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Resumo - A experiência no ensino da programação 
orientada a objectos mostra que os alunos usam algumas 
construções básicas incorrectamente, tendo muitas 
dificuldades no uso de ponteiros e referências, objectos 
constantes e estáticos, funções virtuais, etc. Este artigo 
apresenta explicações detalhadas dessas construções em C++ 
e na linguagem assembly, permitindo-lhes perceberem não só 
as construções, mas também a sua eficiência. O artigo 
recomenda ainda algumas regras para construir uma nice 
class. 
 
Abstract - Experience  in the teaching of object-oriented 

programming shows that there are some basic constructions 
which are frequently used incorrectly by students. For 
example, many students have difficulties with the use of 
references and pointers, const and static objects, and virtual 
functions. This paper presents a detailed explanations of 
such constructions in C++, with examples of their 
implementation in assembly language as generated by the 
compiler. This will enable students to not only understand 
how these constructions work, but also to get a feeling for 
their efficiency. There are also some recommended rules for 
good class design.  

I. INTRODUCTION  

The goal of this paper is to show how the object-
oriented style of programming is used and how the 
efficiency of C++ code can be improved. It is aimed at 
students since previous experience shows that they have 
particular difficulties with the design of C++ programs 
and with the understanding of some of the basic 
constructions in object-oriented programming. 
The paper presents the following topics: 
 Guidance on how to use various C++ constructions 

correctly; 
 Detailed explanations of the constructions that are the 

most difficult for students to understand with a 
discussion of the more common errors that are made; 

 

II. VALUES, POINTERS AND REFERENCES 

C++ provides both direct and indirect access to objects. 
An object is a value that is accessed directly through an 
object name, and indirectly through pointers and 
references. The distinction between a pointer and a 
reference is that the programmer may use a reference as 

an ordinary object, even though it accesses the object 
indirectly, whereas a pointer must be de-referenced in 
order to access the object. Even though pointers and 
references differ in the way they are used, the compiler 
will build the same code for both references and pointers. 
A reference is an implicit pointer to a value whereas a 
pointer requires an explicit definition. Consider an 
example: 

void main(void) 

{ int i=3; // mov word ptr[bp-2],3 

 int &j=i; // lea ax,[bp-2] 

    // mov [bp-4],ss 

    // mov [bp-6],ax 

 j=2;  // les bx,[bp-6] 

    // mov es:word ptr [bx],2 

// .......... 

} 

The comments show possible assembly language code 
created by the compiler (I used TASM compiler for 16 
bits Intel microprocessors). After the assignment (j=2), 
the object i also has the value 2 (see figure 1). As you 
can see from Figure 1, the reference j can be considered 
to be an implicit pointer. Indeed, for the following 
program the compiler will build the same assembly 
language code: 

void main(void) 

{ int i=3;   

  int *j=&i;// j is an explicit pointer to i 

  *j=2;   // explicit use of the pointer j 

// .......... 

} 

Since a reference is actually an implicit pointer to a 
value, it sometimes may produce unexpected results. 
Consider the following example: 
 

#include <iostream.h> 

int F(int& ri)  

{   ++ri; 

 return ri; }; 

void main(void) 

{  int m1=1; 

 cout << F(m1) << endl;  // The result: 2 

 cout << m1 << endl;      // The result: 2 

} 

In the example, the reference to the object m1 is passed 
to the function F. The function F changes the value of m1 
indirectly through its reference.  
The next example shows another potential error: 
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#include <iostream.h> 

int* F(int& ri) 

{   ++ri; 

 return &ri; }; 

void main(void) 

{  int m1=1,*m2; 

 m2=F(m1); 

 *m2=10; 

 cout << m1 << endl; // The result: 10 

} 

The pointer m2 stores the address of the value returned 
from F. As a result it points to m1. Therefore the 
statement *m2=10 assigns the value 10 to the variable 
m1. If the function F were defined as int* F(int ri) we 
would not get such an error. The use of references allows 
you to change data even in the private section of a class 
(see, for example, [1]). 
As a consequence, it is generally better to avoid the use 

of references with the basic data types. However they can 
be very efficient when used with user-defined data types. 

ss

bp
i=3
ss

bp-2

 // mov word ptr [bp-2],3
 // mov [bp-4],ss
 // mov [bp-6],ax ; lea ax,[bp-2]

mov es:word ptr [bx],2

es        bx

les
 bx

,[b
p-6

]

j=2 and i=2

Figure 1. Access to the object i vie reference

 
Consider the following assignment: 

 X = Y; 

This assignment is correct if the expression on the left 
side produces an lvalue (a left value which is an address) 
and the expression on the right side produces an rvalue (a 
right value which is an acceptable value for the specified 
type).  As a result of this statement, the value on the right 
side is copied into the address location on the left. Since a 
reference is considered to be an lvalue, it can appear on 
the left side of the assignment statement. Passing a 
function argument by value means that a copy of its value 
(the rvalue) is placed on the stack. The function has no 
direct access to the value in the calling function. Passing 
an argument by reference copies the lvalue itself onto the 
stack, so the address of the argument is passed to the 
function allowing the function direct access to the value in 
the calling function. 
A reference can be returned by a function. Consider the 

following two examples. 
int& F(int& i) // push bp 

    // mov bp,sp 

{ return i; }; //** mov dx,[bp+8] 

    //** mov ax,[bp+6] 

    // pop bp 

    // retf 

void main(void) 

{   int mi1=10,mi2;// mov word ptr [bp-2],0Ah 

     // here ss=bp-4 

 mi2=F(mi1); // push ss 

    // lea ax,[bp-2] 

    // push ax 

    // push cs 

    // call F 

    // add sp,4 

    //** mov bx,ax 

    //** mov es,dx 

    //** mov ax,es:[bx] 

    //** mov [bp-4],ax 

} 

int F(int& i) 

{ return i;};  //** les bx,[bp+6] 

    //** mov ax,es:[bx] 

void main(void) 

{   int mi1=10,mi2; 

 mi2=F(mi1); } //** mov [bp-4],ax 

In the first example the function F returns an lvalue (as 
before, the comments show possible assembly language 
code created by the compiler). Because it returns an 
lvalue, F can be used on the left side of the assignment 
statement. In the second example the function F returns an 
rvalue. This means that F cannot be used on the left side 
of the assignment statement. Additional explanations are 
given in figure 2. The assembly language instructions that 
are different in the second example are marked with //**. 

bp

bp (sp)

mi1=10
mi2
ss

 bp-2
cs

bp

bp

bp (sp)

mi1=10
mi2
ss

 bp-2
cs

bp

ax=bp-2
dx=ss

8
6

F returns an lvalue

es   bx

ax=10

address

F returns an rvalue

Stack of
the main
function

Stack of
called

function

Figure 2. Lvalue and rvalue returned from the function

call F call F

 
Using references as return values enables us to design 

better code. Suppose we want to overload the subscript 
operator []. Consider the following program: 

#include <iostream.h> 

#include <string.h> 

class X { 

 char *s; 

public: 

 X(char* S)  

 {   s = new char[strlen(S)+1]; 
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  strcpy(s,S);      } 

 char& operator[](int i) { return s[i]; } 

 void display(void) { cout << s << endl; } 

  }; 

void main(void) 

{   X x="01234"; 

 x.display();   // The result: 01234 

 x[2]='#';  // operator[] function call 

 x.display();   // The result: 01#34 

 cout<<x[2];// operator[] function call 

}  // The result: # 

In the example above, the operator[] function can 
indirectly change a private string of the class X, pointed to 
by s (and we do want to allow such changes to be made). 
Trying to use alternative approaches leads us to worse 
code. Indeed consider the following function: 

char operator[](int i); 

In this case the compiler gives an error for the statement 
x[2]='#'; (lvalue required).  
Returning a pointer to value by declaring the function as: 

 char* operator[](int i); 

is worse because we have to use expressions such as 
*x[2]='#'; which are much less readable.  
Because a reference to the result is returned from the 

function, the return value cannot be an automatic 
variable. Since  the function can be used more than once 
in an expression, the result cannot be a static local 
variable.  
Consider the following program:  

class X { 

 int *i; 

public: 

 X(void) {  i = new int[2]; 

    i[0]=0; i[1]=1;  } 

 ~X(void) { delete[] i;  } 

 void display()  

 { cout << i[0] << '\t' << i[1] << endl; } 

}; 

void f(X x)  // f(X& x) - OK 

{  int *j = new int[2];  

 // do something 

} 

void main(void) 

{  X o; 

 o.display(); 

 f(o);          // destructor invoked 

 o.display(); 

}                 // destructor invoked 

The function f takes a value of type X. If even the 
function does nothing we will still have an error related to 
dynamic memory deallocation (see figure 3). This is 
probably the error that occurs most frequently.  

The function main

Called function (F in our example)

call return

An object

Allocated
dynamic
 memory

An object
a copy of
an object

Figure 3. An error of unexpected dynamic memory deallocation 
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destructor and
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 Let us examine the following function call: 
 f(o); 

The parameter o of the function f is a local (automatic) 
object in the function body. An automatic object is created 
each time its declaration is encountered in the execution 
of the program, and destroyed each time the block in 
which it is declared is left. As a result, after the 
termination of the function f, the destructor for the object 
o will be called. Figure 3 shows the whole sequence of 
steps in this process which are the following: 
1)  in the definition X o; a new object o is constructed. 

The object constructor allocates memory dynamically 
using the new operator; 

2)  the function f is called ( see the statement f(o) );   
3)  since the argument to the function f, the object o, is 

passed by value, this value is copied from the 
function main onto the stack for the function f; 

4)  the object copy contains a pointer to the same 
memory allocated for the original object; 

5)  the function f is terminated (the block which contains 
the copied object is left); 

6)  the destructor for the copy of the object o is called, 
and it deallocates the dynamically allocated memory 
for the object; 

7)  now the pointer in the original object o points to 
nowhere since its memory has been discarded. 

You can see that the constructor of o was called once 
(in the function main), whereas the destructor of o was 
called twice (both in the function main and in the 
function f). Besides the allocated memory was 
unexpectedly destroyed. However if the function f would 
be declared as f(X&) then the program would run 
properly. Suppose you want to leave the previous 
declaration ( f(X x) ). We can do it but we have to 
eliminate the error in the design of the class X. Classes 
should not be designed so that if objects are passed by 
value you get an error. This is due to the default copy 
constructor (see section VI) being called which does 
memberwise copy to produce a copy object. The class X 
should define a copy constructor: 

 X::X(const X& o) 

{ i=new int[2]; 

 i[0] = o.i[0]; i[1] = o.i[1]; } 
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Now we can use arguments by value or by reference. It is 

a basic rule that any class allocates memory in the 
constructor should implement a copy constructor as well 
as a destructor. It should also implement the assignment 
operator (see section VI) since the default assignment 
operator produces the same problem as the default copy 
constructor. 

Additional information about these topics can be found 
in [2]. 

III. USE OF CONST  

Consider a function F which has the following 
prototype: 

 X F(const X& r_o); 

Here X is a class name. From an abstract point of view 
this declaration promises not to change the abstract value 
of the object referenced by r_o [3].  

A member function of a class can be declared such that 
it will only read  data from the object to which it 
belongs, but not change it. The declaration not to change 
the object is indicated by a const suffix to the argument 
list, for instance: 

 class X {  // ......... 

  void F(void) const; }; 

Now any attempt to change X in the function F is 
illegal. A const member function can be called for a 
const object. A non const member function cannot be 
called for a const object. The type of the pointer this in a 
const member function of class X is const X *const [4]. 
This means that you cannot change the value of an object 
without an explicit cast (see the example below). 
Changes can be also made by using relatively new 
features of C++ such as the mutable declaration and cast 
away const capability [3]. 

Consider an example. 
class X { 

    int i; 

public: 

     X(int I) : i(I) {} 

    void display(void) const; 
// explicit cast 

    void exc(int e) const {((X*)this)->i=e;}  

    void f(void)  { i=5;} 

// cannot modify a const object 

// void ff() const {i=100;}  

 }; 

    void X::display(void) const  

 { cout << i << endl; } 

void main(void) 

{  X x=10; 

   X const y=20; 

// non-const function called for const object 

// y.f();   

 // ........ 

} 

This program will show some error messages 
generated by the compiler. 

IV. USE OF STATIC 

The memory used for a C++ program is divided into 
three parts: 

 the static part which contains the program code 
and static data; 

 the stack that holds automatic variables and 
function arguments; 

 the free store (the heap)  which is available for 
dynamic allocation and deallocation.  

There are two meanings of the keyword static [4]: 
 as in statically allocated, which is opposed to on 

the stack or on the free store (on the heap); 
 as in with restricted visibility, which is opposed 

to with external linkage. 
In C++ class members can be declared as static. Static 

members are considered to be a property of a class and 
they are shared among all objects of a class. A static 
member declaration is only a declaration and the member 
(even a private member) must have a definition 
somewhere in the program, for example: 

 int X::i=0; 

The name of the static member is a fully qualified name 
(for example, X::i). Static data members  have both the 
meanings considered above. For member  functions, 
static has only the second meaning.  
The example below demonstrates the use of static 

members. 
#include <iostream.h> 

class X { 

 static int i; 

public: 

 void ff() { ++i; } 

 static void f() 

 { cout << "i=" << i << endl; } 

  }; 

int X::i=0;  // definition of i 

void main(void) 

{ X x1,x2; 

 x1.ff(); 

 x2.ff(); 

 x1.ff(); 

 X::f(); }  // The result: i=3 

Here the function X::f() was called for the class X, but 
not for a particular object of the class X. A static member 
function does not have a this pointer and cannot be 
virtual. Such a function can access non static members of 
its class explicitly  by using class member access 
operators (. and ->). It is not allowed to have static and 
non static member functions with the same name and the 
same argument types. Constructors for  global static 
objects are called in the order of the object declarations. 
Destructors are called in the opposite order. Constructors 
for local static objects are called the first time the object 
definition occurs. Any static object is constructed once 
according to the rules above, and destroyed at the 
termination of the program. 
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By calling constructors and destructors for static objects 
explicitly, we can initialise and cleanup data in libraries 
(before execution and after termination of the function 
main).  
Suppose the C++ project file my.ide includes the files 

my1.cpp and my2.cpp which contain the following code: 
#include <iostream.h> // my1.cpp 

class Y { 

public: 

  Y() { cout << "\nY constructor\n"; } 

  ~Y() { cout << "Y destructor\n"; } 

  }; 

class X { 

  static int i; 

public: 

  X(); 

  ~X(); 

  }; 

static X x;  // object x definition 

int X::i=0;  // definition of i 

X::X() 

{ cout << i << '\t';  

 if(i++ == 0) cout << "initialise\n";  } 

X::~X() 

{ cout << i << '\t';  

 if(--i == 0) cout << "cleanup\n";  } 

void main(void) 

{ Y y; } 

 

class X {  // my2.cpp 

 static int i; 

public: 

 X(); 

 ~X(); 

  }; 

static X x; 

The program produces the following results: 
 0 initialise 

 1 

 Y constructor 

 Y destructor 

 2 1 cleanup 

V. INLINE FUNCTIONS 

The code for an inline function is inserted in the 
program at each point where the function is called 
(instead of the ordinary calling mechanism which 
branches to the code for the function). Consider an 
example: 

class X { 

 int i; 

public: 

 void f(int I) { i=I; }// inline function 

 int ff();  // inline function 

 void fff(); // non inline function 

  }; 

inline int X::ff() {return i; } 

void X::fff() { i++; } // push bp 

    // mov bp,sp 

    // les bx,[bp+6] 

    // inc es:word ptr [bx] 

     // pop bp 

     // retf 

void main(void) 

{ X x; 

 x.f(5);  // mov word ptr [bp-2],5 

 x.fff();    // push ss 

        // lea ax,[bp-2] 

        // push ax 

        // push cs 

        // call X::fff 

        // add sp,4 

 _AX=x.ff(); }  // mov ax,[bp-2] 

The comments show possible assembly language code 
created by the compiler. The code for the non inline 
function X::fff() allows for the possibility of the function 
being either inline or not.  

VI. SOME REMARKS ON CLASS DESIGN 

There are some functions (regular functions [3]) whose 
semantics are the same in all well-designed classes. They 
are the following: 

 the copy constructor; 
 the destructor; 
 the principal assignment operator (=); 
 the equality (==) and inequality (!=) operators. 

These functions are declared as follows [3]: 
class X { 

// .......... 

public: 

 X(const X&); // construct an object whose 

// abstract value is the same as the argument 

 ~X();  // destroy the object 

 const X& operator=(const X&); // set the 

// value of this object to the value of the 

// argument, and return a reference 

 bool operator==(const X&) const;// return 

// true if and only if this object and the  

// argument object have the same value 

 bool operator!=(const X&) const;//return 

// true if and only if this object and the  

// argument object have the different values 

// ......... 

 }; 

In [3] it was suggested that a class which provides all the 
regular functions and a default constructor should be 
called a nice class (these functions could be included in a 
certain minimal standard interface).   
Consider a nice array class which implements all the 

regular functions (it would be a good idea to declare this 
class as a class template). 

enum bool {false,true}; 

template <class T> class array { 

 T* a; 
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 int s; 

 T& operator[](int j) { return a[j]; } 

public: 

 array(int S=1) { a = new T[s=S]; } 

 array(const array&); 

 ~array() { delete[] a; } 

 const array& operator=(const array&); 

 bool operator==(const array&) const; 

 bool operator!=(const array&) const; 

  friend ostream&  

  operator<<(ostream&,array<T>&); 

 friend istream&  

  operator>>(istream&,array<T>&); 

      }; 

template <class T>  

array<T>::array(const array& A) 

{ a = new T[s=A.s]; 

 for(int i=0;i<A.s;i++) 

  a[i] = A.a[i]; } 

template <class T> const array<T>& 

array<T>::operator=(const array& A) 

{  if(this != &A)   { 

  delete[] a; 

  a = new T[s=A.s]; 

  for(int i=0;i<A.s;i++) 

    a[i] = A.a[i];  } 

 return *this; 

} 

template <class T> bool 

array<T>::operator==(const array<T>& A) const 

{ if(s!=A.s)  return false; 

 for(int i=0;i<A.s;i++) 

  if (a[i] != A.a[i]) return false; 

 return true; 

  } 

template <class T> bool  

array<T>::operator!=(const array<T>& A) const 

{ if(s!=A.s) return true; 

 for(int i=0;i<A.s;i++) 

  if (a[i] != A.a[i]) return true; 

 return false; 

  } 

template <class T> ostream& 

operator<<(ostream& stream,array<T>& A) 

{ for(int i=0;i<A.s;i++) 

  stream << A[i] << '\t'; 

 stream << endl; 

 return stream;   } 

template <class T> istream& 

operator>>(istream& stream,array<T>& A) 

{ for(int i=0;i<A.s;i++) 

  stream >> A[i]; 

 return stream;   } 

Now we can use for example the following 
statements in the function main: 

 array<int> ai1=6,ai3;  

 cin >> ai1; 

 cout << ai1; 

 array<int> ai2=ai1; // initialisation 

 ai3 = ai1;  // assignment 

 if (ai3 == ai1) // do something; 

 if (ai2 != ai1)  // do something; 

We can also define an array of objects of a user-defined 
type, for instance: 

 array<student> ai1=6,ai3; 

The type student must have been declared and defined 
previously. For example: 

class student { 

 char *name; 

public: 

 student(); 

 ~student(); 

 bool operator!=(const student&) const; 

 bool operator==(const student&) const; 

 friend ostream& 

  operator<<(ostream&,student&); 

 friend istream&  

  operator>>(istream&,student&); 

// . . . . . . . . . . . . . . . . . . . . . 

   }; 

V11. INHERITANCE AND CONTAINMENT 

The two most common relationships between classes 
are inheritance and containment. If one class X has a 
member which is an object of another class Y (see figure 
4, a), then we can say there is a containment relationship. 
Because X HAS A member of type Y, it is often said that 
there is a HAS A relationship [2,4]. When a class D is 
derived (usually publicly) from another class B, we can 
say that D IS A kind of B and we have an IS A 
relationship (see figure 4, b). 
Inheritance is one of the most powerful tools of object-

oriented programming. It is a process of  building a new 
class (derived class) from an existing class (base class). 
When we build a derived class we want to inherit 
properties from its base class. A very important 
characteristic of inheritance is that it enables us to reuse 
existing code.  

class X

class Y

class B

class D

    Y

    X
    D

B

    B

a) b)

c) d)

pointer to
the object
of class X

pointer to
the object
of class B

pointer to
the object
of class D

Figure 4. Containment relationship (a), inheritance relationship (b),
structures and locations of respective objects in computer memory (c,d)

 
When we derive a new class we can: 
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 add new data members; 
 add new member functions; 
 override (change or modify) inherited member 

functions. 
As a result the derived class is more powerful (is more 

extensive) than its base class (see figure 4, d). Consider an 
example. 

class B { // base class 

protected: 

 int i; 

public: 

// . . . . . . . . . . . . . . . 

}; 

class D : public B { // derived class 

 int j; 

public: 

// . . . . . . . . . . . . . . . 

}; 

void f(B* pb)   

{  // . . . . . . . . . . . . . . .  

} 

void main(void) 

{   B b; 

 D d; 

 f(&b); 

 f(&d); } // implicit conversion 

Here class D is publicly derived from class B. Let us 
declare pointers to B and to D: 

B *pb=&b; 

D *pd=&d; 

Now we can provide access to members of b through the 
pointer pb and access to members of d through the pointer 
pd. Since a base class can be covered by a derived class 
(the derived class is more extensive) we can use a pointer 
to a derived class to access to members of its base class. 
In other words we can assign &d to pb without the use of 
an explicit type conversion: 

 pb=&d; 

The opposite implicit conversion (pd=&b)  is not 
allowed. However the conversion can be explicit: 

 pd=(D*)&b; 

The same implicit conversion can be used when we pass 
arguments to function (see the function f in the example 
above). 

VIII. VIRTUAL FUNCTIONS 

Virtual functions allow the programmer to provide 
overriding inherited member functions. Functions can be 
declared in a base class and then redefined in each 
derived class. This idea is implemented through pointers 
to functions. The determination of which function is 
called for an object can be done at runtime and is 
therefore called late binding (or dynamic binding). This 
contrasts with early binding (static binding) which is 
done during compilation. The mechanism of dynamic 
binding is explained in figure 5.  

An object of the class B

data members

pointer to virtual 
table of B

An object of the class D

data members of B

pointer to virtual 
table of D

inheritance relationship

data members of D

starting addresses (pointers)
to virtual functions (vf)

 pointer to vf1
 pointer to vf2

starting addresses (pointers)
to virtual functions (vf)

 pointer to vf1
 pointer to vf2

B::vf1

B::vf2

D::vf2

D::vf1

virtual
table
of B

virtual
table
of D

Figure 5. A mechanism of virtual functions calls

 
All objects of the same class have an associated virtual 

table that  contains the addresses (pointers to the first 
instructions) of the actual functions to be called. A 
virtual function is specified by the keyword virtual. The 
type of a function declared in the base class cannot be 
redefined in a derived class. Consider an example: 

class B { 

protected: 

 int i; 

public: 

 B(int I) : i(I) {} 

 void decrement() { i--; } 

 virtual void increment() { i++; } 

}; 

class D : public B { 

 int j; 

public: 

 D(int I,int J) : B(I), j(J) {} 

 void decrement() { j-=2; } 

 void increment() { j+=2; } 

}; 

void f(B* pb)  // push bp 

     // mov bp,sp  

{ pb->decrement();// les bx,[bp+6] 

     // dec es:word ptr[bx+2] 

 pb->increment();  } 

  // push word ptr[bp+8] 

  // push word ptr[bp+6] 

  // les bx,[bp+6] 

  // mov bx,es:[bx] 

  // call far [bx] 

  // add sp,4 

  // pop bp 

void main(void) 

{   B b=5;  // mov word ptr[bp-4],9Eh 

    // mov word ptr[bp-2],5 

 D d(10,20); // mov word ptr[bp-8],0Ah 

        // mov word ptr[bp-0Ah],92h 

        // mov word ptr[bp-6],14h 

 f(&b); // push ss 

   // lea ax,[bp-4]  

   // push ax 
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   // push cs 

   // call f 

   // add sp,4 

 f(&d);   // push ss 

     // lea ax,[bp-0Ah]  

     // push ax 

     // push cs 

     // call f 

     // add sp,4 

} 

The comments show possible assembly language code 
created by the compiler. Since the function decrement is 
not virtual, in f it will be called for type B because the type 
of parameter for f  is a pointer to B. The virtual function 
increment is called for B if f takes a pointer to B, and is 
called for D if f takes a pointer to D. Passing a pointer to 
the class is implemented through the stack before the call 
of the function f. Two assembly  language instructions 
were underlined in order to demonstrate how a pointer to 
the object b of class B (in the call f(&b);) and a pointer to 
the object d of class D (in the call f(&d);) are passed to the 
function f. Figure 6 explains the call of a virtual function 
for the object b of the base class B. Figure 7 explains the 
call of a virtual function for the object d of the derived 
class D. In both cases the sequence of steps is the 
following: 

 a pointer to an object is passed to f. For the call 
f(&b) it will be the pointer (0FFC) to b (lea ax,[bp-
4], bp=1000h). For the call f(&d) it will be the 
pointer (0FF6) to d (lea ax,[bp-0Ah], bp=1000h); 

 f calls the inline function, decrement, of the base 
class; 

 f saves the address of the appropriate object on the 
stack (push word ptr[bp+8], push word ptr[bp+6]) 
and performs an indirect far call of a virtual function 
through its address stored in the object (les 
bx,[bp+6], mov bx,es:[bx], call far [bx]). In figures 6, 
7 bp = 0FECh; 

 the virtual function that is called accesses the 
appropriate object through its pointer stored on the 
stack (see addresses 0FE8 and 0FEA in figures 6, and 
7). 

When a class has at least a single virtual function it is 
wise to supply a virtual destructor in this class. The 
base class should have its destructor declared as virtual 
to avoid problems when derived class objects are 
destroyed. Consider an example. 

class B { 

 int *a; 

public: 

 B() { a = new int[2]; } 

 ~B() { delete[] a;  }  

// virtual ~B() { delete[] a;  } 

// ............................ 

}; 

class D : public B { 

 int *a; 

public: 

 D() { a = new int[4]; } 

 ~D() { delete[] a; } 

// ............................ 

  }; 

void main(void) 

{ B *pb=new D; 

 delete pb;  } 

Here pb is a pointer to the base class B but actually pb 
points to the derived class D. As a result the sequence of 
constructors and destructors is the following: 

 constructor of B; 
 constructor of D; 
 destructor of B.  

 

B:i=5
9Eh

D:j=20
B:i= 10

92h
ss

0FFCh
cs

call f
bp
ss

0FFCh
call far
[bx=9E]

bp

0FFE
0FFC
0FFA
0FF8
0FF6
0FF4
0FF2
0FE0
0FEE
0FEC
0FEA
0FE8
0FE6
0FE4
0FE2

bp(sp)

bp(sp)

bp
object b

object d
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of
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e 
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m
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n
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k 

of
 f

pointer to
b.increment()

ds
9E virtual

function

pointer to
d.increment()

d.increment()
code

ds
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92

Figure 6. Call virtual function increment() through pointer 
to the object b of the base class B

push bp
mov bp,sp
les bx,[bp+6]
inc es:word ptr [bx+2]
pop bp
retf

b.increment()
code

cs

start

virtual
function

start

indirect function call

14h=2010
0Ah=1010

all data members in the objects b and d have initial values

 

B:i=5
9Eh

D:j=14h
B:i=0A

92h
ss

0FF6h
cs

call f
bp
ss

0FF6h
call far
[bx=92]

bp

0FFE
0FFC
0FFA
0FF8
0FF6
0FF4
0FF2
0FE0
0FEE
0FEC
0FEA
0FE8
0FE6
0FE4
0FE2
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bp(sp)
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object b

object d
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k 
of

 th
e 
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nc
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m
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n
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k 

of
 f

pointer to
b.increment()

ds
9E

pointer to
d.increment()

b.increment()
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ds
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92

Figure 7. Call virtual function increment() through pointer to the object d
of the derived class D 

push bp
mov bp,sp
les bx,[bp+6]
add es:word ptr [bx+4],2
pop bp
retf

d.increment()
code

cs

virtual
function

start

indirect function call

start

14h=2010
0Ah=1010

  

So, we have a problem when derived class object is 
destroyed. If we declare the destructor of B as virtual (see 
comments above) then we will have the correct sequence 
of constructors and destructors:  

 constructor of B; 
 constructor of D; 
 destructor of D; 
 destructor of B.  

A constructor cannot be virtual because it requires the 
exact type of the object.  
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IX. SMART POINTERS 

Smart pointers are objects that act like pointers. In 
order to create smart pointers we have to overload de-
referencing operator ->. Let us consider an example: 

template <class T> class P { 

 T *p; 

public: 

 P(T *mp=NULL) : p(mp) {} 

 ~P() { delete p; } 

 T* operator->() const { return p; } 

// another functions like copy constructor, 

// assignment operator, etc. 

}; 

 
Now we can use objects of class P to access members of 

class T in a very similar manner to the way pointers are 
used. Consider the following function: 

void F(int I) 

{  P<X> px=new X(I); 

  px->fX();  } 

The statement px->fX(); is interpreted as follows:  
 (px.operator->())->fX(); 

The constructor of an object px was provided with  a 
pointer to a new object of class X (see the first statement 
which is equivalent to P<X> px(new X(I));). Now P::p 
points to a new object of class X. The function 
px.operator->() returns the pointer P::p which can be 
further used as a pointer to the object of class X in order 
to access the member function fX() of X.  
Consider an example which demonstrates how smart 

pointers can be used. Suppose we want to provide a class 
X with an exception handling mechanism. Let us assume 
that a function fX() which is a member of class X can 
detect a problem that it cannot cope with. As a result fX() 
throws an exception , hoping that its caller can handle the 
problem. The main function contains a try statement 
block enclosing the code in which it wants to catch any 
error. If an error occurs, the respective exception handler 
(catch block) will be invoked (see the example below). 

class X { 

 int i; 

public: 

 X(int I=0) : i(I) {} 

 void fX() { if (++i>10) throw exc(); } 

 class exc {}; 

}; 

void F(int I) 

{ X *px = new X(I);  

  px->fX(); 

 delete px;  

} 

void main(void) 

{ int j=10; 

s: try { F(j); } 

 catch(X::exc) 

 { // do something 

  j--; 

  goto s; 

   } 

} 

Now consider what would happened if the statement px-
>fX(); throws an exception. Since the exception will 
propagate to its caller (to the function main) all 
statements in the function F after the call to px->fX(); 
will be skipped. This means that *px will never be 
deleted. So, each time px->fX(); throws an exception, the 
function F will contain a memory leak.  
In order to avoid a memory leak when an exception is 

thrown, we can add try and catch statements in the code 
for the function F, for instance: 

void F(int I) 

{ X *px = new X(I); 

 try { 

  px->fX(); 

   } 

 catch(...) // catch all exceptions 

 {  delete px; // avoid memory leak 

  throw; } // propagate the exception  

 delete px; 

} 

However this is difficult to maintain [5]. A better way is 
to replace the pointer px with an object that acts like a 
pointer (a smart pointer) [5]. When the pointer-like object 
is automatically destroyed (because this object is local) 
we can invoke the operator delete in its destructor. 
Consider an example: 

template <class T> class P { 

 T *p; 

public: 

 P(T *mp=NULL) : p(mp) {} 

 ~P() { delete p; } 

 T* operator->() const { return p; } 

 // another functions  

}; 

class X  { 

 int i; 

public: 

 X(int I=0) : i(I) {} 

 void fX() { if (++i>10) throw exc(); } 

 class exc {}; 

}; 

void F(int I) 

{  P<X> px=new X(I); 

  px->fX(); 

} 

void main(void) 

{ int j=10; 

s: try { F(j); } 

 catch(X::exc) 

 { // do something 

  j--; 

  goto s; 

   } 

} 
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The idea of using automatic objects (smart pointers) 

instead of objects allocated on a free store can be applied 
in a variety of ways to many different tasks. 

X. VIRTUAL BASE CLASSES 

With multiple inheritance, a base class can be indirectly 
passed to the derived class more than once. Consider an 
example. 

class B { 

 int a; 

public: 

 B() : a(5) {} 

 }; 

class D1 : public B { 

// class D1 : virtual public B  { 

 int a; 

public: 

 D1() : a(6) {} 

    }; 

class D2 : public B  { 

//class D2 : virtual public B   { 

 int a; 

public: 

 D2() : a(7) {} 

    }; 

class D1D2 : public D1, public D2   { 

// class D1D2 : virtual public B, public D1, 

// public D2  { 

 int a; 

public: 

 D1D2() : a(8) {} 

       }; 

void main(void) 

{ B b; 

 D1 d1; 

 D2 d2; 

 D1D2 d1d2;  } 

In this case, each object of the class D1D2 has two sub-
objects of the class B (structures of the objects d1d2, d1, 
d2 and b in computer memory are shown in figure 8,a). If 
this causes problems (see, for example, [4]) the base class 
B can be specified as virtual (see lines of the code shown 
in comments above).  In this case, each object of the class 
D1D2 has just one sub-object of the class B (structures of 
the objects d1d2, d1, d2 and b in computer memory are 
shown in figure 8,b). Now it is provided indirect access to 
the sub-object b through its address stored in the objects 
d1, d2 and d1d2 (see figure 8,b).  
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XII. CONCLUSION 

We have discussed some of the constructions accepted 
in object-oriented programming. On the one hand these 
constructions are very useful and enable us to build 
effective object-oriented code. On the other hand the 
teaching experience shows that they are difficult for 
students to apply and are error-prone. The article 
examines some of the more common errors, shows the 
correct implementation in each case, and explains how 
the computer executes different C++ instructions at 
different levels. Finally it allows the students to eliminate 
errors and to better understand object-oriented 
techniques. The paper assumes a prior knowledge of 
C++ (I can recommend the book [6] which contains a 
full tutorial to the C++ language). The basic approaches 
involved in the use of object-oriented programming are 
also presented and discussed in the paper [7]. 
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