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“NAVBOT” - Autonomous Robotic Agent with Neural Learning of
Autonomous Mapping and Navigation Strategies

Pedro Kulzer

Resumo - Neste trabalho, foi realizada uma implementacao
dum agente robético auténomo minimalista com capacidades de
navegacido avancadas, as quais dependem em arquitecturas
especializadas com base em redes neuronais artificiais. Pretende-
se mostrar que uma plataforma robética comparativamente
simples e¢ dotada de componentes baratos é capaz de realizar
tarefas complexas de navegacdo, tais como dead-reckoning
(intuicdo  espacial), circunscricdo de pistas visuais e
correspondente discriminacido / reconhecimento, bem como a
construcio eficiente de mapas e seu uso para navegacoes futuras
com a tomada de atalhos e voltas. Sdo usados shaft-encoders para
a implementacio de uma bissola interna grosseira, bem como
sensores de infravermelhos para a deteccio e circunscricio de
objectos. As redes neuronais utilizadas incorporam informacao
espacial bem como temporal. Antes de realizar a implementacéo
final, foi realizada uma pesquisa bibliografica inicial, a qual
permitiu saber o que existe de actual neste campo da navegacio
em agentes autéonomos.

Abstract - In this work, an implementation of a minimalist
autonomous robotic agent with advanced navigation abilities was
done. These abilities rely on specialised architectures based on
artificial neural networks. It is intended to show that a
comparatively simple robot platform with cheap components, is
able to perform complex navigation tasks such as dead-reckoning
(navigation through spatial intuition), landmark circumvention
and corresponding discrimination / recognition, and efficient map
construction and use for future navigation with shortcuts /
detours. Shaft-encoders are used for the implementation of a
coarse internal compass, whereas infra-red sensors are used for
landmark detection and circumvention. The involved neural
networks incorporate space as well as time information. Before
doing the final implementation, an initial bibliographic research
allowed to know the state-of-the-art in this field of navigation in
autonomous agents.

1. INTRODUCTION

This paper results from a Master’s thesis work
described in [7]. Landmark/place perception, recognition,
storage, and subsequent navigation with a map, are a very
interesting field of research that seems to be still traversing
its birth. Many attempts have been made until today in the
field of self-localisation and mapping, ranging from more
theoretical studies which describe the efficient and

powerful storage of spatial information in the rat’s
hippocampal brain structure as a sequence of places
identified by sensory combinations with the aid a
“clocking” brain wave called the theta rhythm [14] (see
illustration in Fig. 1) [17][18], passing to simulated studies
[11[2][16][24], reaching real implementations and
experiments where an artificial agent tries to store and
recognise local spatial distance and turn angle information
of a landmark by its simple circumvention [3][4][5] (see
illustration in Fig. 2) [8][19].

All these studies mix the concepts of landmarks and
places, without really specifying what distinguishes them
and which one should be used. Few of these studies
incorporate the notion of dynamic place sequencing issues
{14][17]. The remaining ones, just talk about static
models, where recognition is done by means of
independent environment snapshots.
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Fig. 1 - Model of Hippocampal place sequence storage. (adapted from [14])

Approach

Fig. 2 - Landmark recognition by global circumvention. (adapted from [19])
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The main question that this work tries to answer, is to
see if using only turn angle information and sequencing is
sufficient for robust landmark shape recognition. Also, it
tries to establish a relationship between a landmark and its
corresponding places around it.

The major guidelines during this work, were:

® [Instead of strict Al with if-then-else structures, neural
mechanisms will be used extensively.

® Always try to satisfy the maximum amount of
experimental data with the developed models.

® Try to interconnect and correlate different
experimental data and theories into one global theory
of recognition and mapping mechanisms.

® Prefer models and theories that may be implemented
in parallel and distributed computer hardware.

® Prefer on-line learning mechanisms, instead of such
where complete data must be present at once.

® Always try to make every value relative to another,
so cumulative global errors are reduced.

® Keep hardware cost as low as possible, using cheap
sensors, processors, robotic platform, etc.

II. THE HIPPOCAMPUS AND RELATED AREAS

Processes of mapping and navigation are thought to be
highly related to a brain area called the Hippocampus.
Neuroscientists showed that there are neurons responsible
for signalising upon the detection of the animal’s position
in a certain environment [9][10][11][12]{13]{14]. There
are neurons, called place neurons, whose electrical
activity is directly related to the animal’s movement in
particular locations of the environment. Conversely, there
are the so-called place fields in the environment that
correspond to the firing places of particular place neurons,
in that particular environment.

There are theta cells in the hippocampus that exhibit a
firing pattern similar to the Theta-Rhythm of the
hippocampal EEG. This rhythm is best characterized by a
sinusoidal wave with a frequency that can reach from 4 to
12Hz [14] and appears to be roughly proportional to the
animals’ motion speed. It appears only when the rat is
moving around, but not when it is doing stationary things
like grooming, eating and sitting still [22]. The destruction
of the brain area responsible for the generation of this
rhythm ‘pacemaker’, results in a loss of the spatial
problem solving capabilities of the rat [23].

On the hippocampal map model shown in Fig. 1, it is
postulated that the theta rhythm is part of a mechanism for
shifting the focus of excitation (learning) from one set of
place representations to another within the map, on the
basis of the animal’s actual or intended movements. They
also found this theta rhythm seems to provide the distance
magnitude information for “internal navigation”. The
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direction information could either be given by external
angles to landmarks (exteroceptive) or either by an
internal compass or calculations based on the turns made
by the animal (interoceptive). This way, different neuron
groups get sensitised [15] to different instants in a spatial
path, forming a sparse memory representation of that path
{each memory element is the sensory combination at each
instant). Thus, the path from o to & will be systematically
stored as the sensory representations of the corresponding
sequential places.

After the exploration period, the animal then generates
a low-frequency theta-rhythm scanning across the neuron
groups until the representation of place o is activated. This
activation is then the “go” signal for the animal to move
towards B and also served to synchronise the theta rhythm
within the map.

Greater movements across greater distances are
accompanied by higher theta frequencies, so that the phase
relationship between places in the neuron group
representation are still the same.

The parietal cortex is probably responsible for the
storage of metrical information about relations between
places, by receiving metrical data from the moror cortex.

Important notions of spatio-temporal self-organising
feature maps are enhanced in [6] for pattern sequence
detection and recognition. This recognition is triggered by
the growth of an increasing wavefront of accumulative
activity. While learned sequences produce an
accumulation of coherent neural activity, other unknown
sequences produce a lower and non-coherent activity
progress. This basic idea will be used in the present work.

III. THE ROBOTIC PLATFORM

The robotic platform is based on a previously
assembled robotic platform called “THOMAS” [20].
THOMAS was specifically designed for the purpose of
landmark circumvention. It has been improved in [7] and
had the following main hardware features (see Fig. 3):

7 IR sensors - 2 to the left and right, and 3 to the front.
2 Motors - 2 motors at the front and 1 caster wheel.

2 Shaft-encoders - 1 shaft-encoder per wheel.

1 CPU board - 68HC11 microcontroller plus software.

Fig. 3 - The real robotic platform “NAVBOT”. (adapted from [7])



REVISTA DO DETUA, VOL. 2, N° 1, SETEMBRO 1997

In addition, the robot is able to keep an internal
compass, and compute displacement vectors between
locations. All this is done by very simple vector
computations with the help of the incremental shaft-
encoder distance counts for each wheel.

IV. THE MODEL

As in  [3][4][5][19], the present model and
implementation is based on landmark circumvention. This
is similar to what a blind person does when touching
objects. This model has the enhancement of being able to
recognise any shape, and not only polygonal ones as in
previous work. In earlier implementations, when the robot
missed a corner, then the whole recognition process might
be wrong. Even if a previously undetected corner now
appeared, the same problem might arise. This is because
the relative distances between recognised corners then
appears to be very different from the previously learned
ones during exploration.

In the present robot, IR sensors act as short distance
proximity sensors for wall-following. Shaft-encoders allow
the robot to measure direction changes, specially for
general turn angle measurement. Several stages of
processing occur when the robot is recognising a
landmark. Finding occurs when the robot perceives an
object, where it will dock parallel to it. After this, the
robot will start the circumvention around the object, by
means of wall-following. We chose to perform wall-
following as the recognition data gathering mechanism,
since this was the most the robot could perform with its
limited sensing capabilities.

A. Data storage

While wall-following the landmark, the robot must
somehow gather data about the landmark as seen by the
robot. This data is definitely related to the landmark’s
shape (see Fig. 6). If only the corners and distances
between them are taken as classification data, then only
polygonal landmarks could be recognised, the matching
algorithm would be brittle, and the corner extraction itself
would be brittle. To avoid these problems, a much
different approach must be taken.

The need for a neural mechanism whose matching
capabilities are invariant to the circumvention starting
point, leads to a somewhat changed neural net. A very
simple polygonal example of what is going to be done
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Fig. 6 - Wall-following around any shape. This work tries to show that
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even a sloppy circumvention is enough for the neural mechanism to
operate.
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Fig. 4 - When the robot circumvents a landmark for storage, it generates a
neural network with the successive turn angles.

follows, just to keep explanations simple (Fig. 4).
Everything can be extrapolated to any landmark shape.
Only local relational values are taken, namely the turn
angles between each pair of distance segments. These
segments are kept uniform in size, which means that the
robot samples at equidistant points. The corresponding
stored networks are shown beside each landmark. Here,
each synaptic circuitry stores the angular turn between
corresponding places. Each “turn” is regarded as the angle
formed by the last two displacement segments performed
by the robot.

Note the similarity of the successive place neuron
sensitisation along the circumvention, with the theta
rhythm sensitisation action in the hippocampal neuron
groups discussed earlier. The shaft-encoders, besides
giving information about the turning angle, also give
simple displacement information to move to successive
neurons in the network.

B. Recognition

The major problem with this new model is related with
the sampling positions. The robot learned a network with
weights that represent the turn angles. If the robot
circumvents the landmark starting at an intermediate
position, all angles will be “out-of-phase” (see Fig. 5).

To solve the problem, an averaging motor-cortex is
implemented, as a preprocessor for the neural network.
This mechanism that takes an averaging window of motor
activity to compute the segments that are going to be fed
to the recognition network. Each motor-cortex neuron has
its maximum response at a certain turn angle. The overall
resulting system is depicted in Fig. 7.
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Fig. 5 - Successive overlapped segment sampling, where the stored angles

periodically match.
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Fig. 7 - Motor-cortex tuning-curve outputs and resulting system used for
circumvention data storage and recognition.

Fig. 10 and Fig. 8 show the recognition mechanism
used, which is similar to the activity wavefront
propagation in [6], The difference is that the activity starts
at 100% and decreases with successive turn angle
mismatches. This example shows one wavefront keeping
100% activity, while the other suffers mismatches and dies
out, for landmarks A and B, respectively (see Fig. 4). Note
that larger mismatches cause the multiplicative factor to be
smaller. All wavefronts start at 100% from each place
neuron and suffer successive mismatches and matches
which, in turn, propagate more or less activity. The
surviving wavefront is called the principal wavefront
(expected correct matching sequence), while other less
active and still persistent ones are called phantom
wavefronts. Because in this example the robot is trying to
recognise landmark A (see Fig. 4), all wavefronts in
landmark B die out sooner or later. Note that they really
start to die out as soon as the robot sees the corner
sequence -90° +90° ... which differs from landmark A.

Note that the robot may start at any point, where
different points produce the survival of different principal
wavefronts. This means that the robot is even able to know
where it currently is on the landmark, while circurfiventing it.
More precisely, the current principal wavefront’s index in the
network corresponds to a place neuron firing maximally
which, in turn, directly corresponds to a precise place around
the landmark. This place changes as the firing neuron also
changes as the wavefront propagates on.
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Fig. 10 - Selective activity wavefront propagation.
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Fig. 8 - Details of the theta rhythm aided matching.

C. Real tests

Some real tests were performed on three landmarks
(see Fig. 9), to see the discrimination, recognition, and
robustness of the designed neural mechanisms.

Tab. 1 lists some of the many circumvention trials
performed. There were some major problems with the
stopping procedure which consisted in detecting an overall
displacement vector below a low threshold value. Neuron
counts varied within a short range. Fig. 11 shows some
graphical reconstructions of the corresponding landmark
shapes (asterisks were the starting points). Although their
global shape is distorted, the network works well on the
relative turn angles. To simplify, we show only the details
for the first landmark.

Trial Turn angle sequence N
Runl 675-0-0-90-225-0-0-45-225-0-]14
67.5-(-22.5)-0-225
Run2 67.5-225-0-45-45-0-0-675-225-]13
0-225-675-0
Run6 67.5-225-0-45-45-0-0-45-(-225)-| 15
(-22.5)-45-(-225)-0-0-45
Runl2 [45-0-0-225-675-0-0-45-0-0-114
22.5-675-0-225
Tab. 1 - Stored angle sequences for the test runs.
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Fig. 9 - Three real test landmarks.



REVISTA DO DETUA, VOL. 2, N° 1, SETEMBRO 1997
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Fig. 11 - Some robot-data reconstructed landmark shapes for the first

two landmarks, along with the ideal reconstruction.

Now, to test preliminary recognition power of the
networks, some other circumventions were made, where
now six sequences were recorded (Recognition 1 through
6) and fed into the neural networks. Network activity
ratios between networks were calculated and compared
(see Tab. 2). The smallest activity was 0.49 and the largest
was 0.90. Note that these values can be looked as being
certainty values, since they vary from 1.0 (100% sure) and
0.0 (0% sure).

Rec 1| Rec2 | Rec3 | Rec4 | Rec5 | Recb

Runl | 0.75 0.76 0.80 0.87 0.90 0.82
Run2 | 0.62 0.56 0.59 0.62 0.49 0.70
Run6 | 0.52 0.74 0.65 0.56 0.69 0.51
Runi2 | 0.90 0.82 0.90 0.80 0.82 0.80

Tab. 2 - Experimental recognition results.

The propagation equation is shown in equation (1)
where a=0.6, and where Out is the propagated wavefront
on a neuron with weights link and input input. Note that
the tuning-curves used are the positive part of cosines. In
other words, if the difference between input turning angle
and current neuron synaptic link value is null, then the
match is 100%. If not, then the match value will be smaller
with larger differences.

Match = max[O, cos(oc . (Link - Input))] (1
Out = Match - Wavefront
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Fig. 12 - Each individual wavefront’s activity progress from the 34
sample to the 50 sample point (whole circumvention).
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Fig. 13- Experimental results for 6 test runs on the first landmark.

Fig. 12 shows the activity progress graphs, only for the
first rectangular landmark. Note that, since the landmark
was almost a square, four principal wavefronts will arise.
The interesting thing is that there are two with more
activity than the other two. This means that the robot was
actually able to discriminate between the two pairs of
symmetric positions in the rectangular landmark. In other
words, it was able to recognise it as being a rectangle.

Fig. 13 shows final progressions, where some show
confusion of the robot regarding the real rectangular or
square shape of the landmark.

Fig. 14 and Fig. 15 show the details obtained by the
circuamventions around the second non-symmetric
landmark. One can see that only one principal wavefront
more or less consistently appears to form. This clearly
means that the robot is able to identify more or less
precisely where it currently is on the landmark. In contrast
to the first landmark, the robot recognises the places it
passes, unequivocally. Note that sometimes there are still
another three phantom wavefronts noticeable, which may
correspond to the other three strong changes in angular
turn.
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Fig. 14 - Results for the second landmark. (Same as for the first in Fig. 12)
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Fig. 15 - Results for the second landmark. (Same as for first in Fig. 13)

The third landmark has curves as well as segments (see
Fig. 9). The recognition method will map curves just as it
maps corners and segments, with no special distinction at
all. Fig. 16 shows that as in the second landmark, the robot
is also capable of unequivocally identify the places around
this third landmark. Note that now only three major
wavefronts appear. It seems that the robots really detects
combinations of side + corner with preference, or maybe
strong angular turns.

Tab. 3 shows the activity ratios for different stored
links and recognition sequences. For example, Laip/Lgs -
S1 means that the stored links 12 from landmark A
(rectangular) and 5 from landmark B (second real
landmark) were used, and tested with the recognition
Sequence 1. The leftmost column indicates which
landmark generated this test sequence, either A or B. For
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Fig. 16 - Results for the third landmark.
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example, a ratio of 1.51 in the first table cell, indicates that
the activity from net A was 1.51 times larger than the one
from net B (recognition successful).

There are some bad recognitions (bold), essentially
due to the already mentioned stopping point problems (see
also), giving an error rate of 18.8% and 12.5% for the top
and bottom combinations, respectively. This seems to say
that the third landmark is easier to discriminate from the
others. :

Fig. 20 shows some of the recognition ratio progresses
as the robot circumvents a landmark and feeds the neural
network. Note that the ration just starts increasing after a
while. This is due to the similarity between both
landmarks until a certain point which depends on the
circumvention start position. Observe also that the ratio
increases up until a certain point where it may decrease
very much. By inspecting the corresponding stored turns
and recognition sequences, one concluded without a
doubt, that this is due to the length mismatch between the
two. One partial solution to minimise this problem is to
accept a recognition as soon as the ration becomes “large
enough”. This can cause errors where the ratio starts going
down and then recovers.
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Fig. 17 - Recognition ratio progresses as the robot circumvents a landmark.

Experience showed the evidence of head and tail
mismatch of the circular neural network. After the first
circumvention around the rectangular landmark, the
network is still working well (4 active wavefronts).
However, when the robot tries the second circumvention,
the wavefronts die out rather quickly. This is due to the
frontier effects produced by the mismatch of the end and
beginning of the stored turn angle sequence (lateral
wavefronts do not catch this deviation any more). It is easy
to observe that activity wavefronts die out and reappear in
deviated  positions (some additive  propagation
modifications were made just to allow this experiment),
either to the right or to the left, depending on whether the
stored sequence was too long or too short.

LaLei | LaLei | LaLes | LaoLes | Las/Les | Lao/Ls | Lai/Les | Laro/Las
S1 S2 S1 S2 S1 S2 S1 S2
Landmark A 1.51 1.65 0.98 1.13 . 0.90 1.23 1.61 1.99
Landmark B 1.34 1.37 1.40 1.32 1.22 0.90 1.35 1.20
La/Ler | LavLer | Lei/Ler | Leo/Ler | LadLez | LaLee | Leo/Lez | Leo/Lez
S1 S2 S1 S2 S1 S2 S1 S2
Landmark A/ B 2.78 2.5 1.37 2.18 0.97 0.86 1.51 1.42
Landmark C 1.05 1.33 1.3 1.25 1.4 1.77 1.3 1.39

Tab. 3 - These results show recognition ratios for the first two landmarks (top) and combinations of the three landmarks (bottom).
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V. MAPBUILDING

To finalise, some theories are described. In these
theories, a 2D type of representation was used, no spatial
nor landmark count limits were imposed, a highly
structured environment with, stationary landmarks was
assumed, landmarks were assessable, no global North was
used, and no other obstacles were present.

Basically, the robot would build global maps by
storing pairs of landmarks with corresponding “bi-

directional” polar vector links {2 a.} in-between,

characterised by a displacement and an angle relative to a
local landmark reference (see Fig. 18).

Map navigation would be achieved by local neural
activity resonance mechanisms among groups of
hippocampal place neurons (see Fig. 19) which enable the
robot to spread activity from the “conscientiously”
selected desired goal landmark to the current landmark
which, in turn, enables dynamic and opportunistic path
following. A neural activity “resonance path” is formed
(see Fig. 20), where closed loops are inherently
eliminated. Similar speculations about these mechanisms
exist in related models [8].

This model, along with some other details of
operation, really allows all the operations observed in the
biological case, and are compared to the animal’s
capabilities:

® Fast build-up - the robot would be able of building
up the map as fast as it explores the environment.

® Shortcuts & Detours - the robot would be able to
efficiently select shortcuts and detours. Shortcuts are
readily computed by polar vector summation and
rotation {21].

® Goal concentration - the robot would reach a goal
by “thinking” about it (activating the goal neurons).

® Expectancy - the robot would have a “feeling”
measure of being close to certain nearby landmarks.

® Failure & Reacquisition - the robot would be able
to reacquire its desired path, after a landmark
removal or after having lost itself.

Fig. 19 - Illustration of the resonance mechanism that may happen among groups
of hippocampal place neurons which represent places.

R1

Fig. 18 - Bi-directional link between a pair of landmarks.
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Fig. 20 - Local Resonance forms the best possible trajectory to the desired
goal.

VI. DISCUSSION

The main features of this recognition model are the
following: no classical Artificial Intelligence if-then-else
structure whatsoever. The landmark can be of any shape,
not only polygonal. Neurons are uniformly created while
the robot circumvents the landmark. The synaptic circuitry
of each created neuron contains angular information. The
need for space-warping is eliminated through the use of
uniform spatial sampling. The matching process is
straightforward and needs only to select the network with
the largest activity. Turn angle deviations are well
tolerated (except for head-tail mismatches, of course).
Structure and propagation mechanisms are very similar to
a Hidden Markov Model in respect to the recognition.

Comparisons at the level of the recognition network
may be made with the Hippocampus:

® Place neurons - like in the hippocampus, the
synaptic circuitry of these similar place neurons
acquire place information, in this case only turning
angle data around a landmark, instead of more
complex sensory data [14]. The position where the
robot currently is, elicits the peak of the principal
wavefront at the corresponding place neuron.

® Theta rhythm potentiation - like the biological
theta rhythm, which seems to successively sensitise
the synaptic circuitry of place neurons in the rat’s
hippocampus here synchronisation is also made by
distance sampling.

® Theta rhythm phase - phase progress along the
place neurons is relatively proportional with respect
to the robot’s distance travel.

® Landmark arrangement - similarly to the spatial
arrangement of landmarks in the hippocampus, these
networks change responses if the landmark changes
its turning angles.

® Movement kinematics - these networks rely only on
turning angle information between positions and
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work only robot really moves (wave-front
progression through the place neurons).

The overall architecture can be viewed as an “analog
shift-register”  which  shifts voltages (wavefronts)
according to the gating values (matching).

From all the above considerations and experiments, we
conclude that, instead of recognising a landmark as is, we
are really recognising sequences of places around that
landmark. The robot is therefore able to recognise the
current place (assuming a non-symmetric landmark shape)
just by the past turn angle sequence. The problem now lies
in whether the robot is able to discriminate correctly
between these sequences on different landmarks.

VII. CONCLUSIONS AND FUTURE WORK

This landmark recognition mechanism could be viewed
as being a microscopic version of the biological mapping
mechanism in animals. In other words, instead of storing
and relating place fields, this circular network takes a
smaller place sequence around a landmark. If the sampling
positions are places, then we have a mechanism that
closely implements a similar model as in [14]. This kind of
network could also be used in macroscopic mapping,
where the robot could recognise sequences of landmarks,
when lost and trying to reacquire its current position. Still
related to animal mapping, one could look at the travelling
wavefronts as being context information. In other words,
when a wavefront reaches a certain neuron ifiside the
network, this means that this neuron receives an indication
that it should fire next (expected result in that context).

Future work could eventually focus on achieving better
results and turn this architecture more biological, one
could try using sensory constellations, 1.e., more sensors
that combine into outputs that somehow reflect specific
sensory cue configurations is space. Something similar to
[14] could be attempted, specially the sensory cortex
output lines. Hopefully, places around the landmarks
would be more discriminative and lead to easier to
discriminate sensory constellation sequences.

I also think that, in general, the landmark recognition
issue must be reconsidered, to see what exactly should be
done at the level of the robot’s self-localisation.
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