 
~τ 1... ~τ r

~τ r+1... ~τ R can be unambiguously identified 
(recognised) by examining just the components ~τ 1... ~τ r 
then all transitions from the ~a  can also be 
unambiguously identified by examining the vectors 
τ1,...,τr,cr+1,...,cR,pR-r+1,...,pG. Finally it follows that all 
vectors coming to the inputs of ROM0 that provide 
different transitions, must be orthogonal. The problem of 
searching for orthogonal vectors that satisfy the 
requirement mentioned above is not so difficult, and can 
be resolved when we are carrying out the state encoding. 

PLA1 PLAT Register ROM1 ROMQ

Figure 18. Two-levels predefined (basic) scheme
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The scheme in figure 18 can be used for many 

applications (for implementing many different algorithms 
of logical control). Therefore we have to define its basic 
parameters (see the beginning of this section). For 
instance, in order to define the number of new variables G 
we should estimate the maximum number of transitions 
from any one state in future algorithms (graph-schemes).  
Suppose we have already built the basic scheme with the 

structure shown in figure 18, that has the following 
predefined parameters: R=5, G=2, PLA(15,20), 
ROM(6,16), the pins τ5 and p1 are logically connected. 
The synthesis of the control unit for the given graph-
scheme (see figure 1) can be separated into the following 
steps. 
Step 1. Marking the given graph-scheme for designing 

either the Moore machine (see the section III) or the 
Mealy machine [3]. Building the structural table. 
Step 2. Replacing variables from the set X with variables 

from the set P (see the section V).  
Step 3. State encoding. The objective is to optimise 

(usually to minimise) the functions p1,...,pG and to satisfy 
the requirements considered above at this section. 
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Step 4. Micro operation assignment and synthesis of the 

final scheme.  
Suppose we have already built the structural table and 

performed input variable replacement (see tables 4-6). For 
our current task we can consider the three tables as a 
single one (because we can use just one PLA). The results 
of state encoding, which satisfy all the necessary 
requirements (see the step 3), are shown in the Karnaugh 
map in figure 19. The final scheme is composed of two 
PLDs. The first one is the PLA and the second one is the 
ROM. Figures 20, 21 demonstrate the results of PLD 
programming (see figure 20 for the PLA and figure 21 for 
the ROM). The states, from which only unconditional 
transitions are being performed have been underlined in 
the right part of figure 21. Two neighbouring horizontal 
lines of ROM with addresses XXXXX0 and XXXXX1 
will be programmed identically for such states. 
The functions p1 and p2 are the following (they were 

taken from the section V and minimised): 
p x a x a x a x1 3 4 5 2 8 6 2 1 20 5= ∨ ∨ ∨τ τ τ ;   

p x x a x a x x
a x a x x a x x a x x a x a x

2 3 4 5 8 1 2 3 4 1 1 3 5 2 6

7 7 8 6 7 10 2 7 2 1 4 6 4 9 5

= ∨ ∨ ∨ ∨
∨ ∨ ∨ ∨ ∨
τ τ τ τ τ τ τ

;
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Figure 19. The Karnaugh map for states encoding
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VII. EXCEPTION HANDLING 

Exceptions indicate something unusual or unexpected in 
an execution unit. They are caused either by errors or by 
something that requires an immediate assistance. 
Exceptions are detected in an execution unit during run-
time and are indicated by special variables from the set X. 
If an indicator is in active state, the control unit 
immediately interrupts the executing of the control 
algorithm and handles the respective exception. After the 
exception has been handled, the control unit continues the 
execution of the algorithm from the interrupted point. If 
the control unit has no idea how to cope with an exception 
it indicates an unrecoverable error requiring external 
assistance.  
A scheme which supports an exception handling 

mechanism is shown in figure 22. The memory of the 

scheme has a multilevel structure (it may be based on a 
stack [15], for instance). If any exception has taken place, 
the memory is switched to the level which is responsible 
for exception handling. After an exception is being 
handled the memory will be switched back to the 
interrupted point of the main algorithm. These actions are 
similar to push and pop operations with a stack.  
 

Figure 20. The programming of PLA for the two-levels basic scheme
(see figure 18)
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In order to design a control unit based on stack memory 
we can invoke the general approach suggested in [4,7,15]. 
It provides a way of explicitly separating an exception 
handling algorithm (graph-scheme) from an ordinary 
algorithm (graph-scheme). 

IIX. INHERITANCE AND PROTECTION 

There is only one known basic way of dealing with 
complexity: “Divide and conquer”. This famous idea can 
be applied in a variety of ways. A complex hardware unit 
in general has a hierarchical structure of control and can 
be seen in different levels of abstraction, such as micro 
operations level, macro operations level, etc. For 
example, for the computer we can distinguish micro 
operations, assembly language instructions, operating 
system service functions (application programming 
interface), etc. As a result we are representing a process of 
controlling in a different hierarchical levels. In each 
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particular level we can distinguish between the outside 
view and the inside view of the control part (generally 
speaking this part can be considered as either a hardware 
unit or a software component). The interface of a control 
part provides its outside view and therefore emphasises 
the abstraction while hiding its structure. By contrast, the 
implementation of a control part is its inside view, which 
encompasses the secrets of its behaviour. The interface 
can be divided into accessible, partially accessible and 
non accessible parts (compare this with public, protected 
and private declarations in object-oriented programming). 
In general they respectively denote the following: “can be 
directly used in any level”; “has some predefined 
restrictions for using in various levels”; “can be used only 
at the same level”.  
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When we are building a hierarchy we are dealing with 

inheritance which can be considered as a basic way to 
represent multilevel abstractions. The purpose of 
inheritance is to provide a commonality of representation 
and a calling interface. 
The approach to be considered can be applied to 

multilevel hierarchical digital control units. Their 
behaviour can be described by hierarchical graph-
schemes [7]. However it is necessary to solve some new 
problems, which are the following: 
� how to provide support for inheritance making it 

possible for upper levels to share the structure and/or 
behaviour in one or more lower levels (denoting 
single inheritance and multiple inheritance 
respectively); 

� how to provide protection for various operations 
from unauthorised access; 

� how to provide logical synthesis of hierarchical 
systems at a hardware level; 

� how to construct derived instructions that allow us to 
add new facilities to existing instructions without 
redesigning the control unit or with minimal efforts. 

This approach directly invokes the basic ideas of object-
oriented programming [16,17] and can be based on: using 
predefined frames and templates, considered above; 
hierarchical descriptions of control algorithms [4,5,7] and 
general ideas of papers [18,19]. The paper [18] has 

attempted to provide possible changes in designed control 
units based on PLDs. The objective is to supply all 
changes in existing PLDs that have been already 
programmed. The paper [19] combines using 
microprocessors in the upper level of control and PLD 
based control units in the lower level. 

IX. RUN-TIME SUPPORT 

Let us return back to Section I where the following 
problem was presented: for a given set of instructions 
�={�1,...,�k} and constraints M={M1,...,Mp}, design the 
control unit which will perform � and satisfy the set of 
conditions, M. Consider multilevel description of � 
which is the following �=�0∪�1∪...∪�h where the set 
�0 includes instructions of the level 0, �1 includes 
instructions of the level 1,..., �h includes instructions of 
the level h (see figure 23). 
Let us look at instruction �i∈�j (j>0). The �i have 

been described by a graph-scheme Γi of the level j. The 
graph-scheme incorporates micro operations, logical 
conditions and macro operations. Each macro operation 
has been described by a graph-scheme of lower levels. So 
we can say that Γi encapsulates input and output 
variables (see figure 23) and complex operations (macro 
operations) which can be viewed as control functions 
(compare it with encapsulation in object-oriented 
programming). Finally encapsulation allows us to separate 
the purpose of an instruction from its implementation. In 
other words we want to focus on what the instructions do 
instead of on how to implement them. 
The macro operations can be either fixed or non fixed in 

the control unit (see figure 23). In the first case the control 
unit has been completely designed. In the second case it 
incorporates additional components which can be 
programmed during run-time and can be loaded with 
converted graph-schemes for implementing new 
instructions from the set �. Generally speaking the set � 
can even be extended after the control unit has been 
designed and produced. This idea is similar to run time 
support in object-oriented programming (early binding 
and late binding in particular). It leads us to virtual 
instructions definition which is closely related to virtual 
states of the finite automata. Such states are not fixed and 
can be changed during execution time (compare this with 
virtual functions in object-oriented programming). It 
should be mentioned that the basic schemes considered 
above are mainly based on such PLDs as ROM that can 
be directly replaced with RAM which can be loaded and 
reloaded during run time. 
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Figure 23. Multilevel description of the set �

 
Currently PLDs are manufactured by many famous 

companies, such as Intel, AMD, Monolithic Memories, 
etc. The comparison of various PLDs was given in [20], 
where you can also find different details. Programming of 
PLDs is achieved using various memory technologies 
such as fuses, EPROM cells, EEPROM cells or Static 
RAM cells [20]. There are many development systems 
running on a personal computer that enable you to obtain 
a customised silicon chip in a short period of time. Many 
benefits give us erasable PLDs that use EPROM cells as 
logic control elements which can be erased with 
ultraviolet light and reprogrammed. In addition, they offer 
several very significant benefits [20]. The basic 
architecture of PLDs (see, for example, [20, p. 1-6]) is 
based on PLAs and has been developed in many different 
chips (Intel 85C060, AMD 22V10-15, Lattice GAL 
22V10-15, etc.). Their specifications and comparisons are 
given in a variety of  catalogues (see, for instance, [20]). 
All these chips can be used as static components of the 
schemes considered above. In order to provide run-time 
support we must replace some of static components with 
dynamic components such as RAM. It is also worth-while 
to develop customised silicon chips which contain static 
and dynamic reprogrammable components and 
incorporate a control-oriented architecture. The chip 
delivers the necessary speed and can be used for 
embedded digital control systems in various areas such as 
industrial automation, robotics, etc. 

X. CONCLUSION 

The approach involves finite state machine theory and 
some ideas from object-oriented programming, as follows: 
 using graph-schemes to provide better separation of the 

control unit interface from its implementation. In 
particular they provide support for hierarchical ordering. 
Different macro operations represent various levels of 
abstraction. This approach forces us to search for 
commonality among branches of the graph-scheme and 
positively influences future design steps. On the other 

hand the graph-scheme can also be viewed as the 
encapsulation of data (input and output variables) and 
functions (macro operations);  
 using predefined frames to design reusable parts. 

Generally speaking, reuse denotes the ability of a device 
to be used again. Sometimes we want to add functionality 
or to change behaviour. In the approach we are 
considering, we don't need to start the design process 
again from the beginning. The new scheme inherits the 
invariable part of the previous interface and just adds (or 
replaces) the existing part that is different in the new 
context [18]. This is an analogous to the inheritance 
relationship between classes in object-oriented 
programming. Another concept is related to 
polymorphism (to virtual states in particular). 
Consideration of virtual states (programming the output 
codes of an internal register) simplifies many different 
problems of logic synthesis (states encoding in particular), 
and enables you to create universal predefined structures 
for a variety of applications; 
 using predefined schemes (or templates). This idea was 

initially considered in [13] and can be formulated as 
follows. For a given (generally speaking infinite) set of 
graph-schemes, it is necessary to build a scheme that is 
based on programmable (or reprogrammable) 
components, and that can be used to implement a given 
behaviour just by programming its components (you 
cannot change either the structure or the connections in 
the scheme) The set of graph schemes can be introduced 
via various constraints (input constraints, output 
constraints and functional complexity). In order to find a 
good solution you can delete some components from the 
final scheme without changing its structure (and 
connections). This enables us to deal with superfluous 
components. The approach is based on the methods of 
finite state machine theory [3,4] and the results of the two 
points discussed previously. The use of predefined 
templates makes it possible to simplify many different 
problems of logic synthesis and related applications;  
 run-time support based on reprogramming of the 

component matrix in a scheme after the control unit has 
been designed (during execution of control); 
exception handling mechanism which makes it possible 

to explicitly separate an ordinary graph-scheme and an 
exception handling graph-scheme.  
As follows from the previous discussion, we have 

attempted to combine the results of two well known and 
closely related areas which are finite state machine theory 
and object-oriented programming. As a result, the 
approach considered can be used to design various control 
units and provide them with new facilities. Object-
oriented technology also has a positive effect on other 
phases of the hardware life cycle, such as maintenance 
and improvement. You can make one modification to an 
ancestor macro instruction and affect all of its 
descendants. Without inheritance, you would need to 
make the same change to many relative instructions. 
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