
REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996 515

Resumo - Este Artigo descreve algumas técnicas aplicadas
no desenvolvimento de unidades de controlo baseadas em
dispositivos de lógica programável (PLD). Combinam a
teoria de maquinas de estados finitas com a programação
orientada a objectos, permitindo a introdução de novas
facilidades, tais como: extensibilidade, flexibilidade e
reutilização, durante o desenvolvimento. Estas técnicas
recorrem o mais possível a estruturas predefinidas.

Abstract - This paper discusses some approaches to the

design of control units based on programmable logic devices
(PLD). They combine finite state machine theory with object
oriented programming to allow control units to be designed
with new facilities, such as: extensibility, flexibility and
reuse. The techniques use predefined frames and basic
schemes (templates) as far as possible.

I. INTRODUCTION

There are many kinds of devices that can be decomposed
into a datapath (execution unit) and control units. The
datapath is composed of storage units (such as registers,
counters, etc.) and combinational (or functional) units. A
control unit performs a set of instructions by generating
the appropriate sequence of micro instructions that
depends on intermediate logical conditions or
intermediate states of the datapath. Each instruction
describes what operations must be applied to which
operands stored in the datapath (or in external memory).
In real applications, the control unit is often the most
complex part of the design [1].
Consider the following problem: for a given set of

instructions �={�1,...,�k} and constraints
M={M1,...,Mp}, design the control unit which will
perform � and satisfy the set of conditions, M. There are
many methods of logical synthesis that can be applied to
solve this general problem [1-4]. Suppose it is also
necessary to broaden our problem. We want to provide
extensibility, flexibility and reuse. This implies
accommodating the following additional requirements:
allow the set of instructions � to be extended after the

control unit has been designed and produced;
allow the instructions in the set � to be changed after the

control unit has been designed and produced;
enable previously designed components of the control

unit to be used for future applications without redesigning
it;

enable exception handling.
Let us discuss an approach that can be used to solve the

extended problem. This approach is based on the results
of earlier work, especially [3,4], and some of the ideas of
object-oriented programming.

II. BASIC STRUCTURE OF THE CONTROL UNIT AND THE
DESCRIPTION OF ITS BEHAVIOUR

The main objective of the design process can be
expressed as follows: it is necessary to transform the
given description of � to a scheme built from given
functional elements. In order to describe the behaviour of
the control unit we will use graph-schemes [3,4] that on
the one hand are similar to algorithmic state machine
notation [1] and on the other hand have some distinctions.
Various kinds of graph-schemes allow you to describe
sequential [3] and parallel [5] devices, the duration of
clock pulses for synchronisation [6], the hierarchical
ordering of operations to be performed [7], etc. They
provide good separation of the control unit's interface
from its implementation. Figure 1 shows an example of a
graph-scheme which describes the behaviour of a control
unit with 8 inputs and 11 outputs (see figure 2). Each
node of the graph-scheme contains either a micro
instruction Yj (a set of micro operations, that are
executed at the same time assigned to the node) or a
macro instruction Zi (a set of macro operations). Each
macro operation can also be described using graph
scheme notation [4,7].
In order to transform a given description into a scheme,

it is necessary to apply some methods of logic synthesis
that generally lead to the design of an arbitrary scheme.
The approach considered is based on the use of so-called
predefined structures containing programmable (or
reprogrammable) components [3,4] (like PLA, PALs,
GALs etc.) . For example, figure 3 shows a one-level
PLD-based predefined structure (here X = X1∪...∪XT - is
the set of inputs, Y = Y1∪...∪YT - is the set of outputs,
τ1,...,τR, D1,...,DR - are internal variables). Other
predefined structures were considered in [3,4].

Applying Finite State Machine Theory and Object-Oriented Programming to the
Logical Synthesis of Control Devices

Valery Sklyarov

516REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996

Control
Unit

x1

 x8

y1

y11

Figure 2. Control unit (external view)

This approach has several advantages. All groups of
future connections are known and the complexity of the
scheme only depends on the total number of components
(PLAs, for instance). In practice, the final level of
complexity can be assessed at the first stage of the design.
The behaviour of the scheme (functional capabilities) can
be extended by adding new components without
reprogramming any of the components used (any addition
does not change the structure). The behaviour of the
scheme can be changed by replacing some components
without reprogramming of the rest. Finally we can
provide extensibility, flexibility and reuse.

 PLD1 PLDT Register

 X1 XT

 Y1 YT

 D1 DR

 τ1 τR

Figure 3. One-level PLD-based frame (PLD - is Programmable Logic
Device like PLA, PAL, GAL, ROM, etc.).

III. BASIC STEPS OF LOGICAL SYNTHESIS

The approach being considered is based on the following
steps of logic synthesis.
 Step 1. Converting a graph-scheme to special structural

tables that are used in a similar way to state transition
diagrams of a finite state machine. The objective is to

Begin

x2

x3x3

x1

x4

x5

x8 x8

a1

a2

a3

a4

x2

x6

a5

a6
a7

x7

x4 x8

a8

x6

a9
a10

x7

a11

x1

a12

x2

x7

x5

a13 a14

a15

a16

a17

x1

a18

a19

End a1

x8

1 0

1 0

0

1

1 0

1 0
a20

0

1

0 1

0

1

0

1

0

1

10
1

0

1

0

0

1

1

0

1
0

0
1

0

1

Y1
Y2

Y3

Y4

Y2

Y5

Y3

Y3

Y6

Y7

Y8

Y5 Y9

Y10

Y4

Y5

Y7

Y11

Y0

Figure 1. An example of a graph-scheme

 10

0

1

 1
0

a21

a22

REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996 517

satisfy the given constraints. Consider, for example, how
this step is carried out for the structure shown in figure 3
For given graph-scheme Γ and PLA(n,m,q) (where n, m
and q are the number of inputs, the number of outputs and
the number of products PLA respectively) it is necessary
to build a set of structural tables [3] such that: they
describe the total behaviour represented by Γ, the number
of tables is minimal; each table contains information for
programming a corresponding PLA (it means that either
all or part of the constraints have been satisfied). Let us
consider the main ideas of the method which can be used
to solve this problem [8]. Suppose we want to design a
Moore machine and it is necessary to distribute input
variables among PLAs (see figure 3). Consider a graph
Gl. Vertices of Gl correspond to logical conditions (input
variables). Edges of Gl express relationships between
logical conditions. A relationship exists between two
logical conditions if they must be included at least in one
common product (in this case the weight of the edge is
equal to 1). If they are included in more than one product
the weight of edge is not equal to 1 (usually greater then
1). In order to solve our task Gl must be cut into a minimal
number of independent subgraphs such that: a) each
subgraph satisfies given constraints for the PLA, b) the
weight of edges to be deleted is minimal. When we delete
an edge we add new state (or states, dependently on the
real weight of the edge). Suppose we have a transition
from am to as and X(am, as) is a product which forces this
transition. In certain circumstances the approach
considered enables us to replace this transition with two
following transitions: X(am, ai) and X(ai, as), where ai is a
new (intermediate) state (so we split the first transition
using an intermediate state). Very often it leads to better
results. Figure 4 demonstrates how to build Gl for an
arbitrary fragment of a graph-scheme. There are three
edges with fractional weighting numbers. The value 1/3
for the numbers has been calculated because in figure 4,a
the entry point of the rhombus that contains x3 is
connected with three other rhombi (which contain x2, x6
and x7 respectively). All formal rules for calculating
weights were considered in [4,8]. The total weight of the
edge linked xi with xj in Gl is a sum of values calculated
from the graph-scheme. In this case it is necessary to
consider all pairs of rhombus that contain xi (xj) and xj (xi)
and there is a directed line from output of xi (xj) to input
of xj (xi).
The sequence of actions which are being performed is

the following:
� marking the given graph scheme with labels

a1,...,aM. In order to do this we can use known
methods [3,4]. For instance, if we are designing the
Moore machine we are marking “Begin” and “End”
nodes of the graph-scheme with a1 and all other
rectangular nodes with a2,...,aM. Any two different
rectangular nodes must be marked with different
tokens. After marking, the tokens a1,...,aM are
considered as the states of the Moore machine. Using

this method for the graph scheme shown in figure 1,
we have obtained the states a1,...,a19;

� building the graph Gl. Figure 5,a shows the graph
Gl to be built for the given graph-scheme (see figure
1);

0

1

1
0 0

1
0

1
1

 0

1
 0

1 0

x1

 x2

x3

x4

x5

x6

x7

am

as

ap

as

 ai x1 x2

x3x4

x5x6

x7

1

1/3
 1

1/3

 1
/3

1

a)

b)

Figure 4. A fragment of a graph-scheme (a) and the graph Gl (b)

a new state

� splitting transitions if necessary. Consider

PLA(9,8,25). In this case all constraints have been
satisfied (R=]log2M[=5, n-R=9-5=4, our graph Gl has
two non connected subgraphs, each subgraph
contains not greater than 4 vertices). Therefore it is
not necessary to delete some edges and to split
transitions. Suppose we want to use another
PLA(7,8,25). As a result it is necessary to cut Gl into
sub graphs containing not greater than two vertices
each (see figure 5,b). Now we have 4 sub graphs and
it is necessary to add three extra states (a20,a21,a22)
which are also shown in figure 1. For future
explanations and examples we will use PLA(9,8,25)
and figure 5,a;

a) b)

x2 x3

x6 x7

1 1

2

1

x1 x4

x8 x5

1

1

2

a21a22

Figure 5. The graph Gl built for the graph-scheme in figure 1
in case of using PLA with 9 inputs (a) and with 7 inputs (b).

x2 x3

x6 x7

2

11
1

x1 x4

x8 x5

1 a20

1

2

Adding new states: a20,
a21, a22 (see figure 1)

� building structural subtables. The number of

subtables is equal to T+1, where T is the number of
subgraphs in Gl (in our example we have 3
subtables). Each subtable has 7 columns which are
the following: am - is an initial state, Y - are active
outputs (for Moore machines the column Y can be
combined with the column am), K(am) is the code of

518REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996

am, as is the next state, K(as) - is the code of as,
X(am,as) - is a product of inputs that forces a
corresponding transition, F(am,as) are active lines
connected to a register (see figure 3). After the step 1
only columns am, Y, as, X(am,as) will be filled.
Tables 1-3 containts three structural subtables W1,
W2, W0 for our example. Subtables W1 (table 1) and
W2 (table 2) will be later used for programming PLA1
and PLA2 respectively. Subtable W0 (table 3)
includes just unconditional transitions which will
be later distributed between PLA1 and PLA2.

Table 1. W1
am, Y K(am) as K(as) X(am, as) F(am, as)

a1
Y0=E

00000 a1

a2

a5

a6

00000

0100-

10000

1100-

x x2 3
x x2 3
x x2 3
x x2 3

-

D2

D1

D1D2

a5 (Y1) 10000 a2

a6

a7

0100-

1100-

10001

x2
x x2 6
x x2 6

D2 D5

D1D2 D5

D1 D5

a7 (Y2) 10001 a2

a3

0100-

00001
x7
x7

D2 D5

D5

a8 (Y3) 01100 a9

a10

a11

00010

01010

10010

x6
x x6 7
x x6 7

D4

D2 D4

D1 D4

a10
(Y8)

01010 a12

a13

a14

00011

01011

10011

x2
x x2 7
x x2 7

D4D5

D2 D4D5

D1 D4D5

Step 2. State encoding (assignment). The objective is to
reduce the functional dependency of outputs on inputs.
This will allow us to reduce the number of output lines
used in programmable components, and to simplify the
scheme of the control unit. The method is based on the
use of special tables that on the one hand look like the
Karnaugh maps, but on the other hand are quite different
(they were introduced in [9]). Consider all transitions
A(am) from the state am. For any structural table the
following expression is true:

∨ ≡
∈a A a m s

s m

X a a
()

(,) 1

Consider all codes K(am,as) for which as<A(am). If for
given am bit k in all codes K(am,as) has values either 0
and don’t care (-), or 1 and don’t care, then k does not
depend on input variables from the set X [9]. It leads us
to the following method of coding. For each structural
subtable Wt (0<t≤T) it is necessary to find a bifurcation
πH

t ={Ht1,Ht2}, for which
Ht1∪Ht2=H={h1,...,hR}, Ht1∩Ht2=∅, and h1,...,hR -
correspond to bits 1,...,R of codes from column K(as),

H11∪...∪HT1=H, for all t∈{1,...,T}, |Ht1|=max. If
hr∈Ht2 then hr satisfies the requirement considered
above.
Figure 6 gives a simple example of state encoding, where

πH
1 ={{h1,h2},{h3,h4}}, πH

2 ={{h4},{h1,h2,h3}},

πH
3 ={{h3},{h1,h2,h4}}, |{h3,h4}|=2, |{h1,h2,h3}|=3

|{h1,h2,h4}|=3, {h1,h2}∪{h4}∪{h3}={h1,h2,h3,h4}=H
Table 2. W2

am, Y K(am) as K(as) X(am, as) F(am, as)
a2 (Y2) 0100- a1

a3

a4

a15

a16

a17

00000

00001

00100

00101

00110

00111

x1

x x1 4

x x x x1 4 5 8

x x x x1 4 5 8

x x x x1 4 5 8

x x x x1 4 5 8

-

D5

D3

D3D5

D3D4

D3D4D5

a3 (Y4) 00001 a8

a10

01100

01010
x8
x8

D2 D3

D2 D4

a4 (Y5) 00100 a18

a19

11010

11011
x1
x1

D1D2 D4

D1D2D4D5

a6 (Y3) 1100- a5

a11

10000

10010
x4
x4

D1

D1 D4

a9
(Y10)

00010 a15

a17

00101

00111
x5
x5

D3D5

D3D4D5

a11
(Y7)

10010 a3

a12

00001

00011
x1
x1

D5

D4D5

a12
(Y11)

00011 a7

a14

10001

10011
x8
x8

D1 D5

D1 D4D5

Table 3. W0
am, Y K(am) as K(as) X(am, as) F(am, as)
a13(Y5) 01011 a14 10011 1 D1D4D5

a14(Y9) 10011 a15 00101 1 D3D5

a15(Y6) 00101 a16 00110 1 D3D4

a16(Y7) 00110 a17 00111 1 D3D4D5

a17(Y3) 00111 a1 00000 1 -

a18(Y4) 11010 a19 11011 1 D1D2D4D5

a19(Y5) 11011 a1 00000 1 -

Finally the codes to be assigned enable for each am select
a proper transition to as using only bits K(am,as) from Ht1.
In order to perform state assignment, according to the
rules considered above, we can use spesial tables μt [9],
shown in figure 6 (table μt is used for the structural table
Wt). Rows of each table μt correspond to various possible

REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996 519

codes of Ht1; columns of each table μt correspond to
various possible codes of Ht2; all states of Wt from each
set A(am) must be accommodated in the same column of
μt. Figure 7 demonstrates states encoding for our example.
All subsets A(am) are highlighted either with grey shading
or with a double arrow header line pointing to
corresponding states. The resulting codes are placed in
columns K(am), K(as) of our tables (see tables 1-3). The
tables μ1 and μ2 have been filled with the states according
to the algorithm [4,9]. The bits of codes that depend only
on states and don’t depend on inputs are highlighted in the
columns K(as). The columns F(am,as) have been filled with
characters D1,...,D5 on the assumption that the register in
figure 3 is being composed of D flip-flops. The values of
the components D1,...,D5 that depend only on states are
highlighted in the columns F(am,as);

A

 A

h3h4 00 01 10 11 h1h2h3 000 001 010 011 100 101 110 111

Figure 6. State encoding and PLAs programming

am K(am) as K(as) X(am,as)
a3 010- a2 00 01 x3
 a3 01 0- x3x4
 a4 10 01 x3x4

a7 0010 a4 100 1 x1
 a10100 0 x1

a2 0001 a1 00 0 0 x5
 a7 00 1 0 x5

a3x3x4 D2
a3 x3x4 D1
a7 D1

a7x1 D4
a3 D4

 a2x5 D3

A

PLA1

PLA2

PLA3

a2
a3
a4

h1h2

00
 01

10
11

 a10
 a2 a3 a4

 h4

0

1

W1

W2

W3

A={a1,...,aM}

μ1

μ2

a1 a3 a9 a12
a2 a2 a10 a13
a5 a7 a11 a14
a6 a6

 00
 01
 10
 11

h1h2

h3h4h5 000 001 010 011 100 101 110 111

a1 a2 a5 a6
a3 a2 a7 a6
a9 a10 a11 a18
a12 a13 a14 a19
a4 a8
a15
a16
a17

h3h4h5

h1h2 00 01 10 11

000
001
010
011
100
101
110
111

a) b)

Figure 7. Encoding tables: a) for the first structural table;
b) for the second structural table

repearted states

μ1

μ2

The code of the state a17 is: 00111.

Finally the PLA1 has outputs D1,D2 and the PLA2 -

outputs D3,D4,D5. We have occupied 2+3=5 outputs and
6+5=11 outputs are still free and can be used for
assignment variables from the set Y. Fragments marked
with 1 in figure 8 show the implementation of non
highlighted functions D1,D2 from the table W1 for the
PLA1 and non highlighted functions D3,D4,D5 from the
table W2 for the PLA2.The highlighted functions D1,D2
from W2 and W0 (tables 2,3) are implemented in the PLA1
according to the following table:

state state code D1D2
a13 01011 1 0
a18 11010 1 1
a3 00001 0 1
a4 00100 1 1
a6 1100- 1 0
a12 00011 1 0

The highlighted functions D3,D4,D5 from W1 and W0
(tables 1,3) are implemented in the PLA2 according to the
following table:

state state code D3D4D5
a13 01011 0 1 1
a14 10011 1 0 1
a15 00101 1 1 0
a16 00110 1 1 1
a18 11010 0 1 1
a5 10000 0 0 1
a7 10001 0 0 1
a8 01100 0 1 0
a10 01010 0 1 1

Now we can minimise D1,...,D5:
state code D1D2 state code D3D4D5
 0-011 1 0 0101- 0 1 1
 11010 1 1 10011 1 0 1
 00001 0 1 00101 1 1 0
 00100 1 1 00110 1 1 1
 1100- 1 0 11010 0 1 1
 1000- 0 0 1
 01100 0 0 1
Fragments marked with 2 in figure 8 show the

implementation of the highlighted functions D1D2 from
the tables W2, W0 for the PLA1 and the highlighted
functions D3D4D5 from the tables W1, W0 for the PLA2.
 Step 3. Combinational logic optimization and

designing the final scheme. The main ideas are based on
a special decomposition aimed at using predefined frames
in spite of constructing schemes with an arbitrary
structure. Dependent on the particular structure to be
selected, the following methods can be applied:
distribution of variables (usually output variables) among
components; adding new components and reorganizing
the previous distribution; boolean function minimisation.
Suppose that our micro instructions are the following:

Y0=∅, Y1={y4,y7,y9,y11}, Y2={y1,y3,y7}, Y3={y4},
Y4={y5,y8}, Y5={y1,y9}, Y6={y10}, Y7={y5,y6},
Y8={y3,y7,y11}, Y9={y2,y5,y6,y8}, Y10={y2,y5,y10},
Y11={y2}. Let us attempt to distribute 11 output variables
y1,...,y11 among 11 free outputs of the PLA1 and the PLA2.
We can use for these purposes the method suggested in
[3]. Consider such sets of states Qt, t=1,...,T which can be
recognised on the outputs of our PLAs after their
preliminary programming (see fragments 1 and 2 in figure
8). These sets are given below in the form
[state(s)]code_of_the_state(s) for the PLA1 and the PLA2
respectively:

520REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996

Q1={[a12∨a13]0-011, [a18]11010, [a3]00001, [a4]00100, [a6]1100-, [a5]10000};

AND array

OR array

AND array

OR array

D1

D2

D3

D4

D5
Register

x2
x3
x6
x7

x1
x4
x5
x8

y1y3y4y7y9y11

y2y5y6y8y10

τ5

τ4

τ3

 τ2

 τ1

PLA2

PLA1

Figure 8. Final scheme of the control unit, described in figure 1

x

x

x
x

x
x

5
4
3

1
2

22

2222

222

333
333

111 11

Q2={[a13∨a10]0101-, [a14]10011, [a15]00101, [a16]00110,

[a18]11010, [a5∨a7]1000-, [a8]01100, [a3]00001,
[a4]00100, [a9]00010, [a11]10010, [a12]00011}.
For each set Qt consider the set Et that contains elements

written in the form: output_variable(the set of states in
which the output_variable has an active value). If the
state(s) in Et belong(s) to one element of Qt then we strike
out it (them). The sets E1 and E2, built for our example,
are the following:
E1={y1(a2,a4,a7,a13,a19), y2(a9,a12,a14}, y3{a2,a7,a10),

y4(a5,a6,a8,a17), y5(a3,a9,a11,a14,a16,a18), y6(a11,a14,a16),
y7(a2,a5,a7,a10), y8(a3,a14,a18), y9(a4,a5,a13,a19), y10(a9,a15),
y11(a5,a10)};
E2={y1(a2,a4,a7,a13,a19), y2(a9,a12,a14}, y3{a2,a7,a10),

y4(a5,a6,a8,a17), y5(a3,a9,a11,a14,a16,a18), y6(a11,a14,a16),
y7(a2,a5,a7,a10), y8(a3,a14,a18), y9(a4,a5,a13,a19), y10(a9,a15),
y11(a5,a10)};
If all states in Et for ym are struck out, then ym can be

assigned to an output of the PLAt [3] without the use of
any new products. When we apply this rule, the variables
y2, y5, y6, y8, y10 will be assigned to outputs of the PLA2
(see the right fragment 3 in figure 8). After that all outputs
of the PLA2 are occupied.
Micro operations y1, y3, y4, y7, y9, y11 to be left can be

considered as boolean functions of the variables τ1,...,τ5
which can be expressed after minimisation in the form of
the following matrixes:
 y1 y3 y4 y7 y9 y11

10001 1 1 0 1 0 0

0100- 1 1 0 1 0 0
-1011 1 0 0 0 1 0
01010 0 1 0 1 0 1
01100 0 0 1 0 0 0
00111 0 0 1 0 0 0

These matrixes can be directly realised in PLA1 (see the
left fragment 3 in figure 8). If some constraints for outputs
and (or) products of PLAs are not satisfied we can apply
other methods, considered, for example in [3,4]. They are
aimed at adding new components and reorganising the
previous assignment.

IV. SYNCHRONISATION PROBLEM

Let’s return to Step 1 (see section III). Suppose we want
to use another PLA(7,8,25). In this case the graph Gl, has
to be cut into 4 sub graphs, shown in figure 5,b. As a
result we are adding three extra states (a20, a21, a22) in
figure 1 and we are splitting some previous transitions.
Consider, for example, the transition from a5 to a7 (see
figure 9). Before splitting we had just one transition
(a5→a7) and after splitting we have two transitions
(a5→a22→a7). The final duration of the transition from a5
to a7 has been increased twice. If it causes a problem we
should change duration of the second transition (a22→a7).
The main idea is the following. Consider the set of states
A=Ar∪Ae, where Ar is the set of original states and Ae is
the set of extra states. For our example we have: Ar
={a1,...,a19}, Ae ={a20,...,a22}. Let us divide all transitions

REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996 521

into two groups. The first group is composed of
synchronous transitions from am∈Ar. The second group
is composed of asynchronous transitions from ai∈Ae.
Asynchronous transitions are performed immediately after
setting the register (see figure 3) in any state ai∈Ae and
independently of clocks. The combinational part of the
finite state machine has special output (indicator) which
indicates setting the register in extra states. The signal
from the indicator is used either to force an asynchronous
transition or to decrease the duration of the clock for the
next transition [6] (see figure 10). The last idea is also
used for changing frequency of clocks if we want to
change duration of various macro instructions. We can
use for these purposes different engineering decisions
(considered, for instance, in [6]) or self-synchronous
approach.

a5
a7

a5 a7

a22

x x2 6

 t

 t t

2t

x2 x6

Figure 9. Transitions splitting problem

Indicator:5

Extra state

Combinational scheme Register

 x1 xL

y1 yN

 τ1 τR

D1 DR

 Clocks
generator

clocksIndicator

Figure 10. Changing clocks duration or making asynchronous transitions

Indicator
a A
a A

i e

m e
=

⎧
⎨
⎪

⎩⎪

∀ ∈
∀ ∉

1
0

V. MULTILEVEL SCHEMES BASED ON PREDEFINED FRAMES

All multilevel schemes are based on the one-level
scheme, shown in figure 3. The combinational part in
figure 3 can be built from various reprogrammable
elements, such as PLAs, PALs, ROMs, GALs and other
PLDs. The common structure of the multilevel scheme is
given in figure 11. Two non filled blocks of the structure
(combinational scheme and register) are taken from figure

3 with all the necessary connections. There are also three
additional blocks that are a Coder (C), a Selector (S) and
a Decoder (D). These blocks can be either included onto
the final structure or not, depending on the approach
which we are going to use for logical synthesis [4,10].

c

c

d

d

b

Combinational scheme Register

a

Decoder (D)

N

N

Y1

Y2

Figure 11. Common structure of the multilevel scheme

Coder (C)

p1 pG

Selector (S)

γ1

γΤ

e
z1 zζ

D1 DR

 τ1 τR

P

P

X0

X1

ω1

ωr

η1 ηf

F

The first approach is related to micro instruction
encoding [4]. In this case we will use only one additional
block D which can be constructed from either PLD [4] or
standard decoders [11]. The connections b, c, d will be
eliminated from figure 11 and the final scheme will be
composed of the one-level sub scheme and the block D
with the connections e. The process of synthesis can be
separated into the following steps.
Step 1. Building sub tables W0,W1,...,WT (see section III,

step 1).
Step 2. State encoding (see section III, step 2).
Step 3. Micro instruction encoding. The characters

Y1,...,YM are assigned codes containing ζ=]log2M[bits,
where]a[is the nearest integer greater than or equal to a.
The combinational scheme generates components z1,...,zζ
for the codes. The block D converts the codes to the
corresponding values of micro operations. Some of the
micro operations can be either assigned or not on outputs
of the combinational scheme (see subset Y1 in figure 11).
Finally Y1∪Y2=Y={y1,...,yM}. In order to perform micro
instruction encoding we can apply the same method that
has been already considered for the state encoding (see
section III, step 2).
Step 4. Distributing micro operations between subsets Y1

and Y2 (if necessary). For these purposes we can use the
approach to be considered in the section III (see section
III, step 3).
If we intend to build D from standard decoders, it is

worth-while to minimise the total number of decoders.
The corresponding task can be transformed into building
and colouring the special graph which reflects the
relationships between various micro operations [11].
The second approach is aimed at structural table lines

encoding [10]. In this case we will also use only block D
which can be based on PLD (ROM in particular). The
connections a, c, d will be deleted from figure 11 and the
final scheme will be composed of the one-level sub

522REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996

scheme and the block D with the connections b and e. The
process of synthesis can be separated into the following
steps.
Step 1. Building sub-tables W0,W1,...,WT (see section III,

step 1).
Step 2. Structural sub-table lines encoding. Each line of

such sub-tables is assigned a token ei∈{e1,...,eI}, where I
is the total number of lines in all structural sub-tables
W0,W1,...,WT (see the column Ei of the tables 4-6 below).
The characters e1,...,eI are assigned codes containing
ζ=]log2I[bits. The combinational scheme generates
components z1,...,zζ for the codes. The block D converts
the codes to the corresponding values of D1,...,DR and
micro operations from the set Y2. As before, some of
micro operations can either be assigned or not on outputs
of the combinational scheme (see subset Y1 in figure 11).
In order to perform line encoding, we can use the same
method that has been already considered for state
encoding (see section III, step 2). For instance, the results
of line encoding for tables 4-6 is demonstrated in figure
12.
Step 3. Distributing micro operations between subsets Y1

and Y2 (if necessary). For these purposes we can use the
approach to be considered in section III (see section III,
step 3).

Table 4. W1
am K(am) as K(as) Ei X(am,

as)
P(am,

as)
a1

0000- a1

a2

a5

a6

0000-

010-0

10-00

110-0

e1

e2

e3

e4

x x2 3
x x2 3
x x2 3
x x2 3

01

00

10

11

a5 10-00 a2

a6

a7

010-0

110-0

1001-

e5

e6

e7

x2
x x2 6
x x2 6

10

01

00

a7 1001- a2

a3

010-0

00010

e8

e9
x7
x7

01

00

a8 00101 a9

a10

a11

00100

0110-

11100

e10

e11

e12

x6
x x6 7
x x6 7

00

10

11

a10 0110- a12

a13

a14

01011

00011

11011

e13

e14

e15

x2
x x2 7
x x2 7

10

01

00

Table 5. W2

am K(am) as K(as) Ei X(am,
as)

P(am,
as)

a2 010-0 a1

a3

0000-

10001

e16

e17
x1

x x1 4

10

01

am K(am) as K(as) Ei X(am,
as)

P(am,
as)

a20 11001 e18 x x1 4 00

a20 11001 a4

a15

a16

a17

00110

01110

10110

11110

e19

e20

e21

e22

x x5 8

x x5 8

x x5 8

x x5 8

00

01

10

11

a3 10001
00010

a8

a10

00101

0110-

e23

e24
x8
x8

01

00

a4 00110 a18

a19

10101

11101

e25

e26
x1
x1

01

00

a6 110-0 a5

a11

10-00

11100

e27

e28
x4
x4

01

00

a9 00100 a15

a17

01110

11110

e29

e30
x5
x5

01

00

a11 11100 a3

a12

10001

010-1

e31

e32
x1
x1

01

00

a12 010-1 a7

a14

1001-

11011

e33

e34
x8
x8

01

00

Table 6. W0
am K(am) as K(as) Ei X(am,

as)
a13 00011 a14 11011 e35 1

a14 11011 a15 01110 e36 1

a15 01110 a16 10110 e37 1

a16 10110 a17 11110 e38 1

a17 11110 a1 0000- e39 1

a18 10101 a19 11101 e40 1

a19 11101 a1 0000- e41 1

It should be mentioned that block D is especially useful
for Mealy machines, because the values z1,...,zξ depend
on both states and input variables. These variables can be
directly used to generate micro operations on outputs of
block D in Mealy machines.
The third approach enables us to perform replacement

of input variables from the set X={x1,...,xN}. In this case
we will use only one additional block C which can be
constructed from either PLD [4] or standard multiplexers
[10]. The connections b, d, e will be eliminated from
figure 11 and the final scheme will be composed of the
one-level sub scheme and C with the connections c. The
process of synthesis can be separated into the following
steps.

REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996 523

e1 e8

e2 e9

e3 e10

e4 e11

e5 e12

e6 e13

e7 e14

e15

e1 e2 e3 e4 e5 e6 e7

e8 e9 e10 e11 e12 e13 e14 e15

e16 e19 e27 e33

e17 e20 e28 e34

e18 e21 e29

e23 e22 e30

e24 e25 e31

e26 e32

000

001

010

011

100

101

110

111
000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

μ1
μ2

000 001 111

Figure 12. Structural sub table lines encoding

h1h2h3

h4h5h6

h4h5h6

h1h2h3

E(am) - the set of lines for which am is an initial state
.....

Step 1. Building structural table for the given graph-

scheme. You can use for these purposes any known
method (see, for instance, [3]).
Step 2. Replacing input variables with new variables

from the set P={p1,...,pG}, G A a
a A

m
m

=
∈

]max|log ()|[2
. The

tables 4,5 above demonstrate such replacement (see the
column P(am,as)). As a result we have obtained the
following boolean functions:

p a x a x a x a x a x a x1 1 2 5 2 8 6 10 2 2 1 20 5= ∨ ∨ ∨ ∨ ∨ ;
p a x a x x a x a x x a x x
a x x a x a x a x a x a x
a x a x

2 1 3 5 2 6 7 7 8 6 7 10 2 7

2 1 4 20 8 3 8 4 1 6 4 9 5

11 1 12 8

= ∨ ∨ ∨ ∨ ∨
∨ ∨ ∨ ∨ ∨ ∨

∨ ;

Step 3. State encoding. The objective is minimising the
functions from the set P (the functions p1,...,pG). The
particular methods of encoding were considered in [4].
Step 4. Distributing micro operations between elements

of the first level (see the section III, step 3). The methods
of this step for Mealy machines were considered in [3,4].
The fourth approach is related to using of mutually

exclusive elements in the scheme of the first level [10]. In
this case we will use one additional block S which can be
constructed from either PLD or standard decoders. The
connections a, b, c, e will be eliminated from figure 11
and the final scheme will be composed of the one-level
sub-scheme and S with the connections d. Consider non-
intersecting subsets A1,...,AT and A1∪...∪AT=A. Let us
perform separate state encoding in each subset At. Usually
the length of code is less than in case of state encoding in
the total set A. Consider the set O={γ1,...,γT} of variables
such that γt=1 if and only if the control unit is in the state
am∈At, and γt=0 in the opposite case (t=1,...,T). As a
result, elementt knows a real state from the set A by
analysing both the state from At and γt (see figure 11). In
this case the number of inputs for each elementt of the
one-level scheme is equal to]log2|At|[+1 and often less
than R (especially for complex control units). The
methods of synthesis of such schemes were introduced in
[4,10]. The element F in figure 11 allows us to reduce the
total number of lines (r<R, f<R). For some schemes this
element denotes just special connections, for instance,

part ϑ1 of lines τ1,...,τR are connected to the combinational
scheme and another part ϑ2 to either the Coder or the
Selector. Depending on a particular scheme we can
provide either ϑ1∩ϑ2≠∅ or ϑ1∩ϑ2=∅.
The PLD can also include internal memory (internal

register). They are called programmable logic sequencers.
For such kinds of devices we can also consider one-level
and multilevel structures. The corresponding methods of
synthesis, based on using predefined frames, were
suggested in [12].

VI. TEMPLATES (PREDEFINED BASIC SCHEMES)

The idea of basic schemes for control units were
introduced in [13] and later developed in [3,4,14]. They
contain elements with changeable functions (like PLD)
which are initially undefined. All external connections of
elements are fixed and they can not be changed. Basically
each particular scheme can be considered as a template
for, generally speaking, an infinite number of different
applications. The customising of the base scheme
(implementing, for instance, a graph-scheme that
describes a particular algorithm of control) is carried out
by programming (reprogramming) its elements with
changeable functions.
In order to construct the basic scheme, it is necessary to

estimate all the likely constraints for future applications.
In other words we should define a class of applications
and the constraints for the class. These constraints are the
following [4]: the maximum number of input variables
Lmax; the maximum number of output variables Nmax, the
maximum number of states Mmax, the maximum number of
flip-flops in the register Rmax, the maximum number of
lines in the total structural table, etc. Consider, for
example, the one-level basic scheme suggested in [13]
(see the figure 13).
The combinational part of the scheme is composed of

PLAs and ROMs (the ROMs are used just in order to
generate values of output variables and functions
Dr+1,...,DR). The number of PLAs and ROMs is calculated
by evaluating the given constraints. The value r
determines the maximum number of transitions σ from
one state (σ≤2r). In order to fix this value we can also test
our constraints. The possible superfluity is eliminated by
installing just the elements used in a particular scheme
and erasing all extra components that are not required.
This is possible without changing connections between
elements. All assertions related to the scheme in figure 13
were proved in [4,13]. So we just demonstrate how to
apply known methods in order to implement given graph-
scheme (see figure 1) in the basic scheme (see figure 13)
with the following parameters: T=2, Q=1, r=2, R=5,
PLA(10,5,25), ROM(5,10), where for the ROM were
given the number of inputs or address size (5) and the
number of outputs (10).

524REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996

PLA1 PLAT Register ROM1 ROMQ

Figure 13. One-level basic scheme

P PX1 XT

D1 DR

Dr Dr+1

τ1 τR

N N N N
Y1 YT YT+1 YT+Q

The methods, considered in [4,13], include the following

sequence of steps.
Step 1. Building sub tables W0,W1,...,WT.
Step 2. State encoding.
Step 3. Distributing output variables and designing the

final scheme.
In order to build sub tables W0,W1,...,WT we can use the

basic approach considered in Section III with trivial
modifications [4,13]. Because r=2 it is not possible to
perform six transitions from the state a2 (see table 2). So
we have to split these transitions using the rules [4]. As a
result a new state a20 has been added.
The step 2 has some distinctions which are explained

below in detail. Consider the graph Gξ which reflects the
following relationships:

(amξas) ⇔ A(am) ∩ A(as) ≠ ∅.
Vertices of Gξ correspond to states from the set A. Two

vertices am and as are connected with an edge if and only
if (amξas). Each vertex am has been added with the set
A(am) and all vertices for which |A(am)|<2 have been
eliminated. Each edge has been assigned the set A(am,as)
which is determined as follows: A(am,as)=A(am)∩A(as).
The final graph Gξ is shown in figure 14.
Let us build a new compressed graph ~Gξ which contains

joined vertices of the Gξ. The vertices am, as,...,ak can be
joined if and only if |A(am)∪A(as)∪...∪A(ak)|≤2r. If am,
as,...,ak are joined, the new common vertex corresponds to
the set A(am)∪A(as)∪...∪A(ak). Each edge of the ~Gξ

connected vertices vm and vs has the weight ρ(vm,vs)
which is calculated as follows:

 ρ(vm,vs) = | ()|
(,)

A ak
a A v vk m s∈

∑ ,

where A(vm,vs) is the set of common states in vertices vm
and vs.
The final graph ~Gξ is shown in figure 15. Let us mark

the number of vertices of ~Gξ with δ. Our task can be

solved if δ≤2R-r. In the most circumstances we can satisfy
this constraint. In [4,13] was proved that the problem of
state encoding can be transformed into the mapping of

the graph ~Gξ onto an R-r dimensional cube Cμ (see

figure 16,a). If we are able to solve this task we can
directly fill the single encoding table μ (see figure 16,b).

Figure 14. Graph Gξ

a1 a7a2

a5 a6 a11

a8 a3

a10

a12

a20 a9

a4

a1a2a5a6
 a1a3a20

a2a3

a2a6a7

a5a11

a3a12

a7a14

a18a19

a12a13a14

a9a10a11 a8a10 a4a15a16a17 a15a17

a15a17

a1

a2

a2a6

a
5

a3

a 2
a7a

3
a3

a11

a10

a12

a14

 Some states, such as a1, a2, a12, a10, a7, a5, a6, are repeated
in the table μ twice. They are located in neighbouring
corners of Cμ and therefore, they are assigned the codes
having don’t care components. Just one (underlined) state
a3 is located in the diagonal of Cμ and a3 was assigned
two different binary codes that are 10001 and 00010. This
is allowed, but all transitions from the state a3 are repeated
twice (from two states 10001 and 00010). That is why
when we map the ~Gξ onto the Cμ we aspire to minimise

the total weight of diagonal (non neighbouring) edges [4].

a1 a6a8 a3a4

a5a7

a2a11

a10a12

a9a10

a1a2a5a6 a5a9a10a11 a8a10a18a19

a4a15a16a17

a1a3a12a20

a2a3a6a7

a7a12a13a14

a5 (3) a10 (3)

a
1 (4)a2a6 (5)

a3 (2)

a7 (2) a 12
 (2

)

Figure 15. Compressed graph

| ()|A am
r

a vertexm

≤
∈

2∪

~Gξ

The results of state encoding are shown in the columns
K(am), K(as) of the tables 4-6. All bits whose values don’t
depend on input variables are highlighted with a bold
font.
The step 3 can be performed using the basic approach

considered in Section III. Finally our scheme consists of
two PLAs and one ROM. The PLAs can be directly
programmed using the tables 4-6 and explanations given
in Section III. Figure 17 demonstrates the ROM to be
programmed just for the outputs D3, D4, D5. Consider
some examples of programming. For all transitions from
the state a5 we must set D4=1, D3=D5=0. Because the third
bit of a5 has don’t care value we are using two addresses

REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996 525

of the ROM 10000 and 10100. For both addresses we are
programming outputs as 010. For all transitions from the
state a3 we must set D3=D5=1, D4=0. Because the state a3
has two codes (each of them indicates the same state a3)
we are using two addresses of the ROM 10001 and
00010. For both addresses we are programming outputs as
101. The same approach has been used to implement the
transition from the set a3 in the PLA2.

000 001

010 011

100 101

110 111

a1 a2a11

a5a7 a10a12

a6a8 a3a4

a9a10

Mapping

a1a2a5a6
a1a3a12a20

a2a3a6a7
a7a12a13a14

a5a9a10a11 a8a10a18a19

a4a15a16a17

a1
a2a6

a5

a3
a7

a12

a10

a1 a1 a3 a13 a9 a8 a4

a2 a12 a2 a12 a10 a10 a15

a5 a3 a7 a7 a5 a18 a16

a6 a20 a6 a14 a11 a19 a17

h1h2

h3h4h5 000 001 010 011 100 101 110 111

00

01

10

11

a)

b)

Figure 16. Mapping of the graph onto the cube Cμ (a) and table μ (b)

~Gξ

~Gξ

μ

Cμ

 All predefined frames, considered in Section V, can also
be investigated as a foundation for multilevel basic
schemes. Some of them were suggested in [3,4]. Let’s
examine, for example, the basic scheme shown in figure
18 and based on the one-level scheme and the block C
(see figure 11).

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

Decoder

τ1
τ2
τ3
τ4
τ5

Figure 17. The ROM of the basic scheme to be programmed for D3-D5

D3 D4 D5

00000
00010
00100
00110
01000
01010
01100
01110
10000
10010
10100
10110
11000
11010
11100
11110

00001
00011
00101
00111
01001
01011
01101
01111
10001
10011
10101
10111
11001
11011
11101
11111

The PLAs (PLA1,...,PLAT) are being considered as a

PLA(z,q), where z=n+m - the total number of external
pins which are either inputs or outputs. The ROMs
(ROM0,ROM1,...,ROMQ) are being considered as a
ROM(n,m), where n - is the number of inputs (an address
size) and m - is the number of outputs. They are used in
order to generate values of the functions D1,...,DR and
output variables from the set Y. The basic function of the
PLAs are a replacement of variables from the set X with
new variables from the set P and |X|>>|P|.
The input lines of ROM0 are p1,...,pG,τ1,...,τR. Some of

the lines p1,...,pG can be logically connected to the lines

τ1,...,τR providing the function OR. Such connections are
admissible if and only if there is no ambiguity between
various transitions. The obvious way to prevent ambiguity
is the following. Consider a vector with the elements
τ1,...,τr,cr+1,...,cR, pR-r+1,...,pG, where cr+1,...,cR are common
variables. Suppose we are taking into account all
transitions from a state ~a having the code
~τ 1... ~τ r

~τ r+1... ~τ R and ~τ r+1=...= ~τ R=0. If the vector
~τ 1... ~τ r

~τ r+1... ~τ R can be unambiguously identified
(recognised) by examining just the components ~τ 1... ~τ r
then all transitions from the ~a can also be
unambiguously identified by examining the vectors
τ1,...,τr,cr+1,...,cR,pR-r+1,...,pG. Finally it follows that all
vectors coming to the inputs of ROM0 that provide
different transitions, must be orthogonal. The problem of
searching for orthogonal vectors that satisfy the
requirement mentioned above is not so difficult, and can
be resolved when we are carrying out the state encoding.

PLA1 PLAT Register ROM1 ROMQ

Figure 18. Two-levels predefined (basic) scheme

P PX1 XT

τ1 τR

N
YT+
1

YT+Q

ROM0

N

N N
{Y1 YT

Y0

D1 DR

p1

pG

S

address

The scheme in figure 18 can be used for many

applications (for implementing many different algorithms
of logical control). Therefore we have to define its basic
parameters (see the beginning of this section). For
instance, in order to define the number of new variables G
we should estimate the maximum number of transitions
from any one state in future algorithms (graph-schemes).
Suppose we have already built the basic scheme with the

structure shown in figure 18, that has the following
predefined parameters: R=5, G=2, PLA(15,20),
ROM(6,16), the pins τ5 and p1 are logically connected.
The synthesis of the control unit for the given graph-
scheme (see figure 1) can be separated into the following
steps.
Step 1. Marking the given graph-scheme for designing

either the Moore machine (see the section III) or the
Mealy machine [3]. Building the structural table.
Step 2. Replacing variables from the set X with variables

from the set P (see the section V).
Step 3. State encoding. The objective is to optimise

(usually to minimise) the functions p1,...,pG and to satisfy
the requirements considered above at this section.

526REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996

Step 4. Micro operation assignment and synthesis of the

final scheme.
Suppose we have already built the structural table and

performed input variable replacement (see tables 4-6). For
our current task we can consider the three tables as a
single one (because we can use just one PLA). The results
of state encoding, which satisfy all the necessary
requirements (see the step 3), are shown in the Karnaugh
map in figure 19. The final scheme is composed of two
PLDs. The first one is the PLA and the second one is the
ROM. Figures 20, 21 demonstrate the results of PLD
programming (see figure 20 for the PLA and figure 21 for
the ROM). The states, from which only unconditional
transitions are being performed have been underlined in
the right part of figure 21. Two neighbouring horizontal
lines of ROM with addresses XXXXX0 and XXXXX1
will be programmed identically for such states.
The functions p1 and p2 are the following (they were

taken from the section V and minimised):
p x a x a x a x1 3 4 5 2 8 6 2 1 20 5= ∨ ∨ ∨τ τ τ ;

p x x a x a x x
a x a x x a x x a x x a x a x

2 3 4 5 8 1 2 3 4 1 1 3 5 2 6

7 7 8 6 7 10 2 7 2 1 4 6 4 9 5

= ∨ ∨ ∨ ∨
∨ ∨ ∨ ∨ ∨
τ τ τ τ τ τ τ

;

00

01

11

10

00

01

11

10

00 01 11 10

00 01 11 10τ1τ2

τ1τ2

τ3τ4

τ3τ4

τ5=0

τ5=1

a1

a5

a10

a7

a8

a4

a2

 a6

a11

a9

a20

a3

a12

a14

a16

a15

a17

a18

a13

a19

Figure 19. The Karnaugh map for states encoding

reserved for new
variable p1

Don’t care
(it is not allowed
to use)

VII. EXCEPTION HANDLING

Exceptions indicate something unusual or unexpected in
an execution unit. They are caused either by errors or by
something that requires an immediate assistance.
Exceptions are detected in an execution unit during run-
time and are indicated by special variables from the set X.
If an indicator is in active state, the control unit
immediately interrupts the executing of the control
algorithm and handles the respective exception. After the
exception has been handled, the control unit continues the
execution of the algorithm from the interrupted point. If
the control unit has no idea how to cope with an exception
it indicates an unrecoverable error requiring external
assistance.
A scheme which supports an exception handling

mechanism is shown in figure 22. The memory of the

scheme has a multilevel structure (it may be based on a
stack [15], for instance). If any exception has taken place,
the memory is switched to the level which is responsible
for exception handling. After an exception is being
handled the memory will be switched back to the
interrupted point of the main algorithm. These actions are
similar to push and pop operations with a stack.

Figure 20. The programming of PLA for the two-levels basic scheme
(see figure 18)

τ1
τ2
τ3
τ4
τ5
x1
x2
x3
x4
x5
x6
x7
x8

p1
p2

Decoder

000000
000011
000110
001000
001010
010000
010010
010101
010111
011001
011011
011101
100001
100100
101000
101010
110010
110100
110110
111010
111100

000010
000100
000111
001001
001011
010001
010100
010110
011000
011010
011100
100000
100010
100101
101001
101011
110011
110101
110111
111011
111101

a1

a8

a20

a5

Figure 21. The prog-
ramming of ROM
for the two-levels

basic scheme
(see figure 18)

a4

D1 D2 D3 D4 D5

a11
a3
a14
a18
a10
a2
a12
a15
a7
a6
a9
a16
a13

τ1
τ2
τ3
τ4

ORτ5
p1

p2

In order to design a control unit based on stack memory
we can invoke the general approach suggested in [4,7,15].
It provides a way of explicitly separating an exception
handling algorithm (graph-scheme) from an ordinary
algorithm (graph-scheme).

IIX. INHERITANCE AND PROTECTION

There is only one known basic way of dealing with
complexity: “Divide and conquer”. This famous idea can
be applied in a variety of ways. A complex hardware unit
in general has a hierarchical structure of control and can
be seen in different levels of abstraction, such as micro
operations level, macro operations level, etc. For
example, for the computer we can distinguish micro
operations, assembly language instructions, operating
system service functions (application programming
interface), etc. As a result we are representing a process of
controlling in a different hierarchical levels. In each

REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996 527

particular level we can distinguish between the outside
view and the inside view of the control part (generally
speaking this part can be considered as either a hardware
unit or a software component). The interface of a control
part provides its outside view and therefore emphasises
the abstraction while hiding its structure. By contrast, the
implementation of a control part is its inside view, which
encompasses the secrets of its behaviour. The interface
can be divided into accessible, partially accessible and
non accessible parts (compare this with public, protected
and private declarations in object-oriented programming).
In general they respectively denote the following: “can be
directly used in any level”; “has some predefined
restrictions for using in various levels”; “can be used only
at the same level”.

Begin

x2

x3x3

x1

x4

x5

x8 x8

a1

a2

a3

a4

x2
x6

a5

a6
a7

x7

x4 x8

a8

x6

a9
a10

x7

a11

x1

a12

x2

x7

x5

a13 a14

a15

a16

a17

x1

a18

a19

End a1

x8

1 0

1 0

0

1

1 0

1 0
a20

0

1

0 1

0

1

0

1

0

1

10
1

0

1

0

0
1

1

0

1
0

0
1

0
1

Y1
Y2

Y3

Y4

Y2

Y5

Y3

Y3

Y6

Y7

Y8

Y5 Y9

Y10

Y4

Y5

Y7

Y11

Y0

Figure 1. An example of graph-scheme

 10

0

1

 1
0

a21

a22

The main register

The register that
supports exception

handling mechanismCombinational scheme
push

pop

τ1,...,τR

D1,...,DR

X

Y

Figure 22. Providing exception handling mechanism

Begin

End

x1

x2

x3

 x4

x1

x5

y1,y2

 y2,y3,y4

 y3,y7

 y6

 y1,y5

 z1,z2

t1

t2

t1

t1

t3

0

 1

0

0

0 0
0

 1

 1

 1

 1
 1

Figure 1.

The main
graph-scheme

The graph-
scheme for
exception
handling

stack
memory

set

When we are building a hierarchy we are dealing with

inheritance which can be considered as a basic way to
represent multilevel abstractions. The purpose of
inheritance is to provide a commonality of representation
and a calling interface.
The approach to be considered can be applied to

multilevel hierarchical digital control units. Their
behaviour can be described by hierarchical graph-
schemes [7]. However it is necessary to solve some new
problems, which are the following:
� how to provide support for inheritance making it

possible for upper levels to share the structure and/or
behaviour in one or more lower levels (denoting
single inheritance and multiple inheritance
respectively);

� how to provide protection for various operations
from unauthorised access;

� how to provide logical synthesis of hierarchical
systems at a hardware level;

� how to construct derived instructions that allow us to
add new facilities to existing instructions without
redesigning the control unit or with minimal efforts.

This approach directly invokes the basic ideas of object-
oriented programming [16,17] and can be based on: using
predefined frames and templates, considered above;
hierarchical descriptions of control algorithms [4,5,7] and
general ideas of papers [18,19]. The paper [18] has

attempted to provide possible changes in designed control
units based on PLDs. The objective is to supply all
changes in existing PLDs that have been already
programmed. The paper [19] combines using
microprocessors in the upper level of control and PLD
based control units in the lower level.

IX. RUN-TIME SUPPORT

Let us return back to Section I where the following
problem was presented: for a given set of instructions
�={�1,...,�k} and constraints M={M1,...,Mp}, design the
control unit which will perform � and satisfy the set of
conditions, M. Consider multilevel description of �
which is the following �=�0∪�1∪...∪�h where the set
�0 includes instructions of the level 0, �1 includes
instructions of the level 1,..., �h includes instructions of
the level h (see figure 23).
Let us look at instruction �i∈�j (j>0). The �i have

been described by a graph-scheme Γi of the level j. The
graph-scheme incorporates micro operations, logical
conditions and macro operations. Each macro operation
has been described by a graph-scheme of lower levels. So
we can say that Γi encapsulates input and output
variables (see figure 23) and complex operations (macro
operations) which can be viewed as control functions
(compare it with encapsulation in object-oriented
programming). Finally encapsulation allows us to separate
the purpose of an instruction from its implementation. In
other words we want to focus on what the instructions do
instead of on how to implement them.
The macro operations can be either fixed or non fixed in

the control unit (see figure 23). In the first case the control
unit has been completely designed. In the second case it
incorporates additional components which can be
programmed during run-time and can be loaded with
converted graph-schemes for implementing new
instructions from the set �. Generally speaking the set �
can even be extended after the control unit has been
designed and produced. This idea is similar to run time
support in object-oriented programming (early binding
and late binding in particular). It leads us to virtual
instructions definition which is closely related to virtual
states of the finite automata. Such states are not fixed and
can be changed during execution time (compare this with
virtual functions in object-oriented programming). It
should be mentioned that the basic schemes considered
above are mainly based on such PLDs as ROM that can
be directly replaced with RAM which can be loaded and
reloaded during run time.

528REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996

Execution Unit
 Datapath

Control Unit

Output variables

 y1

yMMicro operations

Input variables
x1

xLLogical conditions

Yj Yi Yk
Micro instructions

.......
�z

�⌧

�a

Instructions from
the set �

Levels of instructions from the set � :

fixed
non
fixed

Begin

End

x1

x2

x3

 x4

x1

x5

y1,y2

 y2,y3,y4

 y3,y7

 y6

 y1,y5

 z1,z2

t1

t2

t1

t1

t3

0

 1

0

0

0 0
0

 1

 1

 1

 1
 1

Figure 1.

Begin

End

x1

x2

x3

 x4

x1

x5

y1,y2

 y2,y3,y4

 y3,y7

 y6

 y1,y5

 z1,z2

t1

t2

t1

t1

t3

0

 1

0

0

0 0
0

 1

 1

 1

 1
 1

Figure 1.

Level 0 includes instructions that have been described
 by graph-schemes containing micro
 operations and logical conditions

Begin

End

x1

x2

x3

 x4

x1

x5

y1,y2

 y2,y3,y4

 y3,y7

 y6

 y1,y5

 z1,z2

t1

t2

t1

t1

t3

0

 1

0

0

0 0
0

 1

 1

 1

 1
 1

Figure 1.

Begin

End

x1

x2

x3

 x4

x1

x5

y1,y2

 y2,y3,y4

 y3,y7

 y6

 y1,y5

 z1,z2

t1

t2

t1

t1

t3

0

 1

0

0

0 0
0

 1

 1

 1

 1
 1

Figure 1.

Level 1 includes instructions that have been described
 by graph-schemes containing micro
 operations, logical conditions and
 instructions of level 0 { Begin

End

x1

x2

x3

 x4

x1

x5

y1,y2

 y2,y3,y4

 y3,y7

 y6

 y1,y5

 z1,z2

t1

t2

t1

t1

t3

0

 1

0

0

0 0
0

 1

 1

 1

 1
 1

Figure 1.

Begin

End

x1

x2

x3

 x4

x1

x5

y1,y2

 y2,y3,y4

 y3,y7

 y6

 y1,y5

 z1,z2

t1

t2

t1

t1

t3

0

 1

0

0

0 0
0

 1

 1

 1

 1
 1

Figure 1.

Level h includes instructions that have been described
 by graph-schemes containing micro
 operations, logical conditions and
 instructions of levels 0,...,h-1

Figure 23. Multilevel description of the set �

Currently PLDs are manufactured by many famous

companies, such as Intel, AMD, Monolithic Memories,
etc. The comparison of various PLDs was given in [20],
where you can also find different details. Programming of
PLDs is achieved using various memory technologies
such as fuses, EPROM cells, EEPROM cells or Static
RAM cells [20]. There are many development systems
running on a personal computer that enable you to obtain
a customised silicon chip in a short period of time. Many
benefits give us erasable PLDs that use EPROM cells as
logic control elements which can be erased with
ultraviolet light and reprogrammed. In addition, they offer
several very significant benefits [20]. The basic
architecture of PLDs (see, for example, [20, p. 1-6]) is
based on PLAs and has been developed in many different
chips (Intel 85C060, AMD 22V10-15, Lattice GAL
22V10-15, etc.). Their specifications and comparisons are
given in a variety of catalogues (see, for instance, [20]).
All these chips can be used as static components of the
schemes considered above. In order to provide run-time
support we must replace some of static components with
dynamic components such as RAM. It is also worth-while
to develop customised silicon chips which contain static
and dynamic reprogrammable components and
incorporate a control-oriented architecture. The chip
delivers the necessary speed and can be used for
embedded digital control systems in various areas such as
industrial automation, robotics, etc.

X. CONCLUSION

The approach involves finite state machine theory and
some ideas from object-oriented programming, as follows:
 using graph-schemes to provide better separation of the

control unit interface from its implementation. In
particular they provide support for hierarchical ordering.
Different macro operations represent various levels of
abstraction. This approach forces us to search for
commonality among branches of the graph-scheme and
positively influences future design steps. On the other

hand the graph-scheme can also be viewed as the
encapsulation of data (input and output variables) and
functions (macro operations);
 using predefined frames to design reusable parts.

Generally speaking, reuse denotes the ability of a device
to be used again. Sometimes we want to add functionality
or to change behaviour. In the approach we are
considering, we don't need to start the design process
again from the beginning. The new scheme inherits the
invariable part of the previous interface and just adds (or
replaces) the existing part that is different in the new
context [18]. This is an analogous to the inheritance
relationship between classes in object-oriented
programming. Another concept is related to
polymorphism (to virtual states in particular).
Consideration of virtual states (programming the output
codes of an internal register) simplifies many different
problems of logic synthesis (states encoding in particular),
and enables you to create universal predefined structures
for a variety of applications;
 using predefined schemes (or templates). This idea was

initially considered in [13] and can be formulated as
follows. For a given (generally speaking infinite) set of
graph-schemes, it is necessary to build a scheme that is
based on programmable (or reprogrammable)
components, and that can be used to implement a given
behaviour just by programming its components (you
cannot change either the structure or the connections in
the scheme) The set of graph schemes can be introduced
via various constraints (input constraints, output
constraints and functional complexity). In order to find a
good solution you can delete some components from the
final scheme without changing its structure (and
connections). This enables us to deal with superfluous
components. The approach is based on the methods of
finite state machine theory [3,4] and the results of the two
points discussed previously. The use of predefined
templates makes it possible to simplify many different
problems of logic synthesis and related applications;
 run-time support based on reprogramming of the

component matrix in a scheme after the control unit has
been designed (during execution of control);
exception handling mechanism which makes it possible

to explicitly separate an ordinary graph-scheme and an
exception handling graph-scheme.
As follows from the previous discussion, we have

attempted to combine the results of two well known and
closely related areas which are finite state machine theory
and object-oriented programming. As a result, the
approach considered can be used to design various control
units and provide them with new facilities. Object-
oriented technology also has a positive effect on other
phases of the hardware life cycle, such as maintenance
and improvement. You can make one modification to an
ancestor macro instruction and affect all of its
descendants. Without inheritance, you would need to
make the same change to many relative instructions.

REVISTA DO DETUA, VOL. 1, Nº 6, SETEMBRO 1996 529

XI ACKNOWLEDGEMENTS

Many thanks to Ivor Horton for his help with this and
previous articles. I wish also to thank many people of
Electronics and Telecommunications Department for
their encouragement, especially Professor Antonio
Ferrari.

REFERENCES

[1] Randy H. Katz. Contemporary Logic Design. The
Benjamin/Cummings Publishing Company, Inc., 1994, 681 p.

[2] Giovanni De Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill, Inc., 1994, 579 p.

[3] Samary Baranov, Valery Sklyarov. Digital Devices Based on
Programmable Matrix LSI. Moscow, Radio and
Communications, 1986, 272 p.

[4] Valery Sklyarov Synthesis of Finite State Machines Based on
Matrix LSI. Minsk, Science and Technique, 1984, 287 p.

[5] Valery Sklyarov Parallel Graph-Schemes and Finite State
Machines Synthesis. Latvian Academy of Science, Automatics
and Computers, Riga, 1987, N 5, p. 68-76.

[6] Victor Kirpichnikov, Valery Sklyarov Description and Synthesis
of Control Devices. USSR Academy of Science, Technical
Cybernetics, Moscow, 1979, N 1, p. 127-137.

[7] Valery Sklyarov Hierarchical Graph-Schemes. Latvian Academy
of Science, Automatics and Computers, Riga, 1984, N 2, p. 82-
87.

[8] Valery Sklyarov Synthesis of Control Units Based on PLAs.
Latvian Academy of Science, Automatics and Computers, Riga,
1982, N 4, p. 28-35.

[9] Valery Sklyarov State encoding for Finite State Machines Based
on PLAs. Latvian Academy of Science, Automatics and
Computers, Riga, 1982, N 4.

[10] Valery Sklyarov Synthesis of Control Units Based on
Programmable Logic Devices. USSR Academy of Science,
Technical Cybernetics, Moscow, 1983, N 5, p 59-69.

[11] Valery Sklyarov Using Decoders in Control Units. University
News. Instruments, Leningrad (St.Petersburg), 1982, N 12, p. 27-
31.

[12] Valery Sklyarov Synthesis of Control Units Based on
Programmable Logic Devices with Memory. Ukraine Academy
of Science, Cybernetics, Kiev, 1984, p. 57-64.

[13] .Valery Sklyarov Regularly Structured Finite State Machines.
Control Systems and Machines. Kiev, 1984, N 2, p. 23-28.

[14] Valery Sklyarov Control Devices Based on Predefined Frames
(basic schemes) with Changeable Structure. Latvian Academy of
Science, Automatics and Computers, Riga, 1985, N 2, p. 70-78

[15] Valery Sklyarov Synthesis of Control Units Based on Stack
Memory. University News. Instruments, Leningrad
(St.Petersburg), 1984, N 4, p 41-45.

[16] Bjarne Stroustrup The C++ Programming Language. Second
Edition, Addison Wesley Publishing Company, 1994, 691 p.

[17] Grady Booch Object-Oriented Analysis and Design. Second
Edition. The Benjamin/Cummings Publishing Company, Inc.,
1994, 589 p.

[18] Valery Sklyarov Providing Modifications of Designed Control
Units Based on PLAs. Control Systems and Machines. Kiev,
1983, N 6, p. 8-12.

[19] Valery Sklyarov Control of Technological Equipment Using
Microprocessors. Automatics and Telemechanics, Moscow,
1985, N 1, p. 118-121.

[20] Programmable Logic. Intel Corporation, 1991.

