
REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 1

Resumo - A experiência no ensino da programação
orientada a objectos mostra que os alunos usam algumas
construções básicas incorrectamente, tendo muitas
dificuldades no uso de ponteiros e referências, objectos
constantes e estáticos, funções virtuais, etc. Este artigo
apresenta explicações detalhadas dessas construções em C++
e na linguagem assembly, permitindo-lhes perceberem não só
as construções, mas também a sua eficiência. O artigo
recomenda ainda algumas regras para construir uma nice
class.

Abstract - Experience in the teaching of object-oriented

programming shows that there are some basic constructions
which are frequently used incorrectly by students. For
example, many students have difficulties with the use of
references and pointers, const and static objects, and virtual
functions. This paper presents a detailed explanations of
such constructions in C++, with examples of their
implementation in assembly language as generated by the
compiler. This will enable students to not only understand
how these constructions work, but also to get a feeling for
their efficiency. There are also some recommended rules for
good class design.

I. INTRODUCTION

The goal of this paper is to show how the object-
oriented style of programming is used and how the
efficiency of C++ code can be improved. It is aimed at
students since previous experience shows that they have
particular difficulties with the design of C++ programs
and with the understanding of some of the basic
constructions in object-oriented programming.
The paper presents the following topics:
 Guidance on how to use various C++ constructions

correctly;
 Detailed explanations of the constructions that are the

most difficult for students to understand with a
discussion of the more common errors that are made;

II. VALUES, POINTERS AND REFERENCES

C++ provides both direct and indirect access to objects.
An object is a value that is accessed directly through an
object name, and indirectly through pointers and
references. The distinction between a pointer and a
reference is that the programmer may use a reference as

an ordinary object, even though it accesses the object
indirectly, whereas a pointer must be de-referenced in
order to access the object. Even though pointers and
references differ in the way they are used, the compiler
will build the same code for both references and pointers.
A reference is an implicit pointer to a value whereas a
pointer requires an explicit definition. Consider an
example:

void main(void)

{ int i=3; // mov word ptr[bp-2],3

 int &j=i; // lea ax,[bp-2]

 // mov [bp-4],ss

 // mov [bp-6],ax

 j=2; // les bx,[bp-6]

 // mov es:word ptr [bx],2

//

}

The comments show possible assembly language code
created by the compiler (I used TASM compiler for 16
bits Intel microprocessors). After the assignment (j=2),
the object i also has the value 2 (see figure 1). As you
can see from Figure 1, the reference j can be considered
to be an implicit pointer. Indeed, for the following
program the compiler will build the same assembly
language code:

void main(void)

{ int i=3;

 int *j=&i;// j is an explicit pointer to i

 *j=2; // explicit use of the pointer j

//

}

Since a reference is actually an implicit pointer to a
value, it sometimes may produce unexpected results.
Consider the following example:

#include <iostream.h>

int F(int& ri)

{ ++ri;

 return ri; };

void main(void)

{ int m1=1;

 cout << F(m1) << endl; // The result: 2

 cout << m1 << endl; // The result: 2

}

In the example, the reference to the object m1 is passed
to the function F. The function F changes the value of m1
indirectly through its reference.
The next example shows another potential error:

Understanding and Low Level Implementation Basic OOP Constructions

Valery Sklyarov

2REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994

#include <iostream.h>

int* F(int& ri)

{ ++ri;

 return &ri; };

void main(void)

{ int m1=1,*m2;

 m2=F(m1);

 *m2=10;

 cout << m1 << endl; // The result: 10

}

The pointer m2 stores the address of the value returned
from F. As a result it points to m1. Therefore the
statement *m2=10 assigns the value 10 to the variable
m1. If the function F were defined as int* F(int ri) we
would not get such an error. The use of references allows
you to change data even in the private section of a class
(see, for example, [1]).
As a consequence, it is generally better to avoid the use

of references with the basic data types. However they can
be very efficient when used with user-defined data types.

ss

bp
i=3
ss

bp-2

 // mov word ptr [bp-2],3
 // mov [bp-4],ss
 // mov [bp-6],ax ; lea ax,[bp-2]

mov es:word ptr [bx],2

es bx

les
 bx

,[b
p-6

]

j=2 and i=2

Figure 1. Access to the object i vie reference

Consider the following assignment:

 X = Y;

This assignment is correct if the expression on the left
side produces an lvalue (a left value which is an address)
and the expression on the right side produces an rvalue (a
right value which is an acceptable value for the specified
type). As a result of this statement, the value on the right
side is copied into the address location on the left. Since a
reference is considered to be an lvalue, it can appear on
the left side of the assignment statement. Passing a
function argument by value means that a copy of its value
(the rvalue) is placed on the stack. The function has no
direct access to the value in the calling function. Passing
an argument by reference copies the lvalue itself onto the
stack, so the address of the argument is passed to the
function allowing the function direct access to the value in
the calling function.
A reference can be returned by a function. Consider the

following two examples.
int& F(int& i) // push bp

 // mov bp,sp

{ return i; }; //** mov dx,[bp+8]

 //** mov ax,[bp+6]

 // pop bp

 // retf

void main(void)

{ int mi1=10,mi2;// mov word ptr [bp-2],0Ah

 // here ss=bp-4

 mi2=F(mi1); // push ss

 // lea ax,[bp-2]

 // push ax

 // push cs

 // call F

 // add sp,4

 //** mov bx,ax

 //** mov es,dx

 //** mov ax,es:[bx]

 //** mov [bp-4],ax

}

int F(int& i)

{ return i;}; //** les bx,[bp+6]

 //** mov ax,es:[bx]

void main(void)

{ int mi1=10,mi2;

 mi2=F(mi1); } //** mov [bp-4],ax

In the first example the function F returns an lvalue (as
before, the comments show possible assembly language
code created by the compiler). Because it returns an
lvalue, F can be used on the left side of the assignment
statement. In the second example the function F returns an
rvalue. This means that F cannot be used on the left side
of the assignment statement. Additional explanations are
given in figure 2. The assembly language instructions that
are different in the second example are marked with //**.

bp

bp (sp)

mi1=10
mi2
ss

 bp-2
cs

bp

bp

bp (sp)

mi1=10
mi2
ss

 bp-2
cs

bp

ax=bp-2
dx=ss

8
6

F returns an lvalue

es bx

ax=10

address

F returns an rvalue

Stack of
the main
function

Stack of
called

function

Figure 2. Lvalue and rvalue returned from the function

call F call F

Using references as return values enables us to design

better code. Suppose we want to overload the subscript
operator []. Consider the following program:

#include <iostream.h>

#include <string.h>

class X {

 char *s;

public:

 X(char* S)

 { s = new char[strlen(S)+1];

REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 3

 strcpy(s,S); }

 char& operator[](int i) { return s[i]; }

 void display(void) { cout << s << endl; }

 };

void main(void)

{ X x="01234";

 x.display(); // The result: 01234

 x[2]='#'; // operator[] function call

 x.display(); // The result: 01#34

 cout<<x[2];// operator[] function call

} // The result: #

In the example above, the operator[] function can
indirectly change a private string of the class X, pointed to
by s (and we do want to allow such changes to be made).
Trying to use alternative approaches leads us to worse
code. Indeed consider the following function:

char operator[](int i);

In this case the compiler gives an error for the statement
x[2]='#'; (lvalue required).
Returning a pointer to value by declaring the function as:

 char* operator[](int i);

is worse because we have to use expressions such as
*x[2]='#'; which are much less readable.
Because a reference to the result is returned from the

function, the return value cannot be an automatic
variable. Since the function can be used more than once
in an expression, the result cannot be a static local
variable.
Consider the following program:

class X {

 int *i;

public:

 X(void) { i = new int[2];

 i[0]=0; i[1]=1; }

 ~X(void) { delete[] i; }

 void display()

 { cout << i[0] << '\t' << i[1] << endl; }

};

void f(X x) // f(X& x) - OK

{ int *j = new int[2];

 // do something

}

void main(void)

{ X o;

 o.display();

 f(o); // destructor invoked

 o.display();

} // destructor invoked

The function f takes a value of type X. If even the
function does nothing we will still have an error related to
dynamic memory deallocation (see figure 3). This is
probably the error that occurs most frequently.

The function main

Called function (F in our example)

call return

An object

Allocated
dynamic
 memory

An object
a copy of
an object

Figure 3. An error of unexpected dynamic memory deallocation

Calling class
destructor and

dynamic
memory

deallocation

2

3

1

4

5
6

7

 Let us examine the following function call:
 f(o);

The parameter o of the function f is a local (automatic)
object in the function body. An automatic object is created
each time its declaration is encountered in the execution
of the program, and destroyed each time the block in
which it is declared is left. As a result, after the
termination of the function f, the destructor for the object
o will be called. Figure 3 shows the whole sequence of
steps in this process which are the following:
1) in the definition X o; a new object o is constructed.

The object constructor allocates memory dynamically
using the new operator;

2) the function f is called (see the statement f(o));
3) since the argument to the function f, the object o, is

passed by value, this value is copied from the
function main onto the stack for the function f;

4) the object copy contains a pointer to the same
memory allocated for the original object;

5) the function f is terminated (the block which contains
the copied object is left);

6) the destructor for the copy of the object o is called,
and it deallocates the dynamically allocated memory
for the object;

7) now the pointer in the original object o points to
nowhere since its memory has been discarded.

You can see that the constructor of o was called once
(in the function main), whereas the destructor of o was
called twice (both in the function main and in the
function f). Besides the allocated memory was
unexpectedly destroyed. However if the function f would
be declared as f(X&) then the program would run
properly. Suppose you want to leave the previous
declaration (f(X x)). We can do it but we have to
eliminate the error in the design of the class X. Classes
should not be designed so that if objects are passed by
value you get an error. This is due to the default copy
constructor (see section VI) being called which does
memberwise copy to produce a copy object. The class X
should define a copy constructor:

 X::X(const X& o)

{ i=new int[2];

 i[0] = o.i[0]; i[1] = o.i[1]; }

4REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994

Now we can use arguments by value or by reference. It is

a basic rule that any class allocates memory in the
constructor should implement a copy constructor as well
as a destructor. It should also implement the assignment
operator (see section VI) since the default assignment
operator produces the same problem as the default copy
constructor.

Additional information about these topics can be found
in [2].

III. USE OF CONST

Consider a function F which has the following
prototype:

 X F(const X& r_o);

Here X is a class name. From an abstract point of view
this declaration promises not to change the abstract value
of the object referenced by r_o [3].

A member function of a class can be declared such that
it will only read data from the object to which it
belongs, but not change it. The declaration not to change
the object is indicated by a const suffix to the argument
list, for instance:

 class X { //

 void F(void) const; };

Now any attempt to change X in the function F is
illegal. A const member function can be called for a
const object. A non const member function cannot be
called for a const object. The type of the pointer this in a
const member function of class X is const X *const [4].
This means that you cannot change the value of an object
without an explicit cast (see the example below).
Changes can be also made by using relatively new
features of C++ such as the mutable declaration and cast
away const capability [3].

Consider an example.
class X {

 int i;

public:

 X(int I) : i(I) {}

 void display(void) const;
// explicit cast

 void exc(int e) const {((X*)this)->i=e;}

 void f(void) { i=5;}

// cannot modify a const object

// void ff() const {i=100;}

 };

 void X::display(void) const

 { cout << i << endl; }

void main(void)

{ X x=10;

 X const y=20;

// non-const function called for const object

// y.f();

 //

}

This program will show some error messages
generated by the compiler.

IV. USE OF STATIC

The memory used for a C++ program is divided into
three parts:

 the static part which contains the program code
and static data;

 the stack that holds automatic variables and
function arguments;

 the free store (the heap) which is available for
dynamic allocation and deallocation.

There are two meanings of the keyword static [4]:
 as in statically allocated, which is opposed to on

the stack or on the free store (on the heap);
 as in with restricted visibility, which is opposed

to with external linkage.
In C++ class members can be declared as static. Static

members are considered to be a property of a class and
they are shared among all objects of a class. A static
member declaration is only a declaration and the member
(even a private member) must have a definition
somewhere in the program, for example:

 int X::i=0;

The name of the static member is a fully qualified name
(for example, X::i). Static data members have both the
meanings considered above. For member functions,
static has only the second meaning.
The example below demonstrates the use of static

members.
#include <iostream.h>

class X {

 static int i;

public:

 void ff() { ++i; }

 static void f()

 { cout << "i=" << i << endl; }

 };

int X::i=0; // definition of i

void main(void)

{ X x1,x2;

 x1.ff();

 x2.ff();

 x1.ff();

 X::f(); } // The result: i=3

Here the function X::f() was called for the class X, but
not for a particular object of the class X. A static member
function does not have a this pointer and cannot be
virtual. Such a function can access non static members of
its class explicitly by using class member access
operators (. and ->). It is not allowed to have static and
non static member functions with the same name and the
same argument types. Constructors for global static
objects are called in the order of the object declarations.
Destructors are called in the opposite order. Constructors
for local static objects are called the first time the object
definition occurs. Any static object is constructed once
according to the rules above, and destroyed at the
termination of the program.

REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 5

By calling constructors and destructors for static objects
explicitly, we can initialise and cleanup data in libraries
(before execution and after termination of the function
main).
Suppose the C++ project file my.ide includes the files

my1.cpp and my2.cpp which contain the following code:
#include <iostream.h> // my1.cpp

class Y {

public:

 Y() { cout << "\nY constructor\n"; }

 ~Y() { cout << "Y destructor\n"; }

 };

class X {

 static int i;

public:

 X();

 ~X();

 };

static X x; // object x definition

int X::i=0; // definition of i

X::X()

{ cout << i << '\t';

 if(i++ == 0) cout << "initialise\n"; }

X::~X()

{ cout << i << '\t';

 if(--i == 0) cout << "cleanup\n"; }

void main(void)

{ Y y; }

class X { // my2.cpp

 static int i;

public:

 X();

 ~X();

 };

static X x;

The program produces the following results:
 0 initialise

 1

 Y constructor

 Y destructor

 2 1 cleanup

V. INLINE FUNCTIONS

The code for an inline function is inserted in the
program at each point where the function is called
(instead of the ordinary calling mechanism which
branches to the code for the function). Consider an
example:

class X {

 int i;

public:

 void f(int I) { i=I; }// inline function

 int ff(); // inline function

 void fff(); // non inline function

 };

inline int X::ff() {return i; }

void X::fff() { i++; } // push bp

 // mov bp,sp

 // les bx,[bp+6]

 // inc es:word ptr [bx]

 // pop bp

 // retf

void main(void)

{ X x;

 x.f(5); // mov word ptr [bp-2],5

 x.fff(); // push ss

 // lea ax,[bp-2]

 // push ax

 // push cs

 // call X::fff

 // add sp,4

 _AX=x.ff(); } // mov ax,[bp-2]

The comments show possible assembly language code
created by the compiler. The code for the non inline
function X::fff() allows for the possibility of the function
being either inline or not.

VI. SOME REMARKS ON CLASS DESIGN

There are some functions (regular functions [3]) whose
semantics are the same in all well-designed classes. They
are the following:

 the copy constructor;
 the destructor;
 the principal assignment operator (=);
 the equality (==) and inequality (!=) operators.

These functions are declared as follows [3]:
class X {

//

public:

 X(const X&); // construct an object whose

// abstract value is the same as the argument

 ~X(); // destroy the object

 const X& operator=(const X&); // set the

// value of this object to the value of the

// argument, and return a reference

 bool operator==(const X&) const;// return

// true if and only if this object and the

// argument object have the same value

 bool operator!=(const X&) const;//return

// true if and only if this object and the

// argument object have the different values

//

 };

In [3] it was suggested that a class which provides all the
regular functions and a default constructor should be
called a nice class (these functions could be included in a
certain minimal standard interface).
Consider a nice array class which implements all the

regular functions (it would be a good idea to declare this
class as a class template).

enum bool {false,true};

template <class T> class array {

 T* a;

6REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994

 int s;

 T& operator[](int j) { return a[j]; }

public:

 array(int S=1) { a = new T[s=S]; }

 array(const array&);

 ~array() { delete[] a; }

 const array& operator=(const array&);

 bool operator==(const array&) const;

 bool operator!=(const array&) const;

 friend ostream&

 operator<<(ostream&,array<T>&);

 friend istream&

 operator>>(istream&,array<T>&);

 };

template <class T>

array<T>::array(const array& A)

{ a = new T[s=A.s];

 for(int i=0;i<A.s;i++)

 a[i] = A.a[i]; }

template <class T> const array<T>&

array<T>::operator=(const array& A)

{ if(this != &A) {

 delete[] a;

 a = new T[s=A.s];

 for(int i=0;i<A.s;i++)

 a[i] = A.a[i]; }

 return *this;

}

template <class T> bool

array<T>::operator==(const array<T>& A) const

{ if(s!=A.s) return false;

 for(int i=0;i<A.s;i++)

 if (a[i] != A.a[i]) return false;

 return true;

 }

template <class T> bool

array<T>::operator!=(const array<T>& A) const

{ if(s!=A.s) return true;

 for(int i=0;i<A.s;i++)

 if (a[i] != A.a[i]) return true;

 return false;

 }

template <class T> ostream&

operator<<(ostream& stream,array<T>& A)

{ for(int i=0;i<A.s;i++)

 stream << A[i] << '\t';

 stream << endl;

 return stream; }

template <class T> istream&

operator>>(istream& stream,array<T>& A)

{ for(int i=0;i<A.s;i++)

 stream >> A[i];

 return stream; }

Now we can use for example the following
statements in the function main:

 array<int> ai1=6,ai3;

 cin >> ai1;

 cout << ai1;

 array<int> ai2=ai1; // initialisation

 ai3 = ai1; // assignment

 if (ai3 == ai1) // do something;

 if (ai2 != ai1) // do something;

We can also define an array of objects of a user-defined
type, for instance:

 array<student> ai1=6,ai3;

The type student must have been declared and defined
previously. For example:

class student {

 char *name;

public:

 student();

 ~student();

 bool operator!=(const student&) const;

 bool operator==(const student&) const;

 friend ostream&

 operator<<(ostream&,student&);

 friend istream&

 operator>>(istream&,student&);

// .

 };

V11. INHERITANCE AND CONTAINMENT

The two most common relationships between classes
are inheritance and containment. If one class X has a
member which is an object of another class Y (see figure
4, a), then we can say there is a containment relationship.
Because X HAS A member of type Y, it is often said that
there is a HAS A relationship [2,4]. When a class D is
derived (usually publicly) from another class B, we can
say that D IS A kind of B and we have an IS A
relationship (see figure 4, b).
Inheritance is one of the most powerful tools of object-

oriented programming. It is a process of building a new
class (derived class) from an existing class (base class).
When we build a derived class we want to inherit
properties from its base class. A very important
characteristic of inheritance is that it enables us to reuse
existing code.

class X

class Y

class B

class D

 Y

 X
 D

B

 B

a) b)

c) d)

pointer to
the object
of class X

pointer to
the object
of class B

pointer to
the object
of class D

Figure 4. Containment relationship (a), inheritance relationship (b),
structures and locations of respective objects in computer memory (c,d)

When we derive a new class we can:

REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 7

 add new data members;
 add new member functions;
 override (change or modify) inherited member

functions.
As a result the derived class is more powerful (is more

extensive) than its base class (see figure 4, d). Consider an
example.

class B { // base class

protected:

 int i;

public:

//

};

class D : public B { // derived class

 int j;

public:

//

};

void f(B* pb)

{ //

}

void main(void)

{ B b;

 D d;

 f(&b);

 f(&d); } // implicit conversion

Here class D is publicly derived from class B. Let us
declare pointers to B and to D:

B *pb=&b;

D *pd=&d;

Now we can provide access to members of b through the
pointer pb and access to members of d through the pointer
pd. Since a base class can be covered by a derived class
(the derived class is more extensive) we can use a pointer
to a derived class to access to members of its base class.
In other words we can assign &d to pb without the use of
an explicit type conversion:

 pb=&d;

The opposite implicit conversion (pd=&b) is not
allowed. However the conversion can be explicit:

 pd=(D*)&b;

The same implicit conversion can be used when we pass
arguments to function (see the function f in the example
above).

VIII. VIRTUAL FUNCTIONS

Virtual functions allow the programmer to provide
overriding inherited member functions. Functions can be
declared in a base class and then redefined in each
derived class. This idea is implemented through pointers
to functions. The determination of which function is
called for an object can be done at runtime and is
therefore called late binding (or dynamic binding). This
contrasts with early binding (static binding) which is
done during compilation. The mechanism of dynamic
binding is explained in figure 5.

An object of the class B

data members

pointer to virtual
table of B

An object of the class D

data members of B

pointer to virtual
table of D

inheritance relationship

data members of D

starting addresses (pointers)
to virtual functions (vf)

 pointer to vf1
 pointer to vf2

starting addresses (pointers)
to virtual functions (vf)

 pointer to vf1
 pointer to vf2

B::vf1

B::vf2

D::vf2

D::vf1

virtual
table
of B

virtual
table
of D

Figure 5. A mechanism of virtual functions calls

All objects of the same class have an associated virtual

table that contains the addresses (pointers to the first
instructions) of the actual functions to be called. A
virtual function is specified by the keyword virtual. The
type of a function declared in the base class cannot be
redefined in a derived class. Consider an example:

class B {

protected:

 int i;

public:

 B(int I) : i(I) {}

 void decrement() { i--; }

 virtual void increment() { i++; }

};

class D : public B {

 int j;

public:

 D(int I,int J) : B(I), j(J) {}

 void decrement() { j-=2; }

 void increment() { j+=2; }

};

void f(B* pb) // push bp

 // mov bp,sp

{ pb->decrement();// les bx,[bp+6]

 // dec es:word ptr[bx+2]

 pb->increment(); }

 // push word ptr[bp+8]

 // push word ptr[bp+6]

 // les bx,[bp+6]

 // mov bx,es:[bx]

 // call far [bx]

 // add sp,4

 // pop bp

void main(void)

{ B b=5; // mov word ptr[bp-4],9Eh

 // mov word ptr[bp-2],5

 D d(10,20); // mov word ptr[bp-8],0Ah

 // mov word ptr[bp-0Ah],92h

 // mov word ptr[bp-6],14h

 f(&b); // push ss

 // lea ax,[bp-4]

 // push ax

8REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994

 // push cs

 // call f

 // add sp,4

 f(&d); // push ss

 // lea ax,[bp-0Ah]

 // push ax

 // push cs

 // call f

 // add sp,4

}

The comments show possible assembly language code
created by the compiler. Since the function decrement is
not virtual, in f it will be called for type B because the type
of parameter for f is a pointer to B. The virtual function
increment is called for B if f takes a pointer to B, and is
called for D if f takes a pointer to D. Passing a pointer to
the class is implemented through the stack before the call
of the function f. Two assembly language instructions
were underlined in order to demonstrate how a pointer to
the object b of class B (in the call f(&b);) and a pointer to
the object d of class D (in the call f(&d);) are passed to the
function f. Figure 6 explains the call of a virtual function
for the object b of the base class B. Figure 7 explains the
call of a virtual function for the object d of the derived
class D. In both cases the sequence of steps is the
following:

 a pointer to an object is passed to f. For the call
f(&b) it will be the pointer (0FFC) to b (lea ax,[bp-
4], bp=1000h). For the call f(&d) it will be the
pointer (0FF6) to d (lea ax,[bp-0Ah], bp=1000h);

 f calls the inline function, decrement, of the base
class;

 f saves the address of the appropriate object on the
stack (push word ptr[bp+8], push word ptr[bp+6])
and performs an indirect far call of a virtual function
through its address stored in the object (les
bx,[bp+6], mov bx,es:[bx], call far [bx]). In figures 6,
7 bp = 0FECh;

 the virtual function that is called accesses the
appropriate object through its pointer stored on the
stack (see addresses 0FE8 and 0FEA in figures 6, and
7).

When a class has at least a single virtual function it is
wise to supply a virtual destructor in this class. The
base class should have its destructor declared as virtual
to avoid problems when derived class objects are
destroyed. Consider an example.

class B {

 int *a;

public:

 B() { a = new int[2]; }

 ~B() { delete[] a; }

// virtual ~B() { delete[] a; }

//

};

class D : public B {

 int *a;

public:

 D() { a = new int[4]; }

 ~D() { delete[] a; }

//

 };

void main(void)

{ B *pb=new D;

 delete pb; }

Here pb is a pointer to the base class B but actually pb
points to the derived class D. As a result the sequence of
constructors and destructors is the following:

 constructor of B;
 constructor of D;
 destructor of B.

B:i=5
9Eh

D:j=20
B:i= 10

92h
ss

0FFCh
cs

call f
bp
ss

0FFCh
call far
[bx=9E]

bp

0FFE
0FFC
0FFA
0FF8
0FF6
0FF4
0FF2
0FE0
0FEE
0FEC
0FEA
0FE8
0FE6
0FE4
0FE2

bp(sp)

bp(sp)

bp
object b

object d

st
ac

k
of

 th
e

fu
nc

tio
n

m
ai

n
st

ac
k

of
 f

pointer to
b.increment()

ds
9E virtual

function

pointer to
d.increment()

d.increment()
code

ds

cs
92

Figure 6. Call virtual function increment() through pointer
to the object b of the base class B

push bp
mov bp,sp
les bx,[bp+6]
inc es:word ptr [bx+2]
pop bp
retf

b.increment()
code

cs

start

virtual
function

start

indirect function call

14h=2010
0Ah=1010

all data members in the objects b and d have initial values

B:i=5
9Eh

D:j=14h
B:i=0A

92h
ss

0FF6h
cs

call f
bp
ss

0FF6h
call far
[bx=92]

bp

0FFE
0FFC
0FFA
0FF8
0FF6
0FF4
0FF2
0FE0
0FEE
0FEC
0FEA
0FE8
0FE6
0FE4
0FE2

bp(sp)

bp(sp)

bp
object b

object d

st
ac

k
of

 th
e

fu
nc

tio
n

m
ai

n
st

ac
k

of
 f

pointer to
b.increment()

ds
9E

pointer to
d.increment()

b.increment()
code

ds

cs

92

Figure 7. Call virtual function increment() through pointer to the object d
of the derived class D

push bp
mov bp,sp
les bx,[bp+6]
add es:word ptr [bx+4],2
pop bp
retf

d.increment()
code

cs

virtual
function

start

indirect function call

start

14h=2010
0Ah=1010

So, we have a problem when derived class object is
destroyed. If we declare the destructor of B as virtual (see
comments above) then we will have the correct sequence
of constructors and destructors:

 constructor of B;
 constructor of D;
 destructor of D;
 destructor of B.

A constructor cannot be virtual because it requires the
exact type of the object.

REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994 9

IX. SMART POINTERS

Smart pointers are objects that act like pointers. In
order to create smart pointers we have to overload de-
referencing operator ->. Let us consider an example:

template <class T> class P {

 T *p;

public:

 P(T *mp=NULL) : p(mp) {}

 ~P() { delete p; }

 T* operator->() const { return p; }

// another functions like copy constructor,

// assignment operator, etc.

};

Now we can use objects of class P to access members of

class T in a very similar manner to the way pointers are
used. Consider the following function:

void F(int I)

{ P<X> px=new X(I);

 px->fX(); }

The statement px->fX(); is interpreted as follows:
 (px.operator->())->fX();

The constructor of an object px was provided with a
pointer to a new object of class X (see the first statement
which is equivalent to P<X> px(new X(I));). Now P::p
points to a new object of class X. The function
px.operator->() returns the pointer P::p which can be
further used as a pointer to the object of class X in order
to access the member function fX() of X.
Consider an example which demonstrates how smart

pointers can be used. Suppose we want to provide a class
X with an exception handling mechanism. Let us assume
that a function fX() which is a member of class X can
detect a problem that it cannot cope with. As a result fX()
throws an exception , hoping that its caller can handle the
problem. The main function contains a try statement
block enclosing the code in which it wants to catch any
error. If an error occurs, the respective exception handler
(catch block) will be invoked (see the example below).

class X {

 int i;

public:

 X(int I=0) : i(I) {}

 void fX() { if (++i>10) throw exc(); }

 class exc {};

};

void F(int I)

{ X *px = new X(I);

 px->fX();

 delete px;

}

void main(void)

{ int j=10;

s: try { F(j); }

 catch(X::exc)

 { // do something

 j--;

 goto s;

 }

}

Now consider what would happened if the statement px-
>fX(); throws an exception. Since the exception will
propagate to its caller (to the function main) all
statements in the function F after the call to px->fX();
will be skipped. This means that *px will never be
deleted. So, each time px->fX(); throws an exception, the
function F will contain a memory leak.
In order to avoid a memory leak when an exception is

thrown, we can add try and catch statements in the code
for the function F, for instance:

void F(int I)

{ X *px = new X(I);

 try {

 px->fX();

 }

 catch(...) // catch all exceptions

 { delete px; // avoid memory leak

 throw; } // propagate the exception

 delete px;

}

However this is difficult to maintain [5]. A better way is
to replace the pointer px with an object that acts like a
pointer (a smart pointer) [5]. When the pointer-like object
is automatically destroyed (because this object is local)
we can invoke the operator delete in its destructor.
Consider an example:

template <class T> class P {

 T *p;

public:

 P(T *mp=NULL) : p(mp) {}

 ~P() { delete p; }

 T* operator->() const { return p; }

 // another functions

};

class X {

 int i;

public:

 X(int I=0) : i(I) {}

 void fX() { if (++i>10) throw exc(); }

 class exc {};

};

void F(int I)

{ P<X> px=new X(I);

 px->fX();

}

void main(void)

{ int j=10;

s: try { F(j); }

 catch(X::exc)

 { // do something

 j--;

 goto s;

 }

}

10REVISTA DO DETUA, VOL. 1, Nº 1, JANEIRO 1994

The idea of using automatic objects (smart pointers)

instead of objects allocated on a free store can be applied
in a variety of ways to many different tasks.

X. VIRTUAL BASE CLASSES

With multiple inheritance, a base class can be indirectly
passed to the derived class more than once. Consider an
example.

class B {

 int a;

public:

 B() : a(5) {}

 };

class D1 : public B {

// class D1 : virtual public B {

 int a;

public:

 D1() : a(6) {}

 };

class D2 : public B {

//class D2 : virtual public B {

 int a;

public:

 D2() : a(7) {}

 };

class D1D2 : public D1, public D2 {

// class D1D2 : virtual public B, public D1,

// public D2 {

 int a;

public:

 D1D2() : a(8) {}

 };

void main(void)

{ B b;

 D1 d1;

 D2 d2;

 D1D2 d1d2; }

In this case, each object of the class D1D2 has two sub-
objects of the class B (structures of the objects d1d2, d1,
d2 and b in computer memory are shown in figure 8,a). If
this causes problems (see, for example, [4]) the base class
B can be specified as virtual (see lines of the code shown
in comments above). In this case, each object of the class
D1D2 has just one sub-object of the class B (structures of
the objects d1d2, d1, d2 and b in computer memory are
shown in figure 8,b). Now it is provided indirect access to
the sub-object b through its address stored in the objects
d1, d2 and d1d2 (see figure 8,b).

XI. ACKNOWLEDGEMENTS

Many thanks to Ivor Horton for his help with this article.

object d1

object d2

sub-object d2

sub-object d1

object d1d2

object b

object d1
sub-object b

pointer to the sub-object b

object d2
sub-object b

pointer to the sub-object b

sub-object b

sub-object d2
pointer to the sub-object b

sub-object d1
pointer to the sub-object b

object d1d2

pointer to the sub-object b

a) b)

Figure 8. Structures of non virtual (a) and virtual (b) objects
in computer memory

object b

sub-object b

sub-object b

sub-object b

sub-object b

XII. CONCLUSION

We have discussed some of the constructions accepted
in object-oriented programming. On the one hand these
constructions are very useful and enable us to build
effective object-oriented code. On the other hand the
teaching experience shows that they are difficult for
students to apply and are error-prone. The article
examines some of the more common errors, shows the
correct implementation in each case, and explains how
the computer executes different C++ instructions at
different levels. Finally it allows the students to eliminate
errors and to better understand object-oriented
techniques. The paper assumes a prior knowledge of
C++ (I can recommend the book [6] which contains a
full tutorial to the C++ language). The basic approaches
involved in the use of object-oriented programming are
also presented and discussed in the paper [7].

REFERENCES

[1] Anton Eliens Principles of Object-Oriented Software
Development. Addison-Wesley, 1995, 513 p.

[2] Michael C. Daconta C++ Pointers and Dynamic Memory
Management. John Wiley & Sons, Inc., 1995, 464 p.

[3] Martin D.Carroll, Margaret A.Ellis Designing and coding
reusable. Addison-Wesley, 1995, 317 p.

[4] Bjarne Stroustrup The C++ Programming Language. Second
Edition, Addison Wesley Publishing Company, 1994, 691 p.

[5] Scott Meyers More Effective C++. Addison Wesley Publishing
Company, 1996, 318 p.

[6] Ivor Horton Beginning Visual C++ 4. WROX, 1996, 825 p.
[7] Valery Sklyarov From Procedural to Object-Oriented

Programming. Electrónica e Telecomunicações, 1995, vol.1, N 3,
pp 217-223.

