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A review on edge detection based on filtering and differentiation

Armando J. Pinho and Luı́s B. Almeida

Abstract – In this paper we address the issue of edge detec-
tion in digital images using linear filtering and differentiation.
Our main objective was to join, and in some sense unify, a
significant part of the techniques that fall into this paradigm.
First, we focus on the question of two-dimensional differenti-
ation and the problems associated with its application in the
discrete spatial domain. Afterwards, we review some of the
most commonly used filtering techniques for edge detection.

Resumo – Ao longo deste artigo abordamos a questão da
detecção de contornos em imagens digitais, utilizando técnicas
baseadas em filtragem e diferenciação. O nosso principal ob-
jectivo foi reunir, e de certa forma unificar, uma parte que
julgamos ser significativa dos métodos de detecção de contor-
nos que se enquadram neste paradigma. Em primeiro lugar,
começamos por abordar algumas questões relacionadas com a
diferenciação a duas dimensões e também com os problemas
que advêm da sua aplicação no domı́nio discreto. Em seguida,
proporcionamos uma panorâmica de algumas das técnicas ba-
seadas em filtragem mais usadas na detecção de contornos em
imagens.

Keywords – Edge detection; Image filtering; Image differenti-
ation.

I. INTRODUCTION

An important part of the edge detectors proposed during
the last three decades can be viewed as being composed,
essentially, of two operations: low-pass filtering and differ-
entiation. Right from the beginning of the research on edge
detection that differentiation played a fundamental role. In
fact, most often, edges are associated with fast variations
of the spatial distribution of light intensity and, therefore,
are related to the derivatives of the light intensity function.
Although the main concept is theoretically simple and intu-
itive, its application in practice poses several problems that
have been motivating a large number of publications focus-
ing on their solutions.
The edge detectors based on differentiation can be viewed

as a system built from a first low-pass filtering block, fol-
lowed by a differentiation block and, finally, by a detector.
Frequently, the filtering and differentiation blocks are seen
as a single operation, for example implemented using an
odd filter. Moreover, some of the oldest edge detectors do
not use the filtering stage at all.
We address, mainly, two of the problems associated with

this approach. First, we focus on the question of two-
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dimensional differentiation and the problems related with
its application in the discrete spatial domain. Next we re-
view some of the most commonly used filtering techniques
for edge detection.
The aim of this paper is, basically, two-fold. First, it de-

scribes most of the edge detectors based on a filtering and
differentiation paradigm. In this sense, it is a review pa-
per. Second, it aims to provide a way of comparison among
some of the most recent techniques, giving, simultaneously,
a unified view of them.

II. DIFFERENTIATION OF IMAGES

The edge detection methods based on differentiation use,
mainly, first and second order derivatives of the light inten-
sity function. For example, to detect (isolated) step edges
we can look for maxima of the absolute value of the first
derivative or zero crossings of the second derivative. Since
images are two-dimensional functions, we start by present-
ing some basic results on differentiation in two dimensions.
Let � be an analog image, i.e., � is a function defined in
R
� ��� R

�
� . The first order derivative of � can be calcu-

lated along some direction, r, using the partial derivatives
of � along the main axes,

�x
def
�
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in the following way:

��

�r
�

��

�x

�x

�r
�
��

�y

�y

�r
� �x cos�� �y sin� (2)

where � is the angle formed between r and the x axis, and
r is a parameter along the direction defined by vector r.
The gradient of �, rg, is, by definition, a vector with the
same direction as the maximum directional derivative, i.e.,
for which

�

��

�
��

�r

�
� � (3)

resulting that

�r � arctan

�
�y
�x

�
(4)

where �r is the angle formed between the gradient vector
and the x axis. Therefore, the gradient is given by

r� � �x�x� �y�y � jr�j �n (5)

where �x and �y are unitary vectors along the respective axes,
�n � �x cos��r� � �y sin��r� is a unitary vector along the
gradient direction, and jr�j is the magnitude of the gradient
(value of the derivative along that direction) given by

jr�j �
q
��x � ��y (6)



114 REVISTA DO DETUA, VOL. 2, N� 1, SETEMBRO 1997

According to these definitions, we can say that edge points
may be located by the maxima of the module of the gradi-
ent, and that the direction of the contour is orthogonal to
the direction of the gradient. It is not difficult to see that
operators based on the gradient are directional, since they
give their maximum response when they are aligned with
the orthogonal direction of the contour.
Edge detection based on second order derivatives is fre-

quently performed using one of two operators: the second
derivative along the direction of the gradient or the Lapla-
cian. Let us assume that n is a parameter along the direction
of n (direction of the gradient vector). The second deriva-
tive of � along the gradient direction, ����n�, is related
with the derivatives along the axes x and y in the following
way [1]:

���

�n�
�

��x�xx � ��x�y�xy � ��y�yy

��x � ��y
(7)

where

�xx
def
�

���

�x�
� �yy

def
�

���

�y�
� �xy

def
�

���

�x�y
(8)

The Laplacian of � is given by

r��
def
� �xx � �yy (9)

and is frequently considered a good approximation to the
second derivative along the gradient direction. In fact, these
two operators are related by [2]

r�� �
���

�n�
� jr�j� (10)

where � is the curvature of the line of constant intensity that
crosses the point under consideration. Using this relation, it
is easy to see that, in fact, the Laplacian is a good approxi-
mation to the second derivative along the gradient direction,
providing that the curvature of the line of constant intensity
that crosses the point under consideration is small. More-
over, we can immediately state that the Laplacian is useless
in the detection of corners (zones of high curvature).
We can point out, at least, three major advantages of using

the Laplacian in relation to the second derivative along the
gradient direction. First, it is simple to use, since it only
requires the computation of two second order derivatives.
Second, it is a linear operator, in opposite to ����n�, which
is non-linear. Finally, but not less important, the Laplacian
is a non-directional operator. This characteristic avoids the
necessity to determine the most appropriated direction to
apply the operator (note that this is required by the ����n�

operator).
At least two problems arise when we try to apply the differ-

entiation concepts mentioned above to digital images. One,
is related to discretization. Since digital images are repre-
sented by sets of quantified samples, we need to determine
discrete approximations of the differential operators. The
other problem is the known amplification of high frequency
noise generated by the differentiation operation. In other
words, differentiation is an ill-conditioned operation in the
sense of Hadamard [3].

During the last three decades several solutions have been
proposed to these and other related problems that affect
edge detection. Most of these solutions attack simultane-
ously both problems and some of them will be presented
and discussed in this paper.

A. Discrete approximations of differential operators

We define a digital image, g, as a mapping C�R g�� I,
with C def

� f�� �� � � � � NC��g,R def
� f�� �� � � � � NR��g, I def

�
f�� �� � � � � NI � �g, and NC � NR� NI � N. The �c� r� �
C�R are coordinate pairs in a Cartesian system, where c
denotes the column and r denotes the row.
Let us consider, therefore, that g is a digital image, ob-

tained from sampling and quantization of an analog im-
age, �. One of simplest way to approximate the first order
derivatives �x and �y is through the calculation of the first
differences along the main axes, i.e.,

gc�c� r�
def
� g�c� r� � g�c� �� r�

gr�c� r�
def
� g�c� r�� g�c� r � ��

(11)

where gc�c� r� and gr�c� r� denote, respectively, the approx-
imations to �x and �y around point �c� r�. Often, these op-
erators are represented as masks, such as

Hc �
�
� �� � Hr �

�
�

��
�

(12)

where the bold value indicates the origin of the mask.
This operator has the disadvantage of not being symmetric

in relation to the point of interest, which originates a bias in
position. One of the ways to avoid this problem consists in
using an odd number of mask elements as, for example,

Hc �
� �� � �

�
Hr �

�� �
�

��

	
 (13)

Several other first order derivative approximations along
two perpendicular axes have been proposed [4]-[7]. Proba-
bly the most known are those proposed by Roberts (which
is calculated using a set of axes rotated 45 degrees is rela-
tion to the usual orientation),

H� �

�
� �
�� �

�
H� �

�
� �
� ��

�
(14)

Prewitt,

Hc �
�

�

�� �� � �
�� � �
�� � �

	
 Hr �
�

�

�� � � �
� � �

�� �� ��

	
 (15)

Sobel,

Hc �
�

	

�� �� � �
�� � �
�� � �

	
 Hr �
�

	

�� � � �
� � �

�� �� ��

	
 (16)
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and Frei-Chen (isotropic)
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��
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p
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� � �

�� �p� ��

	

(17)

To use these operators we perform an internal product be-
tween the respective mask and the image, as follows

g��c� r� �
X
i

X
j

g�c� i� r � j��H��j�i (18)

where 	 denotes the direction (� or � for the masks of
Roberts and c or r for the others), and �H��j�i denotes the
element of row j and column i of mask H�. Moreover, we
consider that point �i � �� j � �� corresponds to the origin
of the mask (represented in bold).
Most often, the approximations that we presented above

have the final objective of calculating the gradient using (4)
and (6). Despite the fact that it is enough to compute two di-
rectional derivatives in order to calculate the gradient, it was
several times suggested that, for noise suppression reasons,
it would be better to use more than two directional deriva-
tives. In this case, the gradient would be approximated by
the directional derivative with the highest amplitude.
Based on this idea, several sets of directional masks were

proposed. One of the most known is probably the one
proposed by Kirsch [7], which is formed by the following
masks:
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(19)

where the arrows show the directions of the derivatives ap-
proximated by the masks. As can be seen easily, these
masks are generated by rotations of 45 degrees of the ele-
ments around the central element. Other sets of directional
masks can be obtained using similar rotations of the orthog-
onal masks of Prewitt and Sobel [7].
The angular resolution allowed by these operators of sup-

port ��� is, at most, of 45 degrees. This means that we are
only able to distinguish four different directions. For larger
angular resolutions we have to use masks with a larger spa-
tial support. Some of those operators were proposed, and
are described, for example, in [4], [7].
In a similar way as first differences for the approximation

of the first order derivative, second differences are the sim-
plest approximation to the second order derivative. We de-
fine the second differences along the main axes as

gcc�c� r�
def
� gc�c� �� r�� gc�c� r�

grr�c� r�
def
� gr�c� r � ��� gr�c� r�

(20)

where gcc�c� r� and grr�c� r� denote the approximations to
�xx and �yy, respectively, around point �c� r�. If we substi-
tute (11) into (20) we obtain

gcc�c� r� � g�c� �� r�� �g�c� r� � g�c� �� r�

grr�c� r� � g�c� r � ��� �g�c� r� � g�c� r � ��
(21)

that can be represented by the following masks:

Hcc �

�� � � �
� �� �
� � �

	
 Hrr �

�� � � �
� �� �
� � �

	
 (22)

Using the definition of Laplacian given by (9) in addition
to (21) we obtain a discrete approximation to the Laplacian
given by

Hcc�rr �Hcc �Hrr �

�� � � �
� �� �
� � �

	
 (23)

Frequently, these masks are represented using the symmet-
rical of the elements1 of (23), multiplied by a normalization
factor [6], [7]. Some other approximations were proposed
to the Laplacian (see, for example, [6], [7]). However, due
to the reduced direct use of this operator, we will not dis-
cuss it further.

B. Noise reduction and regularization

Most of the early edge detectors were based on simple dis-
crete approximations of differential operators, such as those
that we presented above. Among others, became popular
the detectors of Roberts, Prewitt, Sobel and Frei-Chen, nor-
mally used as estimators of the modulus of the gradient,
jbrgj, through

jbrg�c� r�j �sX
�

g���c� r� (24)

or
jbrg�c� r�j �X

�

jg��c� r�j (25)

where g��c� r� is given by (18). Generally, (25) is used
instead of (24), which is more correct, if there is a need to
reduce the computational load.
One of the greatest problems related with this kind of op-

erators is their low capacity to reject high frequency noise.
A simple and intuitive approach to attenuate this drawback
is through the calculation of averages over the samples of
the image. This means, in our case, that calculating the
estimations of the derivatives using a relatively large set of
neighboring samples is more robust to noise than using only
two samples. Therefore, we can generalize the definition of
first difference given in (11), using the symmetry mentioned
in (13), in the following way:

gc�c� r� � bg�c� �� r�� bg�c� �� r�

gr�c� r� � bg�c� r � ��� bg�c� r � ��
(26)

1Multiplied by ��.
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where bg�c� r� is an estimate of g�c� r�, calculated using a
weighted average of the image samples over a neighbor-
hood of g�c� r� and itself, i.e.,

bg�c� r� � X
�i�j��V

w�i� j� g�c� i� r � j� (27)

where V denotes the neighborhood and w�i� j� denotes the
weight of the sample located in point �i� j�, such thatX

�i�j��V
w�i� j� � � (28)

It is not difficult now to verify that the operators of Pre-
witt, Sobel and Frei-Chen can be explained under this gen-
eralized definition of differences, and also understand why
they offer a better tolerance to noise when compared with
operators having a smaller support, such as the detector of
Roberts.
Following this idea of using averages to attenuate the ef-

fect of high frequency noise, several operators have been
proposed, some of them being (support) enlarged versions
of the ��� detectors mentioned above. That is the case, for
example, of the � � � Prewitt based operator, of which we
present only the mask used to estimate the horizontal first
order derivative [7]

Hc �
�

��

����������

�� �� �� � � � �
�� �� �� � � � �
�� �� �� � � � �
�� �� �� � � � �
�� �� �� � � � �
�� �� �� � � � �
�� �� �� � � � �

	��������

(29)

Right from the early stages of edge detection (and, more
generally, image analysis) that was recognized the need
to use operators of several dimensions. Rosenfeld et al.
[8]-[10] proposed an algorithm to detect edges, commonly
known as “difference of boxes”, that relies on the use of
pairs of neighborhoods (one neighborhood on each side of
the point under analysis) of several dimensions and orien-
tations. By convenience, they suggested that the neighbor-
hoods should have a square shape and have sizes related to
the powers of two. The output value of this operator is just
the difference of the mean intensity values, calculated over
the pair of neighborhoods. Also, they indicated that one of
the possible ways to find the “ideal” operator size, is to look
for the largest one that does not originate a significant de-
crease on the output value, when compared with the output
value of the immediately smaller operator.
It is interesting to note that this work of Rosenfeld et

al., undertaken during the first steps of edge detection, ad-
dresses a question that recently has attracted the attention
of many researchers: scale. The technique suggested by
Rosenfeld incorporates, maybe for the first time, this im-
portant notion in the area of image analysis.
In the sequence of a comment on Rosenfeld’s operator

( [8]), Argyle proposed an operator based on a Gaussian
function “broken” around the central point [11], i.e.,

f�x� �


G��x� if x 
 �

�G��x� if x � �
(30)

where G���� is a Gaussian function with variance ��, given
by

G��x�
def
�

�

�
p
�

exp

�
� x�

���

�
(31)

He justified his proposal arguing that the discontinuities
present in both ends of the differences of boxes operator
are adverse to a good noise reduction capability. Note that
Argyle’s operator (Eq. (30)) vanishes at both ends, which,
in his opinion, improves noise tolerance. On the other hand,
he considered that the discontinuity in the center of the op-
erator is required.
In the follow up of this discussion, Macleod [12] claimed

that the central discontinuity is not needed and, moreover,
poses some problems, and suggested another operator,

f�x� � G�� �x�
�
G���x � ����G���x � ���

�
(32)

which is the difference of two Gaussian functions separated
by ��� and modulated by other Gaussian function. Figure 1
shows examples of Macleod’s and Argyle’s operators.
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Figure 1 - Graphics of Argyle’s operator for � � �����, and of Macleod’s
operator (a) �� � ��� and �� � �����, and (b) �� � ���� and �� �
�����.

As we pointed out, the main reason for using operators
with large support is to improve tolerance to high frequency
noise and, therefore, to reduce the number of false re-
sponses. More recently, Torre and Poggio [1] addressed
this question in a theoretical way. They formulated the dif-
ferentiation operation as an ill-posed problem in the sense
of Hadamard, and they used regularization techniques to
transform it into a well-behaved problem.
Let us see the following example [3]. Consider that ��x�

is a function affected by a small amplitude noise given
by � sin��x�. The difference between ��x� and ��x� �
� sin��x� can be made arbitrarily small, if � is made suf-
ficiently small. However, the difference of their derivatives
can be quite large if � is made large.
The above case exemplifies the usual idea that differen-

tiation amplifies high frequency noise. In the sense of
Hadamard, this means that the differentiation operation is
an ill-posed problem [3], since it violates one of the princi-
ples of well-posed problems, in this case that small varia-
tions in the data should not originate abrupt changes in the
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solution of the problem. The other two principles are the
existence of a solution and its uniqueness.
One of the most natural ways of regularizing the operation

of numerical differentiation is through the approximation or
interpolation of the data using analytic functions. If approx-
imation functions are used (which is advisable for noisy
data), then the regularization techniques lead, for example,
to the search of a function z�x� such than the functional

nX
i��

�
g�xi�� z�xi�

��
� �

Z
jz���x�j� dx (33)

has to be minimized. Eq. (33) z�x� denotes the approxima-
tion function of the n points g�xi�.
The first term of (33) measures the fidelity of the approxi-

mation, i.e., the distance between the data and the approxi-
mation function. The second term of (33) controls the reg-
ularity of the solution through a stabilizing functional that,
in this case, is the second order derivative. Parameter �
controls the balance of these two constraints.
It was proved that the solution of (33) can be obtained

through the convolution of the data with a cubic spline quite
similar to a Gaussian function [1], providing that the noisy
data are regularly placed along the x axis and that some
limit conditions are met. It was also shown that, for a class
of inverse problems described through a convolution opera-
tion (which includes the differentiation), the regularization
can be performed through the convolution of the data with
a filter �f��x� (having Fourier transform �F����) that obeys
to the following conditions (Tikhonov conditions):

1. �F���� is limited for 	 	 �.

2. �F���� is an even function in relation to �, i.e.
�F���� � �F�����, and belongs to L���
�
�.

3. j��F���� belongs to L���
�
�.

4. lim
j�j��

�F���� � �� �	 
 �.

5. lim
���

�F���� � � and �F���� � �.

Parameter 	 controls the spatial support of the filter, i.e., its
scale, and j

def
�
p�� is the imaginary unit.

This set of results that we presented above allows a more
rigorous justification to the frequent and intuitive use of av-
erages or low-pass filtering in edge detection. Nevertheless,
this does not mean that all (smoothing) filters used for edge
detection obey to the Tikhonov conditions. For example,
the rectangular filter (simple average) defined by

�f��x� �

���
�p
�	

jxj � 	

� jxj 
 	
(34)

and having Fourier transform

�F���� �

r
�

	

sin��	�

�
(35)

does not respect the third Tikhonov condition. In the next
section we describe some of the most recent edge detectors
that explicitly use linear filtering. Some of them were pro-
posed before the work of Torre and Poggio. Some others

were proposed afterwards, but without any reference to that
theory. Anyway, we will see that all of them obey to the
conditions of Tikhonov.

III. LINEAR FILTERS FOR EDGE DETECTION

Some of the most recent edge detectors are explicitly for-
mulated using a combination of linear low-pass filtering
followed by differentiation, although frequently these two
operations are implemented by a single filter. Scale is typ-
ically associated with the dimension of the spatial support
of the filter. As we saw, small support filters may not pro-
vide sufficient tolerance to high frequency noise. The oper-
ators proposed by Argyle (30) and Macleod (32), described
above, reveal a concern related to the adaptation of their
scale to the particular noise conditions of the images. How-
ever, these operators, and also all the others that we de-
scribed until now, were developed based fundamentally on
heuristics.
In the following text we make reference to two kinds of

filters: detection filters and smoothing filters. Some of the
formulations follow a line that takes to the development of
filters that are used to attenuate noise (i.e., regularize the
data). The detection is made afterwards through differenti-
ation. Some other formulations derive directly the detection
filter. To avoid confusion, we use the following notation:
f�x� denotes detection filters, and �f�x� denotes smoothing
filters.

A. Dickey and Shanmugam

The use of objective criteria towards the development of
edge detection operators was initiated, as far as we know,
by Dickey and Shanmugam [13], [14]. They derived a filter
in the spatial frequency domain which generates a maxi-
mum energy output inside a pre-defined interval around the
edge point under analysis. This corresponds, for the one-
dimensional case, to the maximization of

� �

Z I��

�I��
jo�x�j� dxZ �

��
jo�x�j� dx

(36)

where o�x� � f�x�  ��x� 2 is the response of the filter
f�x� to the input signal ��x�, characterized by containing
an edge point centered in x � �, and I is the resolution
of the system, i.e., the interval over which the response is
analyzed. To derive the filter they used also the follow-
ing restrictions: (1) the filter should be linear and space
invariant, i.e.,O��� � F���G���; 3 (2) the filter should be
frequency limited, where �c is the cut-off frequency, i.e.,
F��� � � for j�j 
 �c; (3) the response of the filter to con-
stant signals or of slow variation should be negligible, i.e.,
F��� � �; (4) the filter should be an even function, to allow
easy extension to two dimensions, i.e., F���� � F���.

2Operator � denotes convolution.
3O��	, F��	 and G��	 represent, respectively, the Fourier transforms

of o�x	, f�x	 and ��x	.
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The filter proposed by Dickey and Shanmugam for the de-
tection of step edges is described by

F��� �

��� K� � ��

�
c�

�I

��c

�
if j�j � �c

� otherwise
(37)

where c � �cI��, K� is a real constant, and �� is a prolate
spheroidal function of zero order and degree one. Dickey
and Shanmugam also suggested an approximation for (37)
that avoids the use of prolate functions [14]. This approxi-
mation, posteriorly corrected by Lunscher, is given by [15]

F��� �
��� K� �

� exp

�
� c��

���
c

�
if j�j � �c

� otherwise
(38)

and is valid for j�j � �cc
����.

Dickey and Shanmugam showed that the signal to noise
ratio inside the interval of resolution improves when c in-
creases. However, to keep the noise under an acceptable
level the bandwidth of the filter should not be too large and,
therefore, the resolution is forced to be reduced (remember
that c is proportional to the bandwidth, �c, and resolution
interval, I).
Lunscher [15] pointed out that (38) has a shape similar to

the Laplacian of the Gaussian function, filter posteriorly
proposed by Marr and Hildreth [16]. Nevertheless, there
are several differences between them. For example, while
the filter of Dickey and Shanmugam is explicitly frequency
limited for j�j � �c, the filter of Marr and Hildreth is not.
Another difference, that produces visible results in the edge
maps, is related with the fact that while Dickey and Shan-
mugam mark the presence of an edge whenever the output
of the filter reaches some pre-defined threshold, Marr and
Hildreth seek, instead, zero crossings in the output of the
filter. Observing that when c � � the filter of Dickey and
Shanmugam behaves like a Laplacian, then it is easy to see
that this implies that edges are marked twice if they are de-
tected by threshold.

B. Marr and Hildreth

From all the filters that we present in this section, the edge
detection filter proposed by Marr and Hildreth [16] is the
only one that did not result from the optimization of some
mathematical criteria. Nevertheless, it is frequently referred
to as an “optimal” filter. It was developed based on a set of
psychophysical and physiological observations, and also on
some properties of the Gaussian function.
Marr and Hildreth not only proposed an edge detector but

also a theory about the detection of edges. They pointed
out, for example, that the variation of light intensity occurs
at several scales, which should imply, also, their detection
using detectors tuned for several different scales. Since a
single filter cannot be optimal for all possible scales, then
they suggested that the images should be first smoothed
using several resolutions, and only afterwards scanned for
edges.
Their choice of the “optimal” smoothing filter obeyed to

two conditions: (1) the filter should be smooth in the fre-
quency domain and approximately frequency limited, to be

able to reduce the scale range where intensity changes oc-
cur; (2) the filter should be localized in the spatial domain,
since the influence of a given point only makes sense in a
relatively small neighborhood. Therefore, Marr and Hil-
dreth looked for a linear filter that was able to jointly min-
imize the (product of the) spread in space and frequency,
and found that this requirement is met by the the Gaussian
function.
After smoothing, the detection can be done by looking for

the maxima of the absolute value of the first derivative or for
the zero crossings of the second derivative. Marr and Hil-
dreth proposed the second order derivative and, therefore,
formulated the edge detection operation as the problem of
finding the zero crossings of

o�x� y� � D�G��x� y�  ��x� y�� (39)

whereD denotes the differential operator, ��x� y� the image
under analysis, and G��x� y� a two-dimensional Gaussian
function defined as

G��x� y�
def
�

�

���
exp

�
�x� � y�

���

�
(40)

Using the rule of the derivative of a convolution we have

D�G��x� y�  ��x� y�� � D�G��x� y�  ��x� y� (41)

which means that the smoothing and differentiation oper-
ations can be implemented by a single operation consist-
ing on the convolution of the image with the second order
derivative of the Gaussian function.
One of the problems that arises when using second order

derivatives is the determination of the most appropriate di-
rection to align the operator. Since we want to find the
points where the absolute value of the gradient is a local
maximum, using the zero crossings of the second deriva-
tive, then the most appropriate direction is precisely the
gradient direction in each point. However, that would im-
ply the previous knowledge of the gradient and, therefore,
an increase in computational effort.
As previously mentioned in Section II, although the Lapla-

cian does not always coincides with the second order di-
rectional derivative along the gradient direction, it reveals
several advantages, among them the property of being a ro-
tationally invariant operator. This was the main reason that
motivated Marr and Hildreth to the choice of the Laplacian,
instead of the more correct, but also more problematic, op-
erator based on the directional second order derivative. The
final form of the operator of Marr and Hildreth is, there-
fore, [16]

r�G��x� y� � � �

��

�
�� x� � y�

���

�
exp

�
�x� � y�

���

�
(42)

and is frequently known as the Laplacian of the Gaussian.

C. Canny

The use of mathematical criteria in order to develop “op-
timized” edge detection filters was definitively popularized
by Canny [17], [18]. The Canny filter is, most probably, the
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most known and cited among the several “optimal” filters
that have been proposed since then.
Canny started by defining the operation of edge detection

in one dimension as the determination of the local maxima
resulting from the convolution of a filter with the signal af-
fected by additive white noise, n�x�, for which4

En�x�� � �� n��
def
� En��x�� (43)

and defined three criteria for the development of the filter.
One of them, represents the need of a good detection, i.e.,
the existence of a low probability that it generates false de-
tections or fails to detect some edges. In other words, it was
intended that the filter should possess a high signal to noise
ratio. This criterion is defined as

CSNR �

����Z �

��
���x�f�x� dx

����
n�

sZ �

��
f��x� dx

(44)

where f�x� is a linear filter and ��x� is the profile of an
edge localized in x � �. Note that the numerator of (44)
corresponds to the response of the filter (in x � �) to the
ideal signal (the edge profile), while the denominator is the
response of the filter only to the noise.
The second criterion imposes good localization of the de-

tections, i.e., the edges must be marked as closest as possi-
ble of their correct positions. Mathematically, this criterion
is defined by

CLOC �

����Z �

��
����x�f ��x� dx

����
n�

sZ �

��
f ���x� dx

� �p
Ex���

(45)

where x� denotes the detection position, i.e., (45) is an ap-
proximation of the inverse of the standard deviation of the
effective detection position [18]. Tagare et al. [19] pointed
out that (45) was derived using a wrong expression for the
variance of the position of the detected edge. However, de-
spite the discussion generated (see [20], [21]), it seems to
be only significant for very high noise levels [22].
Finally, the third criterion is intended to limit the number

of false responses in the vicinity of the correct detection.
Note that (44) controls only the behavior of the filter in the
point where the edge occurs. As pointed out by Canny [18],
the maximization of only the first two criteria leads to a fil-
ter defined by f�x� � ���x�. For a step edge this leads
to a filter that is a truncated step, i.e., to the “difference of
boxes”, which is characterized by good detection and lo-
calization capabilities, but also by producing multiple re-
sponses in the vicinity of the edge. The idea of this third
criterion is, therefore, to maximize the mean distance be-
tween the maxima of the responses due to noise, where that

4Notation E
�� represents the statistical expectation.

distance is given by [18]

xmax � �

vuuuuut
Z �

��
f ���x� dxZ �

��
f ����x� dx

(46)

Since (46) changes according to the scale of the filter, i.e.,
xmax�fW � � Wxmax�f� [18] 5 then, to have a scale invari-
ant criterion, we redefine it to be

CMUL �
xmax

W
(47)

where W denotes the support (scale) of the filter.
The optimization process proposed by Canny is the follow-

ing: maximize the product of the CSNR and CLOC criteria,
while keeping the multiple response criterion, CMUL, con-
stant and equal to a pre-defined value.
Although this process can be used for developing filters

dedicated to a specific and arbitrary edge profile, by far the
most studied has been the step edge profile. Using the pro-
posed criteria, Canny derived a family of filters tuned to this
profile, i.e. for ��x� � Au���x� where un�x� denotes the
nth-order derivative of the delta function and A the ampli-
tude of the step. After some manipulations (44) and (45)
present the following form:

CSNR �
A

n�

����Z �

��
f�x� dx

����sZ �

��
f��x� dx

�
A

n�
��f� (48)

and

CLOC �
A

n�

jf ����jsZ �

��
f ���x� dx

�
A

n�
��f �� (49)

Note that the functionals ��f� and ��f �� do not depend
on the characteristics of the image, i.e., they reflect only the
properties of filter f�x�. It is also important to observe their
behavior when a change of scale is made. In that case we
have

��fW � �
p
W ��f� and ��f �W � �

�p
W

��f �� (50)

which means that ��f���f �� is scale invariant.
The maximization of ��f���f ��, constrained to the con-

dition of a constant CMUL, leads to a filter described by the
following equation [18]

f�x� � a� sin��x� � a� cos��x��e
�x�

a	 sin��x� � a� cos��x��e
��x � c

(51)

valid for x � ��W �, 6 and constrained to the following set
of boundary conditions:

f��� � �� f�W � � �� f ���� � s� f ��W � � � (52)

5Where fW �x	 � f�x�W 	.
6The expression of the filter for the interval 
�W��� is obtained using

its anti-symmetric characteristic, i.e., f�x	 � �f��x	.
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(where s is a constant equal to the derivative of f�x� in the
origin) that allow the determination of a�� � � � � a�, in func-
tion of the parameters 	� �� s and c, obtained by numerical
optimization.
For an easy comparison among several of the filters rep-

resented by (51), we introduce a normalization factor, �,
which is given by

�
def
�

������
Z W

�

f�x� dx

�����
(53)

while the normalized filters are defined by f��x�
def
� �f�x�.
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Figure 2 - Filters f��x	 obtained for CMUL � f���� ���� ���g.

Figure 2 shows some plots of f��x� for several values of
CMUL. As can be seen, the shape of f��x� approximates the
“difference of boxes” when CMUL decreases.
From the family of filters derived by Canny, he chose one

with a probability of error due to multiple responses (pm)
as close as possible to the probability of error of detection
(pf ). The relation between these two probabilities of error
is given by [17]

pm � rpf � jf ����jsZ �

��
f ����x� dx

� r��f� (54)

Having c � �, the filter that maximizes r is defined by the
following parameters:

	 � ���
���� � � ��
����� � � ���	��


a� � ����	���� a� � ���������
a	 � ���		�
� a� � �������


(55)

which attains the following criteria values:

��f� � ����
p
W� ��f �� � ���	�

p
W�

��f���f �� � ����� r � ��
� e xmax � ���W

Based on computational complexity arguments, Canny
proposed the first derivative of the Gaussian function as a

good and efficient approximation to (55). In order to al-
low a reasonable comparison between these two filters, we
made a numerical adjustment between (55) and

fG�x� � �k�
p
�G���x� � k

x

��
exp

�
� x�

���

�
(56)

where G���x� denotes the first derivative of the Gaussian
function defined in (31). The smallest quadratic error cal-
culated in the interval x � ��� �� is obtained for k � �����
and � � ���	
, for which results a filter with (both func-
tions are plotted in Fig. 3):

��f� � ����
p
W� ��f �� � ��	��

p
W�

��f���f �� � ����� r � ��
�� xmax � ����W

Note that these criteria values differ slightly from those
provided by Canny [17], [18], because while Canny con-
sidered the infinite support of the Gaussian function, we
performed the calculations assuming that it is truncated in
x � �����	
.
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Figure 3 - Filter (55) and its approximation using the first derivative of the
Gaussian function.

Comparing the values of the criteria obtained for the
Canny filter and also for its approximations, we can ob-
serve, essentially, that the filter based on the first deriva-
tive of the Gaussian reveals a worse localization capability
and an better suppression of multiple responses, when com-
pared to the Canny filter. The signal to noise ratio is similar
in both.
Although (51) was derived as a whole, i.e. there is not an

explicitly separation between smoothing and differentiation
filters, it is straightforward to see it like that, if we con-
sider that the smoothing filter is the integral of (51). There-
fore, the smoothing filter corresponding to the detection fil-
ter based on the derivative of the Gaussian is the Gaussian
function itself.
Up to now, we have been discussing one-dimensional fil-

ters. However, our intention is to detect edges in images,
which means that we have to extend them to two dimen-
sions. Often, these extensions are made without careful
justifications, or purely based on computational efficiency
reasons. This was also the case for the extension to two
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dimensions of the Canny filter, for which he proposed the
use of a Gaussian function perpendicular to the direction
of the edge (projection function), followed by the detection
function (i.e., the derivative of a Gaussian).
Essentially, Canny pointed out two motivations for using

the Gaussian as the projection function. One of them, is the
good behavior of the Gaussian as a windowing function,
avoiding abrupt transitions at the boundaries. The other,
is its easy integration with the detection function, result-
ing in a two-dimensional Gaussian as the smoothing fil-
ter, followed by differentiation. In other words, the edge
detection can be performed through the calculation of the
derivative, along two directions, of the image filtered by a
two-dimensional Gaussian. Yet another important advan-
tage, is the separability of the two-dimensional Gaussian
defined in (40), which allows its decomposition into two
one-dimensional filters. This means that the filtering can be
applied first to columns (rows) and then to rows (columns),
reducing the computational burden. We have, therefore,

G��x� y�  ��x� y� �Z Z
G��x� 	� y � �� ��	� �� d	 d� �Z

G��y � ��

�Z
G��x� 	� ��	� �� d	

�
d� �

G��y� 
�
G��x�  ��x� y�

�
�

G��x� 
�
G��y�  ��x� y�

�
(57)

and also, exemplifying for the case of the operator along the
x direction,

�

�x

�
G��x� y�  ��x� y�

�
�

�G��x�

�x

�
G��y�  ��x� y�

�
(58)

D. Spacek

Spacek was one of the first researchers that followed up
the work of Canny. He derived an edge detector with the
aim of developing a theory that could integrate edge de-
tection, curve measuring, and motion detection, during the
early stages of visual processing [23]. He formulated the
optimization criteria in a way quite similar to Canny, al-
though, right from the beginning, Spacek decided to de-
velop an edge detector tuned for step profiles.
However, the combination of the three criteria was per-

formed using a different approach. As we mentioned,
Canny derived the filters by making the multiple responses
criterion constant and then maximizing the product of the
other two. Instead, Spacek used a performance measure,
independent of scale, which is basically the product of the
three criteria:

P �f� �

�
f ����

Z �

��
f�x� dx

��

�Z �

��
f��x� dx

��Z �

��
f ����x� dx

� (59)

where P �f� is a functional in f�x�. Maximizing (59) we

obtain a filter described by the following expression [23]:

f�x� � C� sin�x� � C� cos�x��e
x�

C	 sin�x� � C� cos�x��e
�x � �

(60)

with

C� C� C	 C�

�������� ����
� ���
	� �����
�
where (60) is defined for x � ��� ��. The positive half of
the filter is obtained using its anti-symmetric characteristic.
As pointed out by Spacek, the filter defined by (60) can be

approximated quite well by the cubic spline

c�x� � x	 � �x� � x (61)

defined for x � ��� ��. Following the rule stated above,
we denote the normalized filters by c��x� and f��x�, where
� � �� and � � �����
, respectively. In fact, these func-
tions present a great degree of similarity, as can be seen in
Fig. 4, where we also show the Canny filter defined by (55).
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Figure 4 - Filter (60), its approximation using the cubic spline defined
in (61), and also the Canny filter described by (55).

One of the greatest problems related to directional filters,
as the case of (60), is their extension to two dimensions,
since it cannot be performed by rotation. Spacek overcame
this using a simple, but ingenious, approach, based on the
following property of the differentiation of the convolution:

f�x�  ��x� �  �f�x�  ��x��� (62)

where �f�x� is the integral of f�x�. This means that we
can first convolve with the integral of the filter, and differ-
entiate afterwards. The advantage is that being f�x� anti-
symmetric, then �f�x� is symmetric and, therefore, can be
easily extended to two dimensions by rotation. Also, it is
now easy to interpret this result under the regularization the-
ory: �f�x� is, effectively, a regularizing filter, applied just
before differentiation.
The work of Spacek was posteriorly extended by Petrou

and Kittler, that reduced from six to four the number of
arbitrary constants in the derivation of (60), searching, in-
stead, for their optimal value [24]. However, they con-
cluded that the improvements are only marginal and that
the cubic spline defined in (61) is, in fact, a very good ap-
proximation to the “optimum” filter.
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E. Deriche

The filters developed by Canny, Spacek and Petrou et al.
all have finite support, due to the boundary constraints de-
fined in (52) imposed during the design. Deriche showed
[25], [26] that using the same general equation as the one
defined by Canny in (51), but assuming that the filter is of
infinite support (i.e., f�
� � � and f ��
� � �), it is possi-
ble to improve the values given by the criteria. That infinite
support filter is

f�x� � �c�e��jxj sin��x� (63)

having the following criteria values:

��f� ��f �� �
�	p

�� � 	�
� r �

r
	� � ��


	� � ��
(64)

Deriche pointed out that the case where 	 � � as the
most favorable, since the product ��f� ��f �� is maximum
for � � �. In that case, the filter can be approximated by

f�x� � �c�xe��jxj (65)

since sin��x� � �x for �x � �. This approximation pro-
vides ��f� ��f �� � � and r � ��		.
Deriche proposed recursive implementations for these fil-

ters in order to avoid truncation errors and also to improve
computational efficiency. However, we will not cover im-
plementation issues in this paper.

F. Poggio, Voorhees and Yuille

Poggio et al. [27] defined the edge detection problem as a
process that measures, detects, and locates changes in the
light intensity of an image, which, according to their opin-
ion, implies the calculation of several derivatives. How-
ever, as we already discussed, numerical differentiation is
ill-conditioned. To address this problem they proposed the
direct use of regularization techniques.
Basically, the idea is to find z�x�, starting from a set of

data g�xi�, in such a way that Az � g. Let us consider that
A is an operator that samples z, i.e., Azjx�xi

� z�xi�. In
our case, z should be a function sufficiently well behaved,
on one hand, to be differentiable, and, on the other hand, to
approximate the data g�xi� placed at points xi. According
to Tikhonov’s regularization, we have to look for a function
z that minimizes the functional

kAz � gk� � �kPzk� (66)

where � is a regularization parameter and P a stabilizing
operator.
Picking the second derivative forP and normL�, we arrive

at the following expression:

nX
i��

�
g�xi�� z�xi�

��
� �

Z
jz���x�j� dx (67)

that has to be minimized through the choice of an appropri-
ate function z�x�. Poggio et al. showed that for data placed
on a regular lattice and assuming that the signal goes to zero

at the infinite or is periodic, then z�x� can be obtained con-
volving the data with the function

�f�x� �
�

�����
exp

� �jxjp
�����

�
cos

� �jxjp
�����

� 

	

�
(68)

Moreover, they also showed that this function can be ap-
proximated by a Gaussian, using � � ����. Note that �f�x�
is a smoothing filter. The correspondent detection filter is
give by

f�x� �
d �f�x�

dx
(69)

G. Sarkar and Boyer

Sarkar and Boyer [28], [29] followed a line of work similar
to the one of Deriche for the development of infinite support
filters based, mainly, on Canny’s criteria. They used identi-
cal criteria in what respects the signal to noise ratio and lo-
calization ((48) and (49)), and introduced some changes in
the criterion of multiple responses. Moreover, they raised
the question of the estimation of the filter support. While
for the filter proposed by Canny the support is well defined
(it is of limited support), this is not the case for Deriche’s
filter7.
To attenuate this problem, Sarkar and Boyer proposed the

substitution of W in (47) by a more appropriate measure of
the width of a filter of infinite response8:

WN �

vuuuuut
Z �

��
x�f��x� dxZ �

��
f��x� dx

(70)

which represents the square root of the normalized mean
squared deviation of f ��x�, measured in respect to the ori-
gin.
Probably the most important conclusion that we can draw

from the work of Sarkar and Boyer is that the (“optimum”)
filter proposed by them (which maximizes the product of
the three criteria) is very similar, in shape, to the deriva-
tive of a Gaussian. Nevertheless, they pointed out that their
filter presents some advantages in terms of computational
efficiency.

H. Shen and Castan

Shen and Castan addressed the edge detection problem in
quite different manner [30]. Their definition of edge de-
tector is based, explicitly, on a set of low-pass filtering and
differentiation operations. They used an optimization pro-
cess that relies on three factors: (1) the maximization of
the detector’s response to an edge, (2) the minimization of
the smoothing filter’s response to noise, and (3) also the

7Although not discussed by Canny, the derivative of the Gaussian is also
of infinite support and, therefore, reveals similar problems. In other words,
the support depends on the maximum truncation error that we allow when
we approximate the Gaussian by a finite support filter.

8This same measure of the spatial width of the filter was also proposed
by Tagare et al. [19], also in the context of edge detection.
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minimization of the detector’s response to noise. The nor-
malized global criterion to minimize is given by [30]:

CN �

sZ �

��
�f��x� dx

Z �

��
�f ���x� dx

�f����
(71)

from which results, after minimization, the smoothing filter

�f�x� � abjxj (72)

where a � � ln�b��� and � � b � �. Then, using rela-
tion (69), we have

f�x� �


a ln�b� bx x 
 �

�a ln�b� b�x x � �
(73)

This filter contains a particularity not present in the other
filters, which is the discontinuity for x � �. If we regard
the estimation of a derivative in a given point (x�) as the
difference between two estimates of the function calculated
on opposite positions relative to x�, then it seems natural to
give more importance (weight) to points near x�. For ex-
ample, applying this idea to the derivative of the Gaussian,
we see that the largest weights are given to points around
x � �. In fact, the discontinuity of f�x� in x � � has a
decisive influence in the localization capacity of the filter.
Unfortunately, as we will see, it also implies some disad-
vantages.
Shen and Castan proposed also a measure to assess the lo-

calization error of the filters. However, before we go into
further details on that measure, we will first use the local-
ization measure proposed by Canny (49) to evaluate the
localization capacity of (73) (we remember that this cri-
terion presents high values for filters exhibiting good lo-
calization). As we can verify, (49) is proportional to the
value of the first derivative of f�x�, for x � �. The fil-
ter described by (73) has a discontinuity in x � � which
means that, for x � �, the first derivative is infinite. This
characteristic points towards a good localization ability of
filter (73). In fact, using the localization measure proposed
by Shen and Castan

Le �

���������lim���

�Z ���

����
j �f ���x�j dx

���������
Z �

��
j �f ���x�j dx (74)

we obtain Le � � for the filter (note that (74) varies in-
versely to (49)).
If we apply this measure to the Gaussian function we ob-

tain Le � ��	��, which shows that the value presented by
Shen and Castan [30] (Le � ���
��) is incorrect, appearing
also in other publications such as, for example, [31]-[33].
This results from the incorrect calculation ofZ �

��
jG����x�j dx (75)

which value is 	��
p
�e ��� and not 	

p
e��� as they pre-

sented (G��x� is the Gaussian function defined in (31)).

We calculated also the value of Le for the Canny filter,
i.e. for (51) with parameters (55), for which we obtained
Le � �����W . This value is also different from the one
presented by Shen and Castan (Le � ����W ). For the
comparison of the values of Le relative to the derivative
of the Gaussian and the Canny filter we use the relation
� � ���	
W , already discussed. In that way, we get
Le � �����W for the derivative of the Gaussian, which
means a worse localization characteristic than the Canny
filter (this agrees with the results obtained using Canny’s
localization criterion).
Let us now go a bit further and compare the localization

measure proposed by Shen and Castan (74) with Canny’s
localization criterion (49). Analyzing the first term of (74)
(the one with the limit) we can see that its purpose is the cal-
culation of j �f �����j, i.e. jf ����j, term also present in (49).
The second term also has an equivalent in (49), represent-
ing norms of f ��x� (or �f ���x�): absolute norm in (74) and
quadratic norm in (49).
While Canny calculated

p
Ex��� [17], [18], Shen and Cas-

tan opted by calculating Ejx�j�, where x� denotes the ef-
fective position of the edge point and E�� denotes the sta-
tistical expectation. Using (49) and (74), and knowing that
[18], [30]

� �
�p
Ex���

n�
A

(76)

and

Le � Ejx�j� A

Ejn�x�j� � Ejx�j� A
n�

r


�
(77)

we have, for the Gaussian function,q
Ex��� � ���


p
�

p
En��x��

A
� ���


p
�
n�
A

(78)

and

Ejx�j����	��
Ejn�x�j�

A
���	��

r
�



n�
A
����	�

n�
A
(79)

where n�x� is additive white noise characterized by (43),
and A is the amplitude of the step edge.
The other performance measure proposed by Shen and

Castan (the noise to signal ratio) is also used as an opti-
mization criterion (71), and relates the energy of the re-
sponse of the filter in x � � with the energy of the noise
at the output of the filter and at the output of the derivative
of the filter. Filter (73) has, using this measure, CN � �,
while the derivative of the Gaussian and the Canny filter
are characterized, respectively, by CN � ���
������ 9 and
CN � ����. Using Canny’s signal to noise criterion, (48),
we obtain � � �� ln b�����. It is easy to verify that this
value goes to zero when the filter narrows, i.e. when b� �,
and goes to infinity when the filter widens, i.e. when b� �
(note that, in this case, it goes to the infinite support “dif-
ference of boxes” filter).
For a better comparison of the values of � obtained for

the derivative of the Gaussian and for the Shen and Castan
9The value in parenthesis corresponds to the filter with support truncated

at x � �������.
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filter, we determine now an equivalent width common to
both filters. With that purpose we will use three different
measures: (1) the relation between the value of the function
in the truncature point and its maximum value

A�
def
�

������ f���

max
x�
����

f�x�

������ (80)

(2) the relation between the absolute norm of the function
in �� �� and in ��
�

A�
def
�

Z �

�

jf�x�j dxZ �

�

jf�x�j dx
(81)

and (3) the relation between the quadratic norm of the func-
tion in �� �� and in ��
�

A�
def
�

vuuuuut
Z �

�

f��x� dxZ �

�

f��x� dx

(82)

For the derivative of the Gaussian we have (using � �
���	
W ):

A� � ������ A� � ����
 and A� � �����

For the Shen and Castan filter: A� � b, and

A� �
b

��� b�
� b� A� �

s
b�

��� b��
� b� for b� �

For the Shen and Castan filter this lead us to the following
values of �: ���� (using A�), ��	� (using A�) and ��
� (us-
ing A�). In Fig. 5 we can see the comparison between the
Shen and Castan filter (for the three values of b calculated
above) and the derivative of the Gaussian. Calculating the
normalization factor for the filter of Shen and Castan, us-
ing (53), and making W � �, we obtain

f��x� �

�������
ln b

b� �
bx x 
 �

� ln b

b� �
b�x x � �

(83)

Although the filter of Shen and Castan may, at first sight,
appear superior than the other filters that we presented,
mainly due to its good localization capacity, it suffers from
the problem of a deficient rejection of multiple responses
near the edge point. As we saw above, the filters based on
the three criteria of Canny present a finite first derivative for
x � �. This is imposed by the multiple responses criterion
which goes to zero if f�x� has discontinuities (see (46)).
Therefore, the value of xmax for the filter of Shen and Castan
is zero. The main problem that arises from this situation is
the difficulty in identifying the maximum (of the response)
that corresponds to the edge point, since it is generally sur-
rounded by multiple maxima due to noise.
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Figure 5 - Comparison of the curves of the derivative of a Gaussian filter
and three instances of the Shen and Castan detection filter (for b � �����,
b � ����� and b � ����).

IV. DISCUSSION AND CONCLUSIONS

In this paper we presented an overview of several edge de-
tectors based on the filtering and differentiation paradigm.
In particular, those based on linear filters are, nowadays,
among the most used. Therefore, the following discussion
will focus on them.
Throughout the last section we presented and analyzed

several linear filters developed according to well defined
mathematical criteria (only with the exception of the filter
of Marr and Hildreth). Given this list (although, for sure,
not complete) we can raise the following question: which
filter is the best? It is obvious that, according to each one’s
optimization criteria each filter shows better performance
values than the others. But that is not a fair way to compare
them. Around this question there are some considerations
that we think they should be brought into discussion.
We start to recall that these filters were developed for one-

dimensional signals. The extension to two dimensions were
made a posteriori, frequently following procedures not well
justified. On the other hand, the edge model used consid-
ers, at most, one edge point into the support region of the
filter10. It is also evident that the step profile is, by far, the
most used edge model, although some studies have been
carried on using other models (see, for example, [34] for
ramp edges). Note that the step edge model imposes two
conditions difficult to be met in real images: on one hand,
the transition is abrupt and, on the other hand, the intensity
is kept constant on both sides of the edge. Finally, even the
optimization criteria, and specially how to combine them,
are not immune to criticisms, given the fact that there is not
a clear definition of a real edge.
Even under these and other criticisms, linear filtering has

a role of extreme importance in edge detection. Moreover,
from what we saw in this paper, it seems that almost all

10In [30] Shen and Castan performed an additional analysis on the be-
havior of their filter for multiple edge points, arguing that this is necessary
due to the infinite support of the filter. However, it is our opinion that this
analysis is also necessary for the finite support filters. In fact, although
infinite, it is also true that the response of the filter has a fast decay which,
in that aspect, does not differ too much from the finite support filters.
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filters exhibit some similarity with the Gaussian function
and its derivatives. This observation lead us to believe that
the “optimum” linear filter for the detection of step edges
should not differ too much from the derivative of the Gaus-
sian and, therefore, the smoothing filter should be based
on the Gaussian function. This is not surprising since the
Gaussian has been emerging as a very important function
in several areas of image analysis and processing and, spe-
cially, in multi-resolution analysis.
We can find, in the literature, some unification propos-

als of some of these filters. For example, Farag showed
that the filters of Dickey and Shanmugam, Marr and Hil-
dreth, and Canny are filters of maximum energy for step
edges [35]. Shen and Castan also proposed a unification of
several band-limited differential operators, based on their
filter (see (72)) [33] and on a property stating that applying
filter (72) repeatedly is equivalent to filter with a Gaussian.
Therefore, all the filters similar to the Gaussian function
can also be related. Moreover, they showed that Deriche’s
(smoothing) filter corresponds exactly to two iterations of
their filter.
The regularization theory also contributes to the unifi-

cation of all these filters. It can be verified that all of
them obey the Tikhonov conditions, which means that the
(smoothing) filters provide regularization of the data. It
is curious to note that even the filter of Shen and Castan
is within those conditions (remember the discontinuity of
the first derivative). In fact, Poggio et al. [27] noted that if
we use the simplest Tikhonov stabilizing functional 11 (i.e.,
the first derivative operator), then the regularizing filter has
a discontinuity in the origin of its first derivative. More-
over, they stated that those filters are not sufficiently smooth
to ensure that the second derivatives are well defined and,
therefore, they don’t advise its use.
Most often, we can separate the smoothing part from the

differentiation part of the edge detectors. As we saw, this is
the idea behind the formulation of the edge detection prob-
lem as a problem of numerical differentiation. This sug-
gests us that, although the filters that we presented had been
developed in a more or less tight association with a specific
order of derivative (first or second) they might be used with
differentiators of different orders12.
This question lead us to one of the most persistent discus-

sions in the field of edge detection, respecting to the order
of the differentiator. Step edges can be marked using the
maxima of the first derivative or the zero crossings of the
second derivative. However, there are some basic differ-
ences between these two approaches although, obviously,
they are strongly related.
One is related to the importance of having closed contour

lines. Due to some mathematical properties, the edges that
are marked using the zero crossings of the second derivative
form closed lines or end at the image boundaries. However,
this nice property has a price, implying the introduction of
spurious edges due to inflection points in the image function
(see, for example, [2]). Also, a known drawback of using

11P in Eq. (66).
12Note that this may not be possible for the Shen and Castan filter, due

to the reasons that we pointed above.

second order derivatives is related to high-frequency noise
amplification (differentiation amplifies the high-frequency
components of the signal).
We agree with De Micheli et al. [36] regarding the idea

that most of the linear filters available for edge detection
provide results quite similar, making the task of identifying
the “best” difficult or even impossible. Nevertheless, due to
its simplicity and also to its relation to most of the proposed
filters, it seems that the Gaussian function is indeed a well
balanced choice.
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