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Resumo - Neste projecto implementa-se um agente robótico 
autónomo que realiza uma série de comportamentos 
reactivos simples e que se adapta a condições ambientais 
locais. Visto que comportamentos oscilatórios em condições 
de cantos parecem ser característica inerente a 
comportamentos puramente reactivos, o agente robótico 
necessitará de memória para melhorar a eficiência global ao 
evitar obstáculos. Neste estudo, um robot lembra-se dos 
lugares de obstáculos previamente encontrados, através dum 
mapa local gerado na sua memória de curta duração. O 
mapa fornece informação suficiente para que o robot seja 
capaz de evitar ser encurralado em cantos e de oscilar 
indefinidamente. 

 
Abstract - This project implements an autonomous mobile 

robot platform that performs a series of simple reactive 
behaviors and adapts to local environmental conditions. 
Since oscillatory motion under cornered conditions appears 
to be an inherent characteristic of purely reactive obstacle 
avoidance mechanisms in autonomous robots, a robot agent 
will require memory to enhance overall obstacle avoidance 
efficiency. In this study, a robot remembers previously 
encountered nearby obstacle sites by means of a self-
generated local map in its short term memory. The map 
provides sufficient information for the robot to avoid 
becoming trapped in corners and oscillating endlessly.  

I. INTRODUCTION 

Mapping in real robotic autonomous agents has been an 
important focus of experimental research [5][6] and other 
theoretical studies. These models are difficult to 
implement, test and improve. Investigations attempt to 
implement intuitive ideas about how simple mapping 
strategies should be worked out in a real robot that must 
build global maps [10] (see Fig. 1) [2][3][4] (see  Fig. 2). 

On the contrary, this work presents a simple and 
interesting way of implementing a local-only mapping 
strategy on a real robotic platform with low processing 
and sensing capabilities. Here, local mapping means that 
the robot is able to remember only detected objects that 
exist in its immediate neighborhood, namely obstacles it 
avoided within a short radial space-range. Although 
without any global mapping capabilities, the robot showed 
to behave rather well in local mapping problems. 

II. PLATFORM DESCRIPTION 

The realized robotic platform evolved from previously 
developed platforms designed under minimalist 
constraints [1][7]. 

The robot has five IR (infrared) sensors, three in front 
for obstacle detection, one at the top of its mast for high 
obstacle detection, and the last one turned to the floor for 
hole detection (see Fig. 3). Hole detection is interpreted as 
a deadly obstacle detection. 

The front three IR sensors have adaptive thresholds that 
allow the robot to adjust itself to local conditions. 
Specifically, the robot maintains object detection 
sensitivity to avoid obstacles, but, at the same time, 
attempts to pass narrow passages by lowering the 
sensitivity. Otherwise, the robot will suffer from 
“claustrophobia” in tight places. 
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Fig. 1 - Zelinsky’s quad-tree that holds information about obstacles. 

This is a global map construction where space is decomposed into cells 
of different sizes. (adapted from [10]) 

 
Fig. 2 - Doty’s interconnected landmark map structure. Here, a global 

map holds distance information between landmarks. Space is thus 
efficiently coded into a relativistic data structure. (adapted from [3]) 
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If the robot becomes to aggressive and attempts to drive 
through a passage narrower than its body, it will 
eventually collide with an object. Upon collision, a 
corresponding bumper switch, one for each IR front  
sensor, forces “re-sensitization” of the corresponding IR 
proximity sensor. See Fig. 4 for an example of a tight 
passage.  

To realize the local mapping, we use two shaft encoders, 
one per wheel, which measure distances traveled. From 
these distances, turn angles and displacement vectors may 
be computed. 

Locomotion is realized by two pulse-width-modulation 
controlled motors and a caster wheel to give three-point 
stability. 

Processing power is delivered by a single Motorola 
68HC11 microcontroller with 32 KBytes of RAM (only 
about 8 KBytes actually used) and programmed in 
interpreted C language “IC” [9]. 

III. BEHAVIORS AND IMPROVEMENTS 

A. Adaptive threshold 

In essence, the robot’s threshold adaptation to obstacle 
detection works in a manner similar to the retina’s 
sensitivity change with varying light conditions. A simple 
differential equation     (1) assumes unity time-steps (the 
value of which depends upon the execution speed of the 

code) and equates the threshold to 2% of the actual sensor 
reading plus 98% of the current threshold value (see 
Eq.2). Fig. 4 shows an example of the robot adjusting its 
collision avoidance sensitivity while negotiating a narrow 
passage. 
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Sensor Threshold= ⋅ −0 02.               (1) 

Threshold Sensor Thresholdn n[ ] [ ]. .= ⋅ + ⋅ −0 02 0 98 1         (2) 

B. Motors drive 

The robot controller transfers power to the motors in a 
gradual manner to produce smooth motion transitions 
(Fig. 5). A differential equation approximation, similar to 
the IR sensor adaptive threshold function, produces  
exponential speed progressions. Eq. 3 implements the 
approximation, with the gain value of 0.05 determined by 
experiments. Again, this gain factor depends upon the 
execution speed of the code. 
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Note that the increment ΔSpeed may be positive or 
negative, increasing or decreasing the actual speed, 
respectively. 

C. Shaft-encoders 

One shaft encoder on each wheel allows the robot to 
compute distances, turn angles and corresponding 
displacements. From these measurements the robot can 
construct a local map of obstacles surrounding it. 

An IR emitter-receiver pair, separated by a small gap 
and mounted on each wheel, detects transparent and black 
sectors on a plastic disk rotating in the gap.  The shaft 
encoder disc (Fig. 6) interrupts the beam as it rotates, 
resulting in a rectangular wave shape that calls interrupt 
service routines for periodic distance computation. Fig. 6 
shows the transparent disk with the sectors, used for the 

 
Fig. 3 - Robot top view.                           Robot side view. 

 
Fig. 4 - The robot negotiating a narrow passage. 

 
Fig. 5 - Speed progression starting at the current speed. 

 
Fig. 6 - Shaft encoder disk. 
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purpose. Eight black and eight transparent sectors were 
sufficient to generate a coarse local mapping, as will be 
explained later. 

Impulses created by the interrupted IR beam generate 
interrupts which call code that increases (forward motion 
of the wheel) or decreases (backward motion of the 
wheel) two internal counters. These counters hold the 
accumulated algebraic sum of encoder sectors that have 
passed by the beam. An internal motor direction control 
flag in the software distinguishes the direction of motion 
and determines whether a shaft encoder counter should be 
incremented or decremented. 

IV. MAPPING ALGORITHM 

The mapping method, based on limited dead-reckoning 
capabilities, generates a local (2n+1) × (2n+1) array 
which images obstacles in the immediate vicinity of the 
robot’s current position. Each array cell corresponds to a 
square with d millimeters on a side and indicates the 
presence or not of an obstacles in that square.  Visualizing 
the entire robot environment as tessellated with d × d  
squares, the local array can be visualized as a window of 
the entire space, centered about the robot’s current 
position. As the robot moves, the center of the window 
moves along with the robot and the window acquires new 
squares and looses other squares which are no longer in 
view. 

After a brief  exploration, the robot generates the first 
complete window or local map of obstacles in its 
immediate environment (Fig. 7). Subsequently, whenever 
the robot rotates or shifts forward, the local map (window) 
updates to maintain the correct position of the obstacles  
relative to the robot at the center of the new array. When 
an obstacle “falls” off the array, i.e., gets clipped by the 
window, then it is completely “forgotten”.  The initial, 
and succeeding window images of the local environment 
viewed by the robot derive from the rotational and 
translational movement information computed from the 
wheel shaft-encoders. 

 

 

With this internal mapping behavior, the robot is able to 
accomplish the following goals: 

 
• Improve overall efficiency when negotiating local 

obstacles and corners, by predicting their location 
inside the map window, 

• Avoid endless and cyclic avoidance behaviors 
near dead-ends, concave corners and other 
symmetric obstacle arrangements, and 

• Find an exit from an obstacle cluttered or almost 
enclosed local environment. 

 

A. Details of the Mapping Algorithm 

The mapping algorithm is based on on-line displacement 
vector constructions as shown in Fig. 8. Robot 
displacement increments are summed together to form the 
local displacement vector. The resulting vector 
displacement dictates the new window location. 

To extract the vector value of each incremental 
displacement (see Fig. 9), the autonomous robot must 
compute its magnitude and phase as follows. To obtain 
the magnitude, the robot takes the average of the distances 
traveled by each wheel. To obtain the phase, or net 
rotation Δα, the robot takes the difference between those 
distances and divides the result by D, the robot’s inter-
wheel distance. Note that these displacements and angles 
are only proportional ones, and do not directly represent 
traveled meters or turned degrees (see Eq. 4 and Eq. 5). 
Constant D, the robot’s inter-wheel distance is expressed 
in shaft-encoder counts, to keep compatible distance units. 
For small phase differences, we will have 

 

 
Fig. 7 - Illustration of the basic mapping process with a 5x5 map array. 

 

Fig. 8 - To compute path integration vector VT, it is necessary to 
integrate all infinitesimal displacement vectors V. 

 
Fig. 9 - Incremental displacement computed from wheel distance counts. 
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The total turning angle α can be exactly computed 
anytime as shown in Eq. 6 (no approximation). 
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The total vector VT that points from a start position to 
the current one, is given by Eq. 7. 
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The robot will compute as many samples of V as 
possible and sum all of them to compute the total 
displacement in real-time using the approximation shown 
in 8. 
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To simplify the algorithm and increase execution speed, 
the turn angle is quantized into 45o intervals with round-
off accumulation.  For example, when the robot turns 50o, 
it rotates the map window relative to the center by the 
minimum quantization step of -45o and subtracts those 45o 
from the actual turn angle. The remaining 5o  accumulate 
towards the next quantization trigger of  ±45o. 

In reality, instead of maintaining the total displacement 
vector VT, two more directly useful displacement values 
are maintained: total vertical (forward) and horizontal 
(lateral) displacements X and Y relative to the robot, 
whose incremental contributions ΔX and ΔY are computed 
by Eq. 9. 
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These incremental forward and lateral steps are summed 
as in Eq. 8, yielding the total displacement. 

When the robot redraws its local map it must 
compensate for the current turn angle and translation by 
means of the forward and lateral displacement 
components. Since rotations change by increments of 
±45o, the new rotated X and Y values of the map squares 
can easily be computed from the current values, as 
demonstrated in the next few equations. 

We have now Eq. 10 and Eq. 11 which show the basic 
starting points. We want to compute Vnew from Vold, after a 

rotation by ±45o. Eq. 12 shows the steps needed to derive 
Eq. 13 , a truly simple formula for updating X’and Y. 
Since we know that 

 

V x y arctg
y
x

old = + ∠2 2 ( )                                 (10) 

and that 
 

V x y arctg
y
x

new o= + ∠ ±2 2 45( )                          (11) 

 

we can now compute 
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which leads to the final results, 
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V. EXPERIMENTAL RESULTS 

In preliminary experiments, the robot approached a wall 
on its left and on its right.  Inspection of the local array 
map reveals the appropriate obstacle marks. Fig. 10 and 
Fig. 11 illustrate how the robot marks the wall obstacles 
in the local map array by an “X” after detection with the 
IR sensors. Note that the black square in the middle 
always denotes the robot’s position in its local map. Also, 
observe that the robot’s map of its local environment 
“rotates” and “translates” in the opposite direction of the 
corresponding robot rotation and translation in order to 
preserve the spatial relationships between the robot and 
the obstacle. 

Fig. 12 shows the robot arriving at position “A”, where 
it marks an obstacle on the front left side. When it turns 
away from it (to the right), it again sees an obstacle that is 
marked in front of the robot. Note that the previous 
obstacle marker has rotated to the left as a compensation 
for the robot’s rotation to the right. Here, the robot 
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decides to continue to turn right since it knows there is an 
obstacle on its left by reading its own map, even though 
its sensor arrangement does not permit the robot to detect 
the left obstacle while traveling parallel to the wall. 

Thanks to this mapping behavior, the robot performs 
much better and more deterministically in complex cul-
de-sacs or box canyons, such as the one shown in Fig. 13. 
The robot efficiently exits the cul-de-sac without the 
annoying random or oscillatory behavior typical of a non-
directed search for an exit [8]. Turning the mapping 
function on and off dramatically demonstrated the 
enhanced performance gained through autonomously 
generated local mapping. With the mapping function 
active, the robot finds the exit with little to no hesitation, 
as if pre-programmed to go directly to the exit. When 
mapping is inactive, the robot assumes ordinary, reactive, 
obstacle avoidance behavior and exhibits the problems 
inherent to such behavior. Namely, the robot “bounces” 
randomly  from wall to wall until it accidentally finds the 
exit or it becomes dynamically trapped in a corner, 
oscillating from side to side. 

VI. CONCLUSIONS AND FUTURE WORK 

In this work, we designed, developed and implemented 
a real-time, autonomously generated local mapping 
scheme designed to enhance reactive obstacle avoidance 
behavior of a real robot. Experiments demonstrated the 
efficiency of our approach. The robot performs obstacle 
avoidance more efficiently when utilizing, self-generated 
local mappings. 

Future work would include the use such mapping 
structures as part of a much larger robotic architecture [8]. 
Also, instead of using a grid-like array, a polar map with 
multi-distance sectioned map structure might be more 
“natural” or biological. For example, in Fig. 14 space is 
partitioned into sectors with the size of sector segments 
increasing with radial distance. The three gray segments 
depicted in the figure indicate where the robot perceives 
obstacles.  

Fig. 15, Fig. 16, and Fig. 17 show some views of the 
real robot implemented in this work. Note the mast in the 
middle, where the “high obstacles” sensor resides. 

 
 
 
 
 

            

 
Fig. 10 - Behavior and map construction with an obstacle on the left. 

 
Fig. 11 - Behavior and map construction with an obstacle on the right. 

 
Fig. 12 - Evasive behavior in a corner enabled by local map utilization.  

 
Fig. 13 - Behavior in a more complex dead-end corner. 

 
Fig. 14 - Polar coordinate descriptions might be a more natural way of 

generating a self-relative mapping structure. 
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Fig. 15 - Robot front view. 

 

 
Fig. 17 - Robot lateral view. 
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Fig. 16 - Robot top view.  


