
REVISTA DO DETUA, VOL. 2, Nº 1, JANEIRO 1997 5

Resumo - O esquema de arbitragem tipicamente usado nos
barramentos de campo “tempo-real” baseia-se num
scheduler do tipo off-line que gera uma tabela estática e
cíclica contendo a atribuição de tempo de barramento às
transacções associadas a variáveis do processo. Esta
abordagem, por exemplo usada no barramento de campo
FIP (Factory Instrumentation Protocol) é altamente
inflexível no sentido de que qualquer alteração ao sistema,
tal como adicionar um sensor, obriga à interrupção do
funcionamento do barramento.
Neste artigo propomos a utilização de um scheduler do tipo

planeamento para resolver esta inflexibilidade. Este
scheduler representa uma situação de compromisso entre
entre as vantagens e desvantagens do escalonamento
(scheduling) dinâmico e estático típicos.
É, também, apresentada uma condição suficiente de

escalonabilidade (schedulability) que implica um custo de
desempenho mínimo (overhead) e que, por essa razão, é
adequada para a análise on-line.
A possibilidade de utilização do scheduler de planeamento

no contexto do barramento FIP também é descrita obtendo-
-se, desse modo, um barramento compatível tipo-FIP.

Abstract - A typical approach to real-time fieldbus

arbitration is the use of an off-line scheduler that generates a
cyclic static table containing the allocation of bus-time-slots
to the transaction of process control variables. This
approach, used in the FIP fieldbus (Factory Instrumentation
Protocol), is highly inflexible in the sense that any system
changes, such as adding a sensor, requires the interruption
of the fieldbus operation.
In this article we propose the use of a planning scheduler to

overcome such inflexibility. This scheduler compromises
between the advantages and disadvantages of typical dynamic
and static scheduling.
A sufficient schedulability condition is also presented that

incurs minimal run-time overhead and, therefore, is suited to
on-line analysis.
The possibility of using the planning scheduler within the

FIP context is also described resulting in a compatible FIP-
like fieldbus.

I. INTRODUCTION

The increasing demand for higher production volumes
and lower production costs has been pushing industry
towards an ever increasing automation level. This fact has
led to a higher complexity of the typical industrial plant

including more and more equipment such as sensors,
actuators and controllers. Due to processing power,
reliability, flexibility and modularity requirements,
industrial systems have become distributed, making use of
intelligent equipment spread over the factory plant and
interconnected by means of an industrial communications
network. The typically large number of equipment
interconnected led such networks towards a bus
configuration in order to reduce cabling cost and increase
modularity and ease of maintenance. These networks,
known as fieldbuses, convey data which are used within
control loops and thus, are under precise timing
constraints. Therefore, a network protocol is required
which uses a real-time deterministic access arbitration
scheme allowing to know in advance whether the
conveyed data will meet its timing constraints [1,2]. If
these constraints are not satisfied severe consequences to
human lives, equipment and/or environment may happen.
This problem has been solved by the FIP fieldbus

(Factory Instrumentation Protocol) using the producer-
-distributor-consumer(s) model [1,2,3,4,5]. A centralised
bus arbitrator uses a cyclic static schedule to initiate
periodic transactions1 for the production and broadcasting
of process variables2 (e.g. sensor readouts or controller
outputs). Such schedule is produced off-line and must be
loaded into the local memory of the bus arbitrator prior to
the start of system operation.
The FIP protocol suffers from the most common

disadvantage of static scheduling: operational inflexibility.
In order to improve the use of FIP-like buses in dynamic
industrial environments, different scheduling schemes
must be used that allow on-line system changes [2].
In this paper we propose the use of a planning scheduler

to overcome the referred inflexibility. We will show that
this scheduler is a good compromise between static and
dynamic approaches.

1 Actually, the FIP protocol also allows a traffic of non-time-

constrained sporadic transactions. However, such traffic is
isolated from the time-constrained periodic traffic and is not
relevant for the real-time behaviour of the fieldbus. Therefore,
such sporadic traffic is not mentioned throughout this article.

2 Whenever the term “variable” is used we refer to variables

which value has to travel over the fieldbus, only.

Improving Flexibility in a Real-Time Fieldbus Network

Rosa Pasadas, Luís Almeida, J. Alberto Fonseca

6REVISTA DO DETUA, VOL. 2, Nº 1, JANEIRO 1997

II. ADVANTAGES AND DRAWBACKS OF THE FIP PROTOCOL

As was briefly mentioned in the previous section the FIP
fieldbus follows the producer-distributor-consumer(s)
model. The protocol uses a time-division multiplexing
scheme (TDM) [6] to allocate non-preemptable bus-time-
slots to transactions which include the whole production /
distribution / consumption cycle of each variable. The
allocation is controlled by a centralised arbitrator (the Bus
Arbitrator - BA) according to a cyclic static schedule (or
schedule table) [2,3,4].
Prior to system operation, a network configuration

program builds the schedule according to the rate-
monotonic criterium (shortest period first) with phase
control for load balancing. The schedule table is then
loaded into the BA local memory. At run-time the BA
reads this table in a serial order and thus knows which
variable shall be broadcasted at each instant (figure 1).
The schedule table has a finite length because all

variables are periodic and thus the overall communication
pattern will also be periodic. The static schedule produced
off-line describes the bus allocation for exactly one of
these periods called a macro-cycle (Mc). The size of the
Mc is the least common multiple of all the variables’
periods (LCM(Pi)).
The system also uses a finite time resolution for the

periodic sampling of variables. The minimum time
allowed for variables' periods is called an elementary cycle
(Ec) and it has a fixed duration defined off-line at
configuration time. Each Ec contains several bus-time-
slots that can be used for different transactions. The Mc
contains an integer number of Ec's.

3 Throughout this article we use the expression “dispatch a

variable” meaning the allocation of a bus-time-slot to a
transaction for production/distribution/consumption of that
variable.

Some of the functional advantages and drawbacks of
using FIP come from the fact that the protocol uses an off-
line static scheduler [2]. Some of the most important
advantages are:
• Full determinism. The off-line scheduler uses the

characteristics of the variables to produce a periodic
schedule (macro-cycle) that fully describes all the
future activity of the bus. Whenever it is possible to
build such a schedule so that all variables' time
constraints are met then the schedulability of the
variable set is guaranteed for all the system operation.

• Low run-time overhead. The production of the static
schedule is, normally, computationally intensive.
However, this is performed only once and off-line,
before system operation is started. After the schedule
is built and loaded into the BA's memory the on-line
dispatching of variables is very fast and causes very
low overhead. This makes it possible to use higher
transmission speeds over the bus.

On the other hand the most prominent drawbacks are [2]:
• Operational inflexibility. Perhaps the major

drawback presented by the FIP fieldbus is the typical
inflexibility of the static schedules. In fact, whenever
a change in the variable set is required (e.g. when a
new sensor is added) the whole system must be halted
and the new variable set must be rescheduled. Then,
the new schedule must be loaded into the BA and only
then the system may resume its activity.

• Potentially huge schedule size. Typical industrial
plants may easily include over hundread equipments
connected to the fieldbus. If the system operation
requires the periodic sampling of over hundread
variables, some with sampling periods that can be
long and relatively primes, then, the least common
multiple of the periods will be a huge number. And so
will the size of the schedule (macro-cycle) requiring
very large amounts of local memory in the BA to hold
it.

III. USING A DYNAMIC SCHEDULER

One of the possibilities to improve the flexibility of the
FIP protocol is to use a dynamic scheduler [2]. Such a
scheduler would determine only the next variable to be
dispatched, searching the whole variable set with a given
criterium (figure 2). And it would need to be invoked upon
the termination of any transaction. However, between two
consecutive invocations, any changes demanded by a
dynamic environment could be introduced in the variable
set and immediately taken into account by the scheduler.
Also, this scheduler would require only the amount of

memory to hold the variables description table, normally
smaller than the macro-cycle schedule table.
On the other hand, the disadvantages are the considerable

run-time overhead and the incapability of guaranteeing the
future schedulability of the variable set. This sort of
schedulers must be complemented with a schedulability
analyser that must be invoked whenever there is a change

id bytes period type time
1
...
N

Scheduler

1 2 3... N
1 ...
1 2 ...
1 3 ...

 Ec 1
 Ec 2
 ...

 Ec n

Dispatch each
variable to the bus

Dispatcher

(Off-line)

(On-line)

Variables description table

Figure 1 - The FIP static approach3.

REVISTA DO DETUA, VOL. 2, Nº 1, JANEIRO 1997 7

in the variable set. Only the use of the analyser allows for
a guaranteed timely operation [6, 7, 8].
It is easily seen that the off-line static scheduler and the

on-line dynamic scheduler are rather symmetrical.
However, in between there is a vast area for schedulers
able to reach a good compromise. Such is the case of what
we call the planning scheduler.

VI. THE PLANNING SCHEDULER

Let us suppose that we have an on-line dynamic
scheduler. Now, suppose that each time the scheduler is
invoked, instead of determining only which variable will
be dispatched next, it produces a static schedule for a fixed
period of time called a plan. Now, it is only necessary to
invoke the scheduler every such period of time to have the
plan updated. We call this the planning scheduler because
it dynamically creates fixed duration plans independently
of the variables' periods (figure 3).
The generation of a plan is achieved using a given

criterium (heuristic) applied over the variable set. When
using a static priority criterium, such as the rate monotonic
(RM), it is possible to attain a higher computational benefit
when comparing with the dynamic scheduler. Notice that
in the dynamic approach the scheduler is invoked once
upon the termination of any transaction. Within a fixed
time frame of duration W, being Pi the period of variable i
among a set of N variables, the scheduler is invoked at
most S times given by the following expression:

S W
Pii

N

=
⎡

⎢
⎢

⎤

⎥
⎥

=
∑

1

(1)

In each invocation the scheduler has to perform a search
over the set of N variables. The total number of operations
performed by the scheduler during the period W will be of
the order of N*S.
When the planning scheduler is used with a plan of

duration W it is invoked only once during that period. For
each variable the scheduler allocates the required bus-
time-slots up to the end of the period W. The total number
of operations required is now of the order of S.

The main characteristics of the dynamic planning
scheduler are the following:
• Higher flexibility compared to the static approach.

Since the plans are redone every fixed period of time it
is possible to introduce changes to the variable set from
one plan to the next.

• Lower run-time overhead compared to the dynamic
approach. The generation of the next plan and the
dispatching of the present plan are overlapped. This
fact allows to spread the overhead introduced by the
scheduler activity over the duration of the plan.
Concerning the dispatching of the variables, it is
similar to the one performed in FIP and incurs very low
overhead.

• Bounded memory requirements. The amount of
memory required for the operation of the planning
scheduler is bounded due to the fixed duration nature
of the plans. Also, in systems where there is a
reasonable number of variables with relatively prime
and long periods the size of the plan may be
significantly smaller than the FIP's schedule size
(macro-cycle).

• Limited schedulability guarantee. The planning
scheduler has a full knowledge of the bus activity
during each plan, only. However, like the dynamic
schedulers it cannot guarantee the schedulability of the
variable set for the future beyond the next plan.
Therefore, it also requires an on-line schedulability
analyser that must be invoked everytime there is a
change in the variable set.

Notice that the properties of the planning scheduler
depend on the plan duration (W). If W→0 this scheduler
behaves like the dynamic one. If, on the contrary, W is
increased to LCM(Pi) then the plan contains a full macro-
cycle of bus operation and there is no need for further
updates because all plans will be identical until there is a

id bytes period type time
1
...
N

Scheduler
&
Dispatcher

Dispatch each
variable to the bus

(Completely on-line)

Variables description table

Figure 2 - The dynamic scheduler approach.

1 2 3... N
1 ...
1 2 ...
1 3 ...

 Ec 1
 Ec 2
 ...

Ec K

id bytes period type time
1
...
N

Scheduler

Dispatcher

Dispatch each
variable to the bus

1 2 ...
1 ...
1 2 3 ...
1 ...

 Ec K+1
 Ec K+2
 ...

 Ec 2*K

plan (i) plan (i+1)

(Completely on-line)

Variables description table

Figure 3 - The planning scheduler

8REVISTA DO DETUA, VOL. 2, Nº 1, JANEIRO 1997

change in the variable set. In other words, it approaches
the behaviour of the cyclic static scheduler. Table 1
summarizes the properties of these 3 types of schedulers in
what concerns operational flexibility, run-time overhead,
schedule size and schedulability guarantee.

Scheduler Static Dynamic Planning

operational
flexibility

low high reasonable*

run-time
overhead

low considerable reasonably
low*

schedule
size

potencially
huge

negligible bounded*

schedula-
bility

guaranteed not
guaranteed

guaranteed
each plan

* Depends on the plan duration

Table 1 - Comparison among the 3 mentioned types of
schedulers.

V. THE SCHEDULABILITY ANALYSIS

The unpredictability of meeting all future time constraints
presented by the dynamic and planning schedulers requires
the use of a schedulability analyser. The function of the
analyser is to determine if a given variable set can be
successfully scheduled indefinitely. In dynamic systems
this analysis has to be performed everytime there is a
change in the variable set, i.e., on-line. Therefore, the
computational cost incured by the analyser must be as low
as possible.
At this point it is useful to recall that we are concerned

with the scheduling of non-interruptible, independent,
periodic transactions over a single bus. This problem is
equivalent to the well studied non-preemptive scheduling
of periodic and independent tasks over a single CPU [2].
Some of the common methods to analyse the non-

preemptive schedulability imply the actual generation of
the full schedule. As examples there are the search
methods, such as the branch-and-bound and heuristic
search [9, 10], or the decomposition methods [10].
However, both are computationally intensive and are very
dependent on the particular task/transaction phasing. For
this reason we are interested in a simpler analyser based on
the verification of a single schedulability suficient
condition [8]. Using just a sufficient but not necessary
condition will, eventually, decrease the efficiency of the
analyser. Nevertheless, due to the very low overhead
incurred by the use of such conditions, their applicability
to on-line analysis is very common [7, 8]. The drawback
of its use is a normally lower utilization. Yet, this might be
a reasonable trade-off if the schedulability guarantee in a
dynamic environment is a must.
The analyser required by the planning or dynamic

schedulers is only dependent on the criterium used and on

eventual particularities of the scheduler implementation. In
the analysis that follows we will see that the use of
inserted idle time within each elementary cycle together
with the rate-monotonic criterium will allow us to apply
Liu and Layland’s schedulability condition for normal
rate-monotonic preemptive scheduling [12] with a minor
modification.
Let us now constrain all variables’ periods as well as the

duration of the plans so that they will be multiples of a
minimum time unit called an elementary-cycle (Ec).
Then, let us see how bus-time-slots are allocated within

an Ec. Starting with the variable that has the shortest
period (rate monotonic) the scheduler allocates, up to the
end of the plan, one bus-time-slot in a number of Ec’s
according to the variable’s period and initial phase. During
this process it might happen that the Ec where a
transaction should be placed has not enough time left. In
this situation we say that the Ec has not enough time
capacity and the transaction is delayed (“carried”) to the
next Ec. If the next Ec also has not enough time capacity
this process is repeated until an Ec with enough capacity is
found.
Under this scheduling implementation two consequences

become evident (figure 4):
• A bounded waste of bus-time in overloaded Ec’s.

Since the duration of the transactions that fitted
within that Ec is less or equal the Ec duration (E)
there might be a small amount of idle time at the end
which will be wasted.

• Avoidance of potencial preemption instants. Since
it is not allowed that a transaction crosses any Ec
boundary all possible instants of preemption (were it
allowed) are eliminated. Thus, it becomes irrelevant
whether the scheduler is preemptive.

Both consequences result in the schedulability condition
(2) which can be calculated on-the-fly incurring minimal
overhead. Being N the number of variables in the set, Pi
the period of variable i and Ci the duration of the
corresponding transaction yields:

If U C
P

N E X
E

i

ii

N
N=

⎡

⎢
⎢

⎤

⎥
⎥ < −

⎛

⎝
⎜

⎞

⎠
⎟ ×

−

=
∑

1

1

2 1 '

 => the set of N variables is schedulable
with any phasing

(2)

A B D G A C H

H

Time XnEcn Ecn+1

duration E
Figure 4 - Delaying a transaction due to Ec time-capacity

overflow.

REVISTA DO DETUA, VOL. 2, Nº 1, JANEIRO 1997 9

The meaning of E and X’ are: E=duration of Ec and X’ =
max (Xn) according to figure 4.
To prove this condition we must first recall that, at the

end of each Ec there might be some inserted idle time in
the bus period traffic due to the delay of transactions
which do not fit within the Ec. In a simplistic worst-case
approach the maximum idle time (X’) that can be inserted
in any Ecn is equal to the duration of the longest
transaction (Ci).

() ()X X C
allEc n i N i

n

' max max
,

= =
=1

Still in a very pessimist approach we can consider that all
Ec’s will be overloaded and thus, the insertion of idle time
(Xi) will happen with a period of E. This results in a
pessimistic higher bound to the consequent wasted
utilization of bus time, with a value of X’/E4. Although
pessismist this simple approach is sufficient for our
purpose of demonstrating condition (2).
Now, let us apply the folowing transformation to the

initial variable set (V) but keeping its phasing:

()V V v P C

P P C C E
E X

i i i

i i i i

' ' ' , ' :

' '
'

≡
⎧
⎨
⎩

= ∧ = ×
−

⎫
⎬
⎭

(3)

We can hypothetically schedule the new set V’ according
to the rate monotonic and preemptively. In this case we
can use the schedulability condition of Liu and Layland
and say that the schedulability of set V’ for any phasing
will be guaranteed if total bus utilization is less than
N(21/N-1).
Notice that the termination of any transaction in set V’

with the normal RM scheduler will always be later than the
termination of the corresponding transaction in set V with
the proposed scheduler.
Therefore, the schedulability of set V’ under normal RM

(*) implies the schedulability of set V under the proposed
scheduler (**). This proves condition (2):

U U E
E X

N

U N E X
E

N

N

'
'

'

= ×
−

< −
⎛

⎝
⎜

⎞

⎠
⎟

⇔

< −
⎛

⎝
⎜

⎞

⎠
⎟ ×

−

2 1

2 1

1

1

(*)

(**)

Nevertheless, notice that this bound is lower than the
N(21/N-1) bound and depends on the duration of the longest

4 However, notice that it is impossible to attain permanent Ec

overloading. This would imply the non-schedulability of the
variable set. Also, the inserted idle time in an overloaded Ec will
normally be less than max(Ci).

transaction required by any variable in the set. Further
refinements can be done to slightly improve this bound
using a deeper analysis of the inserted idle time caused by
Ec overloading.
If the longest transaction is 10% of the duration of the Ec

and N is large, then the schedulability bound will lower to
aprox. 63% maximum utilization. Notice that, as the
maximum transaction duration decreases, the
schedulability bound will approach the bound for rate-
monotonic preemptive scheduling as expected [2].
Such a low bound may not be too much of a problem if

we recall that unused bus utilization can still be used for
non-real-time sporadic traffic. This is done in the FIP
fieldbus and it is common pratice in many other real-time
systems.

VI. FIP COMPATIBILITY

The planning scheduler presented in this paper can easily
be used in the FIP fieldbus requiring changes at the BA
level, only. The result would be a FIP-like fieldbus that
keeps most of the operational properties of FIP such as the
communication model, efficiency and robustness of the
protocol, same level of fault-tolerance, etc..

The modified BA is presented in figure 5. It contains the
scheduler and dispatcher, the schedulability analyser and a
shell with an operator interface. Through this shell the
operator can monitor the variables' status and add or
remove variables as required by system changes.

VII. IMPLEMENTATION AND TESTS

An experimental setup was laid to test the functionality of
the proposed scheduler. A low cost, low throughput
interconnection bus was made joining in parallel 3 RS-485
serial ports. Three PCs were used as nodes, one of which
was fully dedicated to implement the bus arbitrator.

Modified Bus Arbitrator

Operator
interface

f
i
e
l
d
b
u
s

Variables
Description
Table

Plan (i+1)

Plan (i)

Shell

Schedulability
Analyser Scheduler

Dispatcher

Network
Interface

Variable to
“broadcast”

Figure 5 - The modified Bus Arbitrator

10REVISTA DO DETUA, VOL. 2, Nº 1, JANEIRO 1997

The duration of each elementary cycle (Ec) was 54.9 ms

and the plan had a duration of 5 Ec's i.e., 274.5 ms.
The transmission rate of the serial ports was 9600 baud

with 1 start and 1 stop bits.
Two different types of frames were used in the

communication protocol:
• The ID frame, 6 bytes long, containing the

identification of the variable to be produced in that
bus-time-slot.

• The DATA frame, 4 bytes long plus data size,
containing the actual variable’s value.

The duration of the corresponding transaction for each
variable was calculated adding the time to transmit one ID
frame, the time to transmit the respective DATA frame
plus a certain amount of time for the producer/consumer(s)
to identify the variable associated with this transaction and
take the appropriate actions. This last amount of time was
bounded to 1ms.
A set of 5 variables was used as described in table 2.

Id Period
(# of Ec's)

Size
(bytes)

Trans.
(ms)*

A 1 4 15.6
B 3 4 15.6
C 4 4 15.6
D 4 4 15.6
E 4 4 15.6

* Duration of the corresponding transaction.

Table 2 - Variables description table

For this variable set the macro-cycle schedule has a
length of 12 Ec's. One possible configuration of such a
schedule considering the worst-case phasing (when all
variables become “ready” for transmission at the same
instant in time) is depicted in figure 6. This is not a pratical
example simply because in certain Ec’s the variables’
transaction times overflow the Ec duration.

Ec1 Ec2 Ec3 ... Eci ...

E E
D E E D
C D D C
B B C B C B B
A A A A A A A A A A A A A A

Figure 6 - A macro-cycle schedule

Figure 7 shows the first 2 consecutive plans built by the
planning scheduler. Notice that in this case the scheduler
takes into account the finite time capacity of each Ec.
Thus the variables that do not fit within a given Ec are
successively carried to the next until an Ec is found with
enough capacity. This search is performed with rate
monotonic priority.

 Plan 1 Plan 2 ...
 Ec1 Ec2 ... Ec6 Ec7 ...

carried E ↓
carried D ↓ E carried ↓ E ↓
slot 3 C E D D E
slot 2 B D B C E B C B
slot 1 A A A A A A A A A A

Figure 7 - First 2 plans (only 3 variables fit within each
Elementary cycle - Ec).

In this example, the bus utilization required by this set of
variables is 59.2%. The number of transactions that fit
within an Ec is 3 with a waste of 8.1ms in overloaded
cycles (note that all variables are of the same size). In a
worst-case approach this corresponds to a wasted utiliza-
tion of 14.7%. Applying the Rate Monotonic schedulabi-
lity condition with N=5 (74.3% utilization) over the non-
wasted part of the Ec’s (85.3%) results in an utilization
threshold for guaranteed schedulability of 63.3%.
Since current utilization is less than the threshold, this

variable set is schedulable under rate monotonic
sequencing, with any phasing among the variables.

VIII. CONCLUSIONS

In this paper we demonstrated that in real-time fieldbus
networks relying on off-line static scheduling, such as the
FIP fieldbus, the use of a planning scheduler in the Bus
Arbitrator can improve the network operational flexibility
while keeping most of its functional characteristics. In
such a 'FIP-like' fieldbus it is possible to dynamically
reconfigure the system, namely add or remove equipment,
such as sensors or controllers, without needing to halt
system operation.
Such improvement is achieved at the cost, essentially, of

lower bus utilization for guaranteed schedulability. To
minimize this negative impact work is being carried out in
two directions:
• the precise quantification of the overheads incured by

the planning scheduler. This quantification is very
important to determine the maximum throughput that
the modified arbitrator can sustain.

• the improvement of the schedulability analyser
efficiency in order to raise the schedulability
threshold. This will allow higher bus utilization while
keeping guaranteed schedulability.

REFERENCES

[1] J. P. Thomesse, “Les Réseaux Temps-Réel”, Ecole d’été: Reseaux de
communication et techniques formelles. Ecole Nacional Superior
de Telecommunication - Paris, Septembre 1994.

[2] C. Cardeira, Z. Mammeri, “A schedulability analysis of tasks and
network traffic in distributed real-time systems”, Measurement,
The Journal of the International Measurement Conference
IMEKO, Elsevier, 15(2): 71-83, May 1995.

REVISTA DO DETUA, VOL. 2, Nº 1, JANEIRO 1997 11

[3] P. Leterrier, “The FIP Protocol”, WorldFip Europe, 2-4 Rue de Bône,
92160 Antony - France 1992.

[4] C. Cardeira, J.P. Thomesse, “O Bus de Campo FIP”, Electricidade -
Revista de Engenharia Electrotécnica e Electrónica, de
Comunicações e Gestão, 38(307): 6-12, Jan. 1994.

[5] F. Pasadas, C. Cardeira, “Real-Time Protocols for Industrial Local
Area Networks”, in Proceedings of the Network of Excellence in
Intelligent Control and Integrated Manufacturing Systems,
Cascais, Portugal, June 1995.

[6] S. C. Cheng, J.A. Stankovic, K. Ramamritham, “Scheduling
Algorithms for Hard Real-Time Systems - A Brief Survey”, ,in
Hard Real-Time Systems Tutorial, IEEE Computer Society Press,
1988.

[7] J.A. Stankovic, “Implications of Classical Scheduling Results for
Real-Time Systems”, IEEE Computer, Vol. 28, N. 6, June 1995.

[8] M. Kein etal. “A Practitioner’s Handbook for Real-Time Analysis:
Guide to Rate-Monotonic Analysis for Real-Time Systems”,
Kluwer Academic Publishers, The Netherlands, 1993.

[9] K. R. Baker. “Introduction to Sequencing and Scheduling”, John
Wiley & Sons, 1974.

[10] X. Yuan, M. Saksena, A. Agrawala, “A Decomposition Approach to
Non-Preemptive Real-Time Scheduling”, Journal of Real-Time
Systems, Vol. 6, pag. 7-35, 1994.

[11] K. W. Tindell, A. Burns, A. J. Welling, “An Extendible Approach
for Analysing Fixed Priority Hard Real-Time Tasks”, Journal of
Real-Time Systems, Vol.6, N.2 ,pag. 133-151 ,1994.

[12] C. L. Liu, J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”, Journal of
ACM, 20 (1), pag. 46-61, 1973.

