
REVISTA DO DETUA, VOL. ?, Nº ?, MÊS 199? 1

* Trabalho realizado no âmbito da Disciplina de Projecto.

Resumo - Neste projecto implementa-se um agente robótico
autónomo que realiza uma série de comportamentos
reactivos simples e que se adapta a condições ambientais
locais. Visto que comportamentos oscilatórios em condições
de cantos parecem ser característica inerente a
comportamentos puramente reactivos, o agente robótico
necessitará de memória para melhorar a eficiência global ao
evitar obstáculos. Neste estudo, um robot lembra-se dos
lugares de obstáculos previamente encontrados, através dum
mapa local gerado na sua memória de curta duração. O
mapa fornece informação suficiente para que o robot seja
capaz de evitar ser encurralado em cantos e de oscilar
indefinidamente.

Abstract - This project implements an autonomous mobile

robot platform that performs a series of simple reactive
behaviors and adapts to local environmental conditions.
Since oscillatory motion under cornered conditions appears
to be an inherent characteristic of purely reactive obstacle
avoidance mechanisms in autonomous robots, a robot agent
will require memory to enhance overall obstacle avoidance
efficiency. In this study, a robot remembers previously
encountered nearby obstacle sites by means of a self-
generated local map in its short term memory. The map
provides sufficient information for the robot to avoid
becoming trapped in corners and oscillating endlessly.

I. INTRODUCTION

Mapping in real robotic autonomous agents has been an
important focus of experimental research [5][6] and other
theoretical studies. These models are difficult to
implement, test and improve. Investigations attempt to
implement intuitive ideas about how simple mapping
strategies should be worked out in a real robot that must
build global maps [10] (see Fig. 1) [2][3][4] (see Fig. 2).

On the contrary, this work presents a simple and
interesting way of implementing a local-only mapping
strategy on a real robotic platform with low processing
and sensing capabilities. Here, local mapping means that
the robot is able to remember only detected objects that
exist in its immediate neighborhood, namely obstacles it
avoided within a short radial space-range. Although
without any global mapping capabilities, the robot showed
to behave rather well in local mapping problems.

II. PLATFORM DESCRIPTION

The realized robotic platform evolved from previously
developed platforms designed under minimalist
constraints [1][7].

The robot has five IR (infrared) sensors, three in front
for obstacle detection, one at the top of its mast for high
obstacle detection, and the last one turned to the floor for
hole detection (see Fig. 3). Hole detection is interpreted as
a deadly obstacle detection.

The front three IR sensors have adaptive thresholds that
allow the robot to adjust itself to local conditions.
Specifically, the robot maintains object detection
sensitivity to avoid obstacles, but, at the same time,
attempts to pass narrow passages by lowering the
sensitivity. Otherwise, the robot will suffer from
“claustrophobia” in tight places.

Local Array Mapping in an Autonomous Robot*

José Gonçalves, Jorge Ribeiro, Pedro Kulzer, Keith L. Doty, Francisco Vaz

Fig. 1 - Zelinsky’s quad-tree that holds information about obstacles.

This is a global map construction where space is decomposed into cells
of different sizes. (adapted from [10])

Fig. 2 - Doty’s interconnected landmark map structure. Here, a global

map holds distance information between landmarks. Space is thus
efficiently coded into a relativistic data structure. (adapted from [3])

2REVISTA DO DETUA, VOL. ?, Nº ?, MÊS 199?

If the robot becomes to aggressive and attempts to drive
through a passage narrower than its body, it will
eventually collide with an object. Upon collision, a
corresponding bumper switch, one for each IR front
sensor, forces “re-sensitization” of the corresponding IR
proximity sensor. See Fig. 4 for an example of a tight
passage.

To realize the local mapping, we use two shaft encoders,
one per wheel, which measure distances traveled. From
these distances, turn angles and displacement vectors may
be computed.

Locomotion is realized by two pulse-width-modulation
controlled motors and a caster wheel to give three-point
stability.

Processing power is delivered by a single Motorola
68HC11 microcontroller with 32 KBytes of RAM (only
about 8 KBytes actually used) and programmed in
interpreted C language “IC” [9].

III. BEHAVIORS AND IMPROVEMENTS

A. Adaptive threshold

In essence, the robot’s threshold adaptation to obstacle
detection works in a manner similar to the retina’s
sensitivity change with varying light conditions. A simple
differential equation (1) assumes unity time-steps (the
value of which depends upon the execution speed of the

code) and equates the threshold to 2% of the actual sensor
reading plus 98% of the current threshold value (see
Eq.2). Fig. 4 shows an example of the robot adjusting its
collision avoidance sensitivity while negotiating a narrow
passage.

()Δ
Δ

Threshold
T

Sensor Threshold= ⋅ −0 02. (1)

Threshold Sensor Thresholdn n[] []. .= ⋅ + ⋅ −0 02 0 98 1 (2)

B. Motors drive

The robot controller transfers power to the motors in a
gradual manner to produce smooth motion transitions
(Fig. 5). A differential equation approximation, similar to
the IR sensor adaptive threshold function, produces
exponential speed progressions. Eq. 3 implements the
approximation, with the gain value of 0.05 determined by
experiments. Again, this gain factor depends upon the
execution speed of the code.

()Δ
Δ

Speed
T

speed speeddesired current= ⋅ −0 05. [] [] (3)

Note that the increment ΔSpeed may be positive or
negative, increasing or decreasing the actual speed,
respectively.

C. Shaft-encoders

One shaft encoder on each wheel allows the robot to
compute distances, turn angles and corresponding
displacements. From these measurements the robot can
construct a local map of obstacles surrounding it.

An IR emitter-receiver pair, separated by a small gap
and mounted on each wheel, detects transparent and black
sectors on a plastic disk rotating in the gap. The shaft
encoder disc (Fig. 6) interrupts the beam as it rotates,
resulting in a rectangular wave shape that calls interrupt
service routines for periodic distance computation. Fig. 6
shows the transparent disk with the sectors, used for the

Fig. 3 - Robot top view. Robot side view.

Fig. 4 - The robot negotiating a narrow passage.

Fig. 5 - Speed progression starting at the current speed.

Fig. 6 - Shaft encoder disk.

REVISTA DO DETUA, VOL. ?, Nº ?, MÊS 199? 3

purpose. Eight black and eight transparent sectors were
sufficient to generate a coarse local mapping, as will be
explained later.

Impulses created by the interrupted IR beam generate
interrupts which call code that increases (forward motion
of the wheel) or decreases (backward motion of the
wheel) two internal counters. These counters hold the
accumulated algebraic sum of encoder sectors that have
passed by the beam. An internal motor direction control
flag in the software distinguishes the direction of motion
and determines whether a shaft encoder counter should be
incremented or decremented.

IV. MAPPING ALGORITHM

The mapping method, based on limited dead-reckoning
capabilities, generates a local (2n+1) × (2n+1) array
which images obstacles in the immediate vicinity of the
robot’s current position. Each array cell corresponds to a
square with d millimeters on a side and indicates the
presence or not of an obstacles in that square. Visualizing
the entire robot environment as tessellated with d × d
squares, the local array can be visualized as a window of
the entire space, centered about the robot’s current
position. As the robot moves, the center of the window
moves along with the robot and the window acquires new
squares and looses other squares which are no longer in
view.

After a brief exploration, the robot generates the first
complete window or local map of obstacles in its
immediate environment (Fig. 7). Subsequently, whenever
the robot rotates or shifts forward, the local map (window)
updates to maintain the correct position of the obstacles
relative to the robot at the center of the new array. When
an obstacle “falls” off the array, i.e., gets clipped by the
window, then it is completely “forgotten”. The initial,
and succeeding window images of the local environment
viewed by the robot derive from the rotational and
translational movement information computed from the
wheel shaft-encoders.

With this internal mapping behavior, the robot is able to
accomplish the following goals:

• Improve overall efficiency when negotiating local

obstacles and corners, by predicting their location
inside the map window,

• Avoid endless and cyclic avoidance behaviors
near dead-ends, concave corners and other
symmetric obstacle arrangements, and

• Find an exit from an obstacle cluttered or almost
enclosed local environment.

A. Details of the Mapping Algorithm

The mapping algorithm is based on on-line displacement
vector constructions as shown in Fig. 8. Robot
displacement increments are summed together to form the
local displacement vector. The resulting vector
displacement dictates the new window location.

To extract the vector value of each incremental
displacement (see Fig. 9), the autonomous robot must
compute its magnitude and phase as follows. To obtain
the magnitude, the robot takes the average of the distances
traveled by each wheel. To obtain the phase, or net
rotation Δα, the robot takes the difference between those
distances and divides the result by D, the robot’s inter-
wheel distance. Note that these displacements and angles
are only proportional ones, and do not directly represent
traveled meters or turned degrees (see Eq. 4 and Eq. 5).
Constant D, the robot’s inter-wheel distance is expressed
in shaft-encoder counts, to keep compatible distance units.
For small phase differences, we will have

Fig. 7 - Illustration of the basic mapping process with a 5x5 map array.

Fig. 8 - To compute path integration vector VT, it is necessary to
integrate all infinitesimal displacement vectors V.

Fig. 9 - Incremental displacement computed from wheel distance counts.

4REVISTA DO DETUA, VOL. ?, Nº ?, MÊS 199?

Δ Δ
Δ Δ

α α≈ ≈
−

=
−

tan
R L

D
Count Count

D
1 2 (4)

G
V

R L

V
R L

D

≈
+

= =
−

⎧

⎨
⎪⎪

⎩
⎪
⎪

Δ Δ

Δ
Δ Δ

2

� α

 (5)

The total turning angle α can be exactly computed
anytime as shown in Eq. 6 (no approximation).

()α αcompass
t t t

d
dR dL

D D
dR dL

R L
D

= =
−

= − =
−

∫ ∫ ∫
1 (6)

The total vector VT that points from a start position to
the current one, is given by Eq. 7.

V dV dx dy dV dVT
t tt t t

= =
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟∫ ∫∫ ∫ ∫; cos ; sinα α (7)

The robot will compute as many samples of V as
possible and sum all of them to compute the total
displacement in real-time using the approximation shown
in 8.

V V VT
t t

≈
⎛
⎝
⎜

⎞
⎠
⎟∑ ∑Δ Δcos ; sinα α (8)

To simplify the algorithm and increase execution speed,
the turn angle is quantized into 45o intervals with round-
off accumulation. For example, when the robot turns 50o,
it rotates the map window relative to the center by the
minimum quantization step of -45o and subtracts those 45o
from the actual turn angle. The remaining 5o accumulate
towards the next quantization trigger of ±45o.

In reality, instead of maintaining the total displacement
vector VT, two more directly useful displacement values
are maintained: total vertical (forward) and horizontal
(lateral) displacements X and Y relative to the robot,
whose incremental contributions ΔX and ΔY are computed
by Eq. 9.

Δ
Δ

Y V
X V
= ⋅
= ⋅

⎧
⎨
⎩

sin
cos
α
α

 (9)

These incremental forward and lateral steps are summed
as in Eq. 8, yielding the total displacement.

When the robot redraws its local map it must
compensate for the current turn angle and translation by
means of the forward and lateral displacement
components. Since rotations change by increments of
±45o, the new rotated X and Y values of the map squares
can easily be computed from the current values, as
demonstrated in the next few equations.

We have now Eq. 10 and Eq. 11 which show the basic
starting points. We want to compute Vnew from Vold, after a

rotation by ±45o. Eq. 12 shows the steps needed to derive
Eq. 13 , a truly simple formula for updating X’and Y.
Since we know that

V x y arctg
y
x

old = + ∠2 2 () (10)

and that

V x y arctg
y
x

new o= + ∠ ±2 2 45() (11)

we can now compute

()

′ = + ±

= + ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

= + ⋅
+ +

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

x x y arctg y
x

x y arctg y
x

arctg y
x

x y x

x y

y

x y

2 2

2 2

2 2
2 2 2 2

45

45 45

2
2

cos(())

cos () cos() sin () sin

∓

∓

(12)

which leads to the final results,

() ()

() ()

x x y x y

y x y x y

'

'

.

.

= = ⋅

= ± = ⋅ ±

2
2

14

2
2

14

∓ ∓
 (13)

V. EXPERIMENTAL RESULTS

In preliminary experiments, the robot approached a wall
on its left and on its right. Inspection of the local array
map reveals the appropriate obstacle marks. Fig. 10 and
Fig. 11 illustrate how the robot marks the wall obstacles
in the local map array by an “X” after detection with the
IR sensors. Note that the black square in the middle
always denotes the robot’s position in its local map. Also,
observe that the robot’s map of its local environment
“rotates” and “translates” in the opposite direction of the
corresponding robot rotation and translation in order to
preserve the spatial relationships between the robot and
the obstacle.

Fig. 12 shows the robot arriving at position “A”, where
it marks an obstacle on the front left side. When it turns
away from it (to the right), it again sees an obstacle that is
marked in front of the robot. Note that the previous
obstacle marker has rotated to the left as a compensation
for the robot’s rotation to the right. Here, the robot

REVISTA DO DETUA, VOL. ?, Nº ?, MÊS 199? 5

decides to continue to turn right since it knows there is an
obstacle on its left by reading its own map, even though
its sensor arrangement does not permit the robot to detect
the left obstacle while traveling parallel to the wall.

Thanks to this mapping behavior, the robot performs
much better and more deterministically in complex cul-
de-sacs or box canyons, such as the one shown in Fig. 13.
The robot efficiently exits the cul-de-sac without the
annoying random or oscillatory behavior typical of a non-
directed search for an exit [8]. Turning the mapping
function on and off dramatically demonstrated the
enhanced performance gained through autonomously
generated local mapping. With the mapping function
active, the robot finds the exit with little to no hesitation,
as if pre-programmed to go directly to the exit. When
mapping is inactive, the robot assumes ordinary, reactive,
obstacle avoidance behavior and exhibits the problems
inherent to such behavior. Namely, the robot “bounces”
randomly from wall to wall until it accidentally finds the
exit or it becomes dynamically trapped in a corner,
oscillating from side to side.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we designed, developed and implemented
a real-time, autonomously generated local mapping
scheme designed to enhance reactive obstacle avoidance
behavior of a real robot. Experiments demonstrated the
efficiency of our approach. The robot performs obstacle
avoidance more efficiently when utilizing, self-generated
local mappings.

Future work would include the use such mapping
structures as part of a much larger robotic architecture [8].
Also, instead of using a grid-like array, a polar map with
multi-distance sectioned map structure might be more
“natural” or biological. For example, in Fig. 14 space is
partitioned into sectors with the size of sector segments
increasing with radial distance. The three gray segments
depicted in the figure indicate where the robot perceives
obstacles.

Fig. 15, Fig. 16, and Fig. 17 show some views of the
real robot implemented in this work. Note the mast in the
middle, where the “high obstacles” sensor resides.

Fig. 10 - Behavior and map construction with an obstacle on the left.

Fig. 11 - Behavior and map construction with an obstacle on the right.

Fig. 12 - Evasive behavior in a corner enabled by local map utilization.

Fig. 13 - Behavior in a more complex dead-end corner.

Fig. 14 - Polar coordinate descriptions might be a more natural way of

generating a self-relative mapping structure.

6REVISTA DO DETUA, VOL. ?, Nº ?, MÊS 199?

Fig. 15 - Robot front view.

Fig. 17 - Robot lateral view.

REFERENCES

[1] A. Branco, P. Kulzer, “WHISPER - A mobile robot platform for

surveillance purposes”, Internal publication of the Departamento
de Electrónica e Telecomunicações da Universidade de Aveiro,
1995.

[2] S. Caselli, K. Doty, R. Harrison, F. Zanichelli, “Mobile robot
navigation in enclosed large-scale space”, Machine Intelligence
Laboratory, University of Florida, 1994

[3] K. Doty, S. Caselli, R. Harrison, F. Zanichelli, F., “Landmark map
construction and navigation in enclosed environments”, Machine
Intelligence Laboratory, University of Florida.

[4] K. Doty, S. Seed, “Autonomous agent map construction in
unknown enclosed environments”, MLC-COLT ‘94 Robot
Learning Workshop, 1994.

[5] M. Mataric, “Integration of representation into goal directed
behavior”, IEEE Transactions on Robotics and Automation, 8,
304-312, 1992.

[6] P. Kulzer, “NAVBOT” - Autonomous robotic agent with neural

network learning of autonomous mapping and navigation
strategies, Master’s Thesis, University of Aveiro, Portugal.

[7] P. Kulzer, Drafts from lectures about Mobile Robotics given by
Prof. Keith Doty, at Universidade de Aveiro, Portugal, 1995.

[8] P. Kulzer, K. Doty, “Refined Neural Architecture for Opinion-
Guided Reaction learning in Autonomous Agents”, in progress at
the University of Aveiro, Portugal.

[9] R. Sargent, A. Wright, IC - Interactive C for the 68HC11, 1994.
[10] A. Zelinsky, “A mobile robot exploration algorithm”, IEEE

Transactions on Robotics and Automation, 8, 707-717, 1992.

Fig. 16 - Robot top view.

