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Resumo - O esquema de arbitragem tipicamente usado nos 
barramentos de campo “tempo-real” baseia-se num 
scheduler do tipo off-line que gera uma tabela estática e 
cíclica contendo a atribuição de tempo de barramento às 
transacções associadas a variáveis do processo. Esta 
abordagem, por exemplo usada no barramento de campo 
FIP (Factory Instrumentation Protocol) é altamente 
inflexível no sentido de que qualquer alteração ao sistema, 
tal como adicionar um sensor, obriga à interrupção do 
funcionamento do barramento. 
Neste artigo propomos a utilização de um scheduler do tipo 

planeamento para resolver esta inflexibilidade. Este 
scheduler representa uma situação de compromisso entre 
entre as vantagens e desvantagens do escalonamento 
(scheduling) dinâmico e estático típicos. 
É, também, apresentada uma condição suficiente de 

escalonabilidade (schedulability) que implica um custo de 
desempenho mínimo (overhead) e que, por essa razão, é 
adequada para a análise on-line. 
A possibilidade de utilização do scheduler de planeamento 

no contexto do barramento FIP também é descrita obtendo-
-se, desse modo, um barramento compatível tipo-FIP. 
 
Abstract - A typical approach to real-time fieldbus 

arbitration is the use of an off-line scheduler that generates a 
cyclic static table containing the allocation of bus-time-slots 
to the transaction of process control variables. This 
approach, used in the FIP fieldbus (Factory Instrumentation 
Protocol), is highly inflexible in the sense that any system 
changes, such as adding a sensor, requires the interruption 
of the fieldbus operation. 
In this article we propose the use of a planning scheduler to 

overcome such inflexibility. This scheduler compromises 
between the advantages and disadvantages of typical dynamic 
and static scheduling. 
A sufficient schedulability condition is also presented that 

incurs minimal run-time overhead and, therefore, is suited to 
on-line analysis. 
The possibility of using the planning scheduler within the 

FIP context is also described resulting in a compatible FIP-
like fieldbus. 

I. INTRODUCTION  

The increasing demand for higher production volumes 
and lower production costs has been pushing industry 
towards an ever increasing automation level. This fact has 
led to a higher complexity of the typical industrial plant 

including more and more equipment such as sensors, 
actuators and controllers. Due to processing power, 
reliability, flexibility and modularity requirements, 
industrial systems have become distributed, making use of  
intelligent equipment spread over the factory plant and 
interconnected by means of an industrial communications 
network. The typically large number of equipment 
interconnected led such networks towards a bus 
configuration in order to reduce cabling cost and increase 
modularity and ease of maintenance. These networks, 
known as fieldbuses, convey data which are used within 
control loops and thus, are under precise timing 
constraints. Therefore, a network protocol is required 
which uses a real-time deterministic access arbitration 
scheme allowing to know in advance whether the 
conveyed data will meet its timing constraints [1,2]. If 
these constraints are not satisfied severe consequences to 
human lives, equipment and/or environment may happen. 
This problem has been solved by the FIP fieldbus 

(Factory Instrumentation Protocol) using the producer-
-distributor-consumer(s) model [1,2,3,4,5]. A centralised 
bus arbitrator uses a cyclic static schedule to initiate 
periodic transactions1 for the production and broadcasting 
of process variables2 (e.g. sensor readouts or controller 
outputs). Such schedule is produced off-line and must be 
loaded into the local memory of the bus arbitrator prior to 
the start of system operation. 
The FIP protocol suffers from the most common 

disadvantage of static scheduling: operational inflexibility. 
In order to improve the use of FIP-like buses in dynamic 
industrial environments, different scheduling schemes 
must be used that allow on-line system changes [2]. 
In this paper we propose the use of a planning scheduler 

to overcome the referred inflexibility. We will show that 
this scheduler is a good compromise between static and 
dynamic approaches. 

                                                           
1 Actually, the FIP protocol also allows a traffic of non-time-

constrained sporadic transactions. However, such traffic is 
isolated from the time-constrained periodic traffic and is not 
relevant for the real-time behaviour of the fieldbus. Therefore, 
such sporadic traffic is not mentioned throughout this article. 
 
2 Whenever the term “variable” is used we refer to variables 

which value has to travel over the fieldbus, only. 
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II. ADVANTAGES AND DRAWBACKS OF THE FIP PROTOCOL 

As was briefly mentioned in the previous section the FIP 
fieldbus follows the producer-distributor-consumer(s) 
model. The protocol uses a time-division multiplexing 
scheme (TDM) [6] to allocate non-preemptable bus-time-
slots to transactions which include the whole production / 
distribution / consumption cycle of each variable. The 
allocation is controlled by a centralised arbitrator (the Bus 
Arbitrator - BA) according to a cyclic static schedule (or 
schedule table) [2,3,4]. 
Prior to system operation, a network configuration 

program builds the schedule according to the rate-
monotonic criterium (shortest period first) with phase 
control for load balancing. The schedule table is then 
loaded into the BA local memory. At run-time the BA 
reads this table in a serial order and thus knows which 
variable shall be broadcasted at each instant (figure 1). 
The schedule table has a finite length because all 

variables are periodic and thus the overall communication 
pattern will also be periodic. The static schedule produced 
off-line describes the bus allocation for exactly one of 
these periods called a macro-cycle (Mc). The size of the 
Mc is the least common multiple of all the variables’ 
periods (LCM(Pi)). 
The system also uses a finite time resolution for the 

periodic sampling of variables. The minimum time 
allowed for variables' periods is called an elementary cycle 
(Ec) and it has a fixed duration defined off-line at 
configuration time. Each Ec contains several bus-time-
slots that can be used for different transactions. The Mc 
contains an integer number of Ec's. 

                                                           
3 Throughout this article we use the expression “dispatch a 

variable” meaning the allocation of a bus-time-slot to a 
transaction for production/distribution/consumption of  that 
variable. 

Some of the functional advantages and drawbacks of 
using FIP come from the fact that the protocol uses an off-
line static scheduler [2]. Some of the most important 
advantages are: 
• Full determinism. The off-line scheduler uses the 

characteristics of the variables to produce a periodic 
schedule (macro-cycle) that fully describes all the 
future activity of the bus. Whenever it is possible to 
build such a schedule so that all variables' time 
constraints are met then the schedulability of the 
variable set is guaranteed for all the system operation.  

• Low run-time overhead. The production of the static 
schedule is, normally, computationally intensive. 
However, this is performed only once and off-line, 
before system operation is started. After the schedule 
is built and loaded into the BA's memory the on-line 
dispatching of variables is very fast and causes very 
low overhead.  This makes it possible to use higher 
transmission speeds over the bus. 

On the other hand the most prominent drawbacks are [2]: 
• Operational inflexibility. Perhaps the major 

drawback presented by the FIP fieldbus is the typical 
inflexibility of the static schedules. In fact, whenever 
a change in the variable set is required (e.g. when a 
new sensor is added) the whole system must be halted 
and the new variable set must be rescheduled. Then, 
the new schedule must be loaded into the BA and only 
then the system may resume its activity. 

• Potentially huge schedule size. Typical industrial 
plants may easily include over hundread equipments 
connected to the fieldbus. If the system operation 
requires the periodic sampling of over hundread 
variables, some with sampling periods that can be 
long and relatively primes, then, the least common 
multiple of the periods will be a huge number. And so 
will the size of the schedule (macro-cycle) requiring 
very large amounts of local memory in the BA to hold 
it. 

III. USING A DYNAMIC SCHEDULER 

One of the possibilities to improve the flexibility of the 
FIP protocol is to use a dynamic scheduler [2]. Such a 
scheduler would determine only the next variable to be 
dispatched, searching the whole variable set with a given 
criterium (figure 2). And it would need to be invoked upon 
the termination of any transaction. However, between two 
consecutive invocations, any changes demanded by a 
dynamic environment could be introduced in the variable 
set and immediately taken into account by the scheduler. 
Also, this scheduler would require only the amount of 

memory to hold the variables description table, normally 
smaller than the macro-cycle schedule table. 
On the other hand, the disadvantages are the considerable 

run-time overhead and the incapability of guaranteeing the 
future schedulability of the variable set. This sort of 
schedulers must be complemented with a schedulability 
analyser that must be invoked whenever there is a change 
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... ... ... ... ...
N ... ... ... ...
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1 2 ...
1 3 ...
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Dispatcher
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(On-line)

Variables description table

 
Figure 1 - The FIP static approach3. 
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in the variable set. Only the use of the analyser allows for 
a guaranteed timely operation [6, 7, 8]. 
It is easily seen that the off-line static scheduler and the 

on-line dynamic scheduler are rather symmetrical. 
However, in between there is a vast area for schedulers 
able to reach a good compromise. Such is the case of what 
we call the planning scheduler. 

VI. THE PLANNING SCHEDULER 

Let us suppose that we have an on-line dynamic 
scheduler. Now, suppose that each time the scheduler is 
invoked, instead of determining only which variable will 
be dispatched next, it produces a static schedule for a fixed 
period of time called a plan. Now, it is only necessary to 
invoke the scheduler every such period of time to have the 
plan updated. We call this the planning scheduler because 
it dynamically creates fixed duration plans independently 
of the variables' periods (figure 3). 
The generation of a plan is achieved using a given 

criterium (heuristic) applied over the variable set. When 
using a static priority criterium, such as the rate monotonic 
(RM), it is possible to attain a higher computational benefit 
when comparing with the dynamic scheduler. Notice that 
in the dynamic approach the scheduler is invoked once 
upon the termination of any transaction. Within a fixed 
time frame of duration W, being Pi the period of variable i 
among a set of N variables, the scheduler is invoked at 
most S times given by the following expression: 

S W
Pii

N

=
⎡

⎢
⎢

⎤

⎥
⎥

=
∑

1

 

 
(1) 

In each invocation the scheduler has to perform a search 
over the set of N variables. The total number of operations 
performed by the scheduler during the period W will be of 
the order of N*S. 
When the planning scheduler is used with a plan of 

duration W it is invoked only once during that period. For 
each variable the scheduler allocates the required bus-
time-slots up to the end of  the period W. The total number 
of operations required is now of the order of S. 

The main characteristics of the dynamic planning 
scheduler are the following: 
• Higher flexibility compared to the static approach. 

Since the plans are redone every fixed period of time it 
is possible to introduce changes to the variable set from 
one plan to the next. 

• Lower run-time overhead compared to the dynamic 
approach. The generation of the next plan and the 
dispatching of the present plan are overlapped. This 
fact allows to spread the overhead introduced by the 
scheduler activity over the duration of the plan. 
Concerning the dispatching of the variables, it is 
similar to the one performed in FIP and incurs very low 
overhead. 

• Bounded memory requirements. The amount of 
memory required for the operation of the planning 
scheduler is bounded due to the fixed duration nature 
of the plans. Also, in systems where there is a 
reasonable number of variables with relatively prime 
and long periods the size of the plan may be 
significantly smaller than the FIP's schedule size 
(macro-cycle). 

• Limited schedulability guarantee. The planning 
scheduler has a full knowledge of the bus activity 
during each plan, only. However, like the dynamic 
schedulers it cannot guarantee the schedulability of the 
variable set for the future beyond the next plan. 
Therefore, it also requires an on-line schedulability 
analyser that must be invoked everytime there is a 
change in the variable set. 

Notice that the properties of the planning scheduler 
depend on the plan duration (W). If W→0 this scheduler 
behaves like the dynamic one. If, on the contrary, W is 
increased to LCM(Pi) then the plan contains a full macro-
cycle of bus operation and there is no need for further 
updates because all plans will be identical until there is a 
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1 ... ... ... ...
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&
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Figure 2 - The dynamic scheduler approach.  
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Figure 3 - The planning scheduler 
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change in the variable set. In other words, it approaches 
the behaviour of the cyclic static scheduler. Table 1 
summarizes the properties of these 3 types of schedulers in 
what concerns operational flexibility, run-time overhead, 
schedule size and schedulability guarantee. 
 

Scheduler Static Dynamic Planning 

operational 
flexibility 

low high reasonable*

run-time 
overhead 

low considerable reasonably 
low* 

schedule 
size 

potencially 
huge 

negligible bounded* 

schedula-
bility 

guaranteed not 
guaranteed 

guaranteed  
each plan 

* Depends on the plan duration 

Table 1 - Comparison among the 3 mentioned types of 
schedulers. 

V. THE SCHEDULABILITY ANALYSIS 

The unpredictability of meeting all future time constraints 
presented by the dynamic and planning schedulers requires 
the use of a schedulability analyser. The function of the 
analyser is to determine if a given variable set can be 
successfully scheduled indefinitely. In dynamic systems 
this analysis has to be performed everytime there is a 
change in the variable set, i.e., on-line. Therefore, the 
computational cost incured by the analyser must be as low 
as possible. 
At this point it is useful to recall that we are concerned 

with the scheduling of non-interruptible, independent, 
periodic transactions over a single bus. This problem is 
equivalent to the well studied non-preemptive scheduling 
of periodic and independent tasks over a single CPU [2]. 
Some of the common methods to analyse the non-

preemptive schedulability imply the actual generation of 
the full schedule. As examples there are the search 
methods, such as the branch-and-bound and heuristic 
search  [9, 10], or the decomposition methods [10]. 
However, both are computationally intensive and are very 
dependent on the particular task/transaction phasing. For 
this reason we are interested in a simpler analyser based on 
the verification of a single schedulability suficient 
condition [8]. Using just a sufficient but not necessary 
condition will, eventually, decrease the efficiency of the 
analyser. Nevertheless, due to the very low overhead 
incurred by the use of such conditions, their applicability 
to on-line analysis is very common [7, 8]. The drawback 
of its use is a normally lower utilization. Yet, this might be 
a reasonable trade-off if the schedulability guarantee in a 
dynamic environment is a must. 
The analyser required by the planning or dynamic 

schedulers is only dependent on the criterium used and on 

eventual particularities of the scheduler implementation. In 
the analysis that follows we will see that the use of 
inserted idle time within each elementary cycle together 
with the rate-monotonic criterium will allow us to apply 
Liu and Layland’s schedulability condition for normal 
rate-monotonic preemptive scheduling  [12] with a minor 
modification. 
Let us now constrain all variables’ periods as well as the 

duration of the plans so that they will be multiples of a 
minimum time unit called an elementary-cycle (Ec). 
Then, let us see how bus-time-slots are allocated within 

an Ec. Starting with the variable that has the shortest 
period (rate monotonic) the scheduler allocates, up to the 
end of the plan, one bus-time-slot in a number of Ec’s 
according to the variable’s period and initial phase. During 
this process it might happen that the Ec where a 
transaction should be placed has not enough time left. In 
this situation we say that the Ec has not enough time 
capacity and the transaction is delayed (“carried”) to the 
next Ec. If the next Ec also has not enough time capacity 
this process is repeated until an Ec with enough capacity is 
found. 
Under this scheduling implementation two consequences 

become evident (figure 4): 
• A bounded waste of bus-time in overloaded Ec’s. 

Since the duration of the transactions that fitted 
within that Ec is less or equal the Ec duration (E) 
there might be a small amount of idle time at the end 
which will be wasted. 

• Avoidance of potencial preemption instants. Since 
it is not allowed that a transaction crosses any Ec 
boundary all possible instants of preemption (were it 
allowed) are eliminated. Thus, it becomes irrelevant 
whether the scheduler is preemptive. 

Both consequences result in the schedulability condition 
(2) which can be calculated on-the-fly incurring minimal 
overhead. Being N the number of variables in the set, Pi 
the period of variable i and Ci the duration of the 
corresponding transaction yields: 
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Figure 4 - Delaying a transaction due to Ec time-capacity 

overflow. 
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The meaning of E and X’ are: E=duration of Ec and X’ = 
max (Xn)  according to figure 4. 
To prove this condition we must first recall that, at the 

end of each Ec there might be some inserted idle time in 
the bus period traffic due to the delay of transactions 
which do not fit within the Ec. In a simplistic worst-case 
approach the maximum idle time (X’) that can be inserted 
in any Ecn is equal to the duration of the longest 
transaction (Ci). 

( ) ( )X X C
allEc n i N i

n

' max max
,

= =
=1

 
 

Still in a very pessimist approach we can consider that all 
Ec’s will be overloaded and thus, the insertion of idle time 
(Xi) will happen with a period of E. This results in a 
pessimistic higher bound to the consequent wasted 
utilization of bus time, with a value of X’/E4. Although 
pessismist this simple approach is sufficient for our 
purpose of demonstrating condition (2). 
Now, let us apply the folowing transformation to the 

initial variable set (V) but keeping its phasing: 
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We can hypothetically schedule the new set V’ according 
to the rate monotonic and preemptively. In this case we 
can use the schedulability condition of Liu and Layland 
and say that the schedulability of set V’ for any phasing 
will be guaranteed if total bus utilization is less than 
N(21/N-1). 
Notice that the termination of any transaction in set V’ 

with the normal RM scheduler will always be later than the 
termination of the corresponding transaction in set V with 
the proposed scheduler. 
Therefore, the schedulability of set V’ under normal RM 

(*) implies the schedulability of set V under the proposed 
scheduler (**). This proves condition (2): 
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Nevertheless, notice that this bound is lower than the 
N(21/N-1) bound and depends on the duration of the longest 

                                                           
4 However, notice that it is impossible to attain permanent Ec 

overloading. This would imply the non-schedulability of the 
variable set. Also, the inserted idle time in an overloaded Ec will 
normally be less than max(Ci). 

transaction required by any variable in the set. Further 
refinements can be done to slightly improve this bound 
using a deeper analysis of the inserted idle time caused by 
Ec overloading. 
If the longest transaction is 10% of the duration of the Ec 

and N is large, then the schedulability bound will lower to 
aprox. 63% maximum utilization. Notice that, as the 
maximum transaction duration decreases, the 
schedulability bound will approach the bound for rate-
monotonic preemptive scheduling as expected [2]. 
Such a low bound may not be too much of a problem if 

we recall that unused bus utilization can still be used for 
non-real-time sporadic traffic. This is done in the FIP 
fieldbus and it is common pratice in many other real-time 
systems. 

VI. FIP COMPATIBILITY 

The planning scheduler presented in this paper can easily 
be used in the FIP fieldbus requiring changes at the BA 
level, only. The result would be a FIP-like fieldbus that 
keeps most of the operational properties of FIP such as the 
communication model, efficiency and robustness of the 
protocol, same level of fault-tolerance, etc.. 

The modified BA is presented in figure 5. It contains the 
scheduler and dispatcher, the schedulability analyser and a 
shell with an operator interface. Through this shell the 
operator can monitor the variables' status and add or 
remove variables as required by system changes. 

VII. IMPLEMENTATION AND TESTS 

An experimental setup was laid to test the functionality of 
the proposed scheduler. A low cost, low throughput 
interconnection bus was made joining in parallel 3 RS-485 
serial ports. Three PCs were used as nodes, one of which 
was fully dedicated to implement the bus arbitrator. 

Modified Bus Arbitrator

Operator
interface

f
i
e
l
d
b
u
s

Variables
Description
Table

Plan (i+1)

Plan (i)

Shell

Schedulability
Analyser Scheduler

Dispatcher

Network
Interface

Variable to
“broadcast”

 
Figure 5 - The modified Bus Arbitrator 
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The duration of each elementary cycle (Ec) was 54.9 ms 

and the plan had a duration of 5 Ec's i.e., 274.5 ms. 
The transmission rate of the serial ports was 9600 baud 

with 1 start and 1 stop bits. 
Two different types of frames were used in the 

communication protocol: 
• The ID frame, 6 bytes long, containing the 

identification of the variable to be produced in that 
bus-time-slot. 

• The DATA frame, 4 bytes long plus data size, 
containing the actual variable’s value. 

The duration of the corresponding transaction for each 
variable was calculated adding the time to transmit one ID 
frame, the time to transmit the respective DATA frame 
plus a certain amount of time for the producer/consumer(s) 
to identify the variable associated with this transaction and 
take the appropriate actions. This last amount of time was 
bounded to 1ms. 
A set of 5 variables was used as described in table 2. 
 

Id Period 
(# of Ec's) 

Size 
(bytes) 

Trans. 
(ms)* 

A 1 4 15.6 
B 3 4 15.6 
C 4 4 15.6 
D 4 4 15.6 
E 4 4 15.6 

* Duration of the corresponding transaction. 

Table 2 - Variables description  table 

For this variable set the macro-cycle schedule has a 
length of  12 Ec's. One possible configuration of such a 
schedule considering the worst-case phasing (when all 
variables become “ready” for transmission at the same 
instant in time) is depicted in figure 6. This is not a pratical 
example simply because in certain Ec’s the variables’ 
transaction times overflow the Ec duration. 

Ec1 Ec2 Ec3 ...    Eci ...      

E E
D    E   E    D
C    D   D    C
B   B C  B C B   B
A A A A A A A A A A A A A A

Figure 6 -  A macro-cycle schedule 

Figure 7 shows the first 2 consecutive plans built by the 
planning scheduler. Notice that in this case the scheduler 
takes into account the finite time capacity of each Ec. 
Thus the variables that do not fit within a given Ec are 
successively carried to the next until an Ec is found with 
enough capacity. This search is performed with rate 
monotonic priority. 

  Plan 1      Plan 2  ...
 Ec1 Ec2 ...     Ec6 Ec7 ...   

carried E ↓      
carried D ↓ E carried ↓  E ↓
slot 3 C E D D E
slot 2 B D B C   E B C B
slot 1 A A A A A   A A A A A

Figure 7 - First 2 plans (only 3 variables fit within each 
Elementary cycle - Ec). 

In this example, the bus utilization required by this set of 
variables is 59.2%. The number of transactions that fit 
within an Ec is 3 with a waste of 8.1ms in overloaded 
cycles (note that all variables are of the same size). In a 
worst-case approach this corresponds to a wasted utiliza-
tion of 14.7%. Applying the Rate Monotonic schedulabi-
lity condition with N=5 (74.3% utilization) over the non-
wasted part of the Ec’s (85.3%) results in an utilization 
threshold for guaranteed schedulability  of 63.3%. 
Since current utilization is less than the threshold, this 

variable set is schedulable under rate monotonic 
sequencing, with any phasing among the variables. 

VIII. CONCLUSIONS 

In this paper we demonstrated that in real-time fieldbus 
networks relying on off-line static scheduling, such as the 
FIP fieldbus, the use of a planning scheduler in the Bus 
Arbitrator can improve the network operational flexibility 
while keeping most of its functional characteristics. In 
such a 'FIP-like' fieldbus it is possible to dynamically 
reconfigure the system, namely add or remove equipment, 
such as sensors or controllers, without needing to halt 
system operation. 
Such improvement is achieved at the cost, essentially, of 

lower bus utilization for guaranteed schedulability. To 
minimize this negative impact work is being carried out in 
two directions: 
• the precise quantification of the overheads incured by 

the planning scheduler. This quantification is very 
important to determine the maximum throughput that 
the modified arbitrator can sustain. 

• the improvement of the schedulability analyser 
efficiency in order to raise the schedulability 
threshold. This will allow higher bus utilization while 
keeping guaranteed schedulability. 
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