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Abstract - Logic design and artificial intelligence 
constitute a rich source of hard combinatorial 
problems which can be formulated in terms of logical 
matrices. Research into their classification and 
working out practically efficient solving algorithms 
were started in early sixties at the Tomsk University 
and the Siberian Physiko-Tekhnical Institute and  
developed later in the Institute of Engineering 
Cybernetics of the Academy of Sciences of Belarus. A 
brief review of obtained results is presented in this 
paper. 

1.  INTRODUCTION 

Engineering discrete information systems on the base of 
modern microelectronics technology is quite impossible 
without their design automation. In its turn, formalization 
of the regarded design processes is a necessary step 
towards their automation. Meanwhile, it is well-known 
that the design of discrete systems is closely connected 
with solving various hard combinatorial problems, 
especially at the level of logical design, where the logical 
structure of the system is elaborated. The quality of 
designed systems greatly depends on these problems 
solutions which demand the lion’s share of time and 
memory resources when using modern computers. There 
arises  a problem of combinatorial support for the design 
automation: classifying combinatorial problems and 
reducing them to a strict mathematical form, developing 
methods for their solution and synthesising programs for 
their  implementation, creating an intellectual interface 
which should facilitate their using in engineering practice. 

The nature of combinatorial problems of logical design 
is close to that of many problems of artificial intelligence. 
Most of them are NP-hard, i.e. their computational 
complexity (measured by used volumes of time and 
memory) depends exponentially on the quantity of input 
data [1]. They say that in principle there is no efficient 
algorithm for solving such problems. But only theoretical 
efficiency is supposed by that: it is accepted that an 
algorithm is efficient if only its computational complexity 
is restricted by some polynomial of the input data volume 
when the latter is unlimited. Meanwhile, it is possible to 
suggest practically efficient algorithms for solving many 
NP-hard problems. They can be successfully used in the 
band of real restrictions imposed on input data and/or in 

case of optimization problems when these algorithms 
enable to find solutions close to optimal ones. 

Naturally, researches in this direction were conducted 
intensively for many years in different countries, by 
numerous teams. One of them is the laboratory of logical 
design of the Institute of Engineering Cybernetics of the 
Academy of Sciences of Belarus, which continued the 
research started at Tomsk University and the Siberian 
Physiko-Tekhnical Institute in early sixties [2-7]. This 
paper presents a short review of obtained results. 

2. MATRIX REPRESENTATIONS 

The majority of combinatorial problems of logical 
design and artificial intelligence can be formulated in 
terms of logical matrices, Boolean or ternary ones. 
Boolean matrices, convenient for visual perception, can 
be used for description of binary relations of various 
nature, and ternary matrices can be interpreted 
specifically as compressed forms of Boolean ones [6,8]. 

Let A and B be some finite sets, and # - some binary 
relation between them: #⊆A×B.  And let [A#B] be the 
Boolean matrix of this relation,  its rows corresponding to 
elements from A, and columns - to elements from B. 

For instance, if  B = {a,b,c,d,e,f}, and A is a set of three 
subsets from B, namely B1={a,b,d}, B2={b,e,f} and 
B3={c,d,e}, then A and B are connected by the relation of 
belonging ∈ of elements from B to elements from A, 
which can be conveniently represented by a Boolean 
matrix [A ∋ B] (below on the left) or a ternary one, using 
the symbol of uncertainty “-” in case of incomplete 
information about this relation  (below on the right - 
when it is not known if  b  belongs to  B1  and  d  -  to B3. 

        a b c d e f           a  b c d e f 

        1 1 0 1 0 0  B1      1 - 0 1 0 0  B1 
    0 1 0 0 1 1  B2      0 1 0 0 1 1  B2 
       0 0 1 1 1 0  B3       0 0 1 - 1 0  B3   

Logical matrices are suitable for application in dialogue 
design systems and are easily jointed with program 
modules. They are included in the number of basic 
operands of programming language LYaPAS, intended 
for logical problems and highly efficient in case of 
Boolean vectors and matrices processing [5,7,9,10]. They 
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served as a base for development of efficient means of 
matrix transformations, which solve numerous problems 
of logical analysis and synthesis of discrete devices and 
diagnostics of their failures, as well as many problems of 
logical recognition of technical and natural objects [11-
16].   

3. CLASSICAL COMBINATORIAL PROBLEMS 

It was the problem of minimization of Boolean 
functions in the class of normal forms, disjunctive (DNF) 
or conjunctive (CNF), that served as an initial source of 
combinatorial problems over Boolean and ternary 
matrices.  

Let X be a set of n Boolean variables, taking values 
from the set E={0,1}, M=En - the Boolean space of these 
variables, and M1 - some its subset, regarded as 
characteristic  for a Boolean function f: En →E. Both the 
set M1 and the function f can be represented by a Boolean 
matrix  [M1#X] of the binary relation #: an element from 
X takes the value 1 on an element from M1. The matrix 
rows can be interpreted by that either as sets of values of 
the variables or as corresponding complete conjunctive 
terms constituting a canonical CNF. 

The same information can be given in the more compact 
interval form. Ternary matrices are used by that, with 
elements choosing values from the set {0,1,-}, and with 
rows interpreted as conjunctive terms or as intervals of M, 
representing characteristic sets of these terms. It is 
considered that a Boolean matrix is equivalent to a 
ternary one if each of its rows (but only they) can be 
obtained from some row of the ternary matrix by 
changing values “-” for 0 or 1 (a ternary row covers a 
Boolean one in this case). The problem of minimization 
of a Boolean function in the DNF class is reduced to 
looking for a ternary matrix T which is equivalent to a 
given Boolean matrix B and has the minimum number of 
rows.  

For example, the following matrix pair illustrates a 
transition from the canonical CNF   f = abc'd' ∨ abcd' ∨ 
ab'c'd' ∨ ab'cd' ∨ abcd ∨ abc'd ∨ a'bc'd  to the more 
compact CNF   f = ad'∨ ab ∨ bc'd.  

                    a b c d      a b c d 

         1 1 0 0       1 - - 0 
           B =  1 1 1 0 ,      T  =    1 1 - -  
           1 0 0 0       - 1 0 1 
         1 0 1 0 
         1 1 1 1 
         1 1 0 1 
         0 1 0 1 

Observing some ternary matrix T with n columns, one 
may put a question: is it equivalent to the Boolean matrix 
with the same number of columns, which contains all 
possible 2n rows? In case of positive answer the matrix T 
is called regenerated and presents a DNF identical with 1, 

i.e. tautology. Checking a ternary matrix on regeneration 
is equivalent to the well-known satisfiability problem - a 
basic problem of the theory of computations [1]. Several 
practically efficient algorithms solving this problem have 
been suggested and investigated in [11,17,18]. 

The classical method for minimization of DNF consists 
(with accuracy to terms) in constructing the set P of all 
maximal on M1 intervals of the space M and selecting 
from P a minimum number of intervals containing 
together all elements of M1 - or, what is the same, finding 
a shortest row cover for the Quine matrix  [P∋M1], i.e. a 
minimum combination of rows containing together at 
least one 1 in each column [19]. 

The second of these problems (the covering problem) 
turned out to be very fruitful, having useful 
interpretations in different applications where not only 
shortest covers are regarded but irredundant ones as well 
(not covered by others). The following example illustrates 
an initial Boolean matrix A and a “reverse” matrix B. 
Columns of the latter one point out all irredundant covers 
of matrix A, the shortest covers in their number, one of 
which marked by 1s in the first column of B is 
represented also by matrix C.  

         0 0 1 1 0 1 1    1 1 1 1 0 0    0 0 1 1 0 1 1 
 A =  1 1 1 0 0 0 0,   B =  1 1 0 0 1 0,  C =  1 1 1 0 0 0 0 
      0 1 0 1 1 0 0    1 0 1 0 1 1    0 1 0 1 1 0 0 
     0 1 0 0 0 1 0    0 0 0 1 1 1      
    1 0 0 0 0 0 1    0 0 1 1 1 1 
     0 0 1 0 1 0 0    0 1 0 1 0 1  

Note that computing the “reverse” matrix is equivalent 
to conversion the set of “maximal 1s” of a monotone 
Boolean function (upper bound of the set M1) into the set 
of “minimum 0s” (lower bound of M\M1). This operation 
is used when checking conditions for implementation of 
Boolean functions by threshold elements [20,21]. 

A lot of publications were dedicated to the covering 
problem. There were proposed various algorithms for its 
solution, including trivial “greedy” algorithms and more 
sophisticated, exact and approximate [22-26]. 

This problem belongs to a rich class of problems of 
finding a Boolean matrix minor formed by some rows or 
columns  and possessing some given quality by that. The 
problem of finding a minimum unconditional diagnostic 
test is another representative of this class. It is formulated 
as follows: a Boolean matrix B=[D#S] is given which 
represents the binary relation # between a finite set of 
failures D and a set of observable attributes S (di#sj, if 
failure i has attribute j), and it is needed to choose from S 
a minimum number of attributes sufficient for recognition 
of any failure. Solving this problem is reduced to finding 
in B some minimum column minor with different rows (it 
is supposed that all rows of B are different). Any obtained 
result can be represented by a Boolean vector b with 1s 
marking the chosen columns. 

For instance, 
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              1 1 0 0 0 1 1 
              0 1 1 0 0 1 0 
           B =  1 0 0 1 1 0 1 
              1 1 1 1 0 1 0 
              0 1 1 1 0 1 1 
              0 1 0 0 1 0 1 
                 b =    1 0 0 0 1 0 1 

Some exact and approximate algorithms for solving this 
problem are given in {11,14,15].  

Thousands  of publications were dedicated to the 
problem of Boolean functions minimization, [27-29] in 
their number, were functions of many arguments were 
considered as well as weakly specified Boolean functions. 
Such a function is defined by a pair of sets M1 and M0, 
composed of relative small number of inputs where the 
function takes accordingly values 1 and 0. Minimization 
of weakly specified Boolean functions is reduced to 
finding a minimum set of intervals covering together M1 
but not intersecting with M0  by that. 

4. MATRIX LOGICAL EQUATIONS 

Development of modern VLSI technology stimulated 
researches in optimal silicon implementation of logic 
circuits. The matrix structure of circuits is adequately 
reflected by mathematical matrix tools suggested for logic 
analysis and synthesis.  These tools solve the problems of 
mutual minimization of systems of Boolean functions 
using as criteria the whole number of conjunctive terms, 
and also the number of variables and literals - in case of 
partial functions [13,30-35]. 

In accordance with these methods, any system of 
Boolean functions is represented by a pair of matrices B 
and U. The matrix B serves for the enumeration of 
elements or intervals of the Boolean space M, constituting 
the area of definition for the functions, and the matrix U 
shows the corresponding values of the functions 
represented by matrix columns. 

Some problems which seem quite different at the 
interpretation level turn out to be very close under more 
abstract formulation. For instance, such are the problems 
of diagnostics, minimization of the number of arguments 
and decomposition of a system of Boolean functions. 
They are reduced combinatorially to selecting from a 
Boolean matrix B a minimum column minor, which 
satisfies one of the following conditions: 

a) rows corresponding to different rows of the matrix U 
should be different (the condition of inside 
decomposition). 

b) rows corresponding to equal rows of the matrix U 
should be different (the condition of outside 
decomposition). 

For example, the result of solving this problem for 
concrete matrices B and U under the condition a is 
presented by the matrix C, and under the  condition b - by 
the matrix D. 

    a b c d e f    u v w     a f     a b 

    0 1 0 1 0 1    0 0 0     0 1     0 1 
    0 0 1 1 0 1    0 0 0     0 1     0 0 
    0 0 1 0 1 0    0 1 0     0 0     0 0 
  B =   0 1 0 1 1 0 ,  U =  0 1 0 ,  C =   0 0 ,  D  =  0 1  
    1 1 0 0 1 0    0 1 0     1 0     1 1  
    1 0 1 0 0 1    1 1 1     1 1     1 0 
    1 1 0 0 0 1    1 1 1     1 1     1 1 

A number of logic circuits design problems are reduced 
to solving matrix logical equations U = B×C. Here U, B 
and C are Boolean matrices, and conjunction (∧), on the 
one hand, and disjunction (∨) or exclusive disjunction 
(⊕), on the other hand, serve correspondingly as inside 
and outside operators when multiplying matrices. Some 
of these matrices are given by that, and other ones should 
be found. Regarding more complicated circuits entails 
solving systems of such equations. This problem is 
decomposed into a series well-formulated and more easy 
problems over separate matrices (50 such problems were 
described in [36]). For instance, the following ones are 
belonging to their number, where some Boolean matrix B 
is regarded:  

1) the problem about a minimum disjunctive basis [37]: 
to find for B such matrix C with minimum number of 
rows that any row of B equals the componentwise 
disjunction of some rows of C; 

2) the problem about a minimum linear basis: the 
problem is the same as the previous one, but exclusive 
disjunction is regarded instead of disjunction; 

3) the problem about a minimum disjunctive code [38]: 
to find for B all rows of which are different such matrix C 
with minimum number of columns that all its rows are 
also different and each its column equals the 
componentwise disjunction of some columns of B; 

4) the problem about a minimum packing: to 
decompose B into a minimum number of row minors each 
of which contains in every column not more than one 
unit: 

5) the problem about a compact packing: to find in B 
such a row minor which contains in each column exactly 
one unit. 

The following examples illustrate some of these 
problems:  

                  1)                            2)                            5) 

       1 1 0 1 1 0 0 0  1 1 1 0 1 1 0 0  1 0 0 1 1 1 0 0 
   1 0 0 1 0 0 1 1  1 0 1 1 1 1 1 1  0 1 1 0 0 1 0 0 
B = 0 1 0 1 1 0 1 1  0 1 0 1 0 0 1 1  0 0 1 1 0 0 1 1 
   1 0 1 1 0 1 0 0  1 1 0 1 0 1 1 0  0 0 0 1 0 0 0 1 
   1 1 1 1 1 1 0 0  1 0 1 0 0 0 0 0  1 0 1 0 1 1 0 0 
   0 0 1 0 0 1 1 1  0 1 1 0 1 0 0 1  1 0 0 0 1 0 1 0 
 
   1 0 0 1 0 0 0 0  0 1 0 0 1 1 0 0  0 1 1 0 0 1 0 0 
C = 0 1 0 1 1 0 0 0  1 0 0 1 1 0 1 0  0 0 0 1 0 0 0 1 
   0 0 0 0 0 0 1 1  0 1 1 1 0 1 1 0  1 0 0 0 1 0 1 0 
   0 0 1 0 0 1 0 0  0 0 1 0 0 1 0 1     
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Each of the given problems can be regarded at different 
aspects. 

For instance, looking for a minimum disjunctive basis 
of a Boolean matrix B is practically equivalent to its 
decomposition into a product of two minimum matrices 
or to finding its shortest covering by unit minors (sets of 
unit elements situated on intersections of some rows with 
some columns). That can be seen from the following 
example:  

     1 1 0 1 1 0 0    1 1 0 0    1 0 0 1 0 0 0 
      1 0 0 1 0 0 1    1 0 1 0    0 1 0 1 1 0 0 
   0 1 0 1 1 0 1  =  0 1 1 0  ×  0 0 0 0 0 0 1  =        
   1 0 1 1 0 1 0    1 0 0 1    0 0 1 0 0 1 0 
   1 1 1 1 1 1 0    1 1 0 1     
   0 0 1 0 0 1 1    0 0 1 1 
 
 1 0 0 1 0 0 0  0 1 0 1 1 0 0
 1 0 0 1 0 0 0  0 0 0 0 0 0 0
 0 0 0 0 0 0 0 ∨ 0 1 0 1 1 0 0 ∨
 1 0 0 1 0 0 0  0 0 0 0 0 0 0
 1 0 0 1 0 0 0  0 1 0 1 1 0 0
 0 0 0 0 0 0 0  0 0 0 0 0 0 0
              
 0 0 0 0 0 0 0  0 0 0 0 0 0 0
 0 0 0 0 0 0 1  0 0 0 0 0 0 0
∨ 0 0 0 0 0 0 1 ∨ 0 0 0 0 0 0 0
 0 0 0 0 0 0 0  0 0 1 0 0 1 0
 0 0 0 0 0 0 0  0 0 1 0 0 1 0
 0 0 0 0 0 0 1  0 0 1 0 0 1 0

Note that a minimum disjunctive basis for rows of the 
matrix B is represented in this example by the second 
multiplier, and the first one can be easily obtained from it 
being conjugated with it and representing at the same 
time a minimum disjunctive basis for the set of columns 
of the matrix B. 

An important class of problems of digital devices design 
is formulated in terms of linear logical equations, or 
logical difference equations [39]. 

Every Boolean function can be represented as a 
polynomial - the mod-2-sum of some elementary 
conjunctions. If all conjunctions are positive, it is a 
Zhegalkin polynomial; if each variable can be presented 
either in the positive form or in the inverted one but not in 
both, it is a Reed-Muller polynomial with fixed polarity;  
otherwise a general type polynomial is under 
consideration [40]. 

Polynomials can be used as structure formulae of two-
level  AND/EXOR-circuits. Such circuits possess some 
advantages over conventional AND/OR-circuits: they are 
more testable and more compact in case of 
implementation of symmetrical Boolean functions typical 
for arithmetic. Their optimal synthesis can be reduced to 
looking for Zhegalkin or Reed-Muller polynomials 
realizing given Boolean functions and having by that the 
minimum number of terms. This problem becomes 

essentially more complicated in case of a partial Boolean 
function specified only on some k inputs presented by the 
rows of the matrix B. 

A method has been proposed by the author, reducing 
that problem to solving a system of k linear logical 
equations. Such system is represented by the expression 
Rx=u, where R is a staircase Boolean matrix obtained by 
conjunctive closing of the set of columns of the matrix B, 
and u - the vector of a regarded function values on the 
definition area. The vector x is to be found, which should 
satisfy this equation. The well-known Gaussian method 
of variables exclusion [41] enables to get rather easily 
some solution or even the whole set of solutions (if they 
exist), but it is insufficient for our aim -finding one 
shortest solution presented by vector x with minimum 
number of units. An exact solution of this problem can be 
found using a modified tree searching technique  
[42,44,45], an approximate one - directly from the matrix 
B, without obtaining R and essentially faster [43]. 

The way of representation of partial Boolean function 
u(a,b,c,d,e)  by a matrix B, the conjunctive closure of the 
latter - by a matrix R, and the obtained minimum 
implementing Zhegalkin polynomial u=c⊕ab - by a 
vector x (given in the transposed form) is illustrated by 
the following example: 

       a b c  d  e      u           1 a  d ad b  c bc ab ac c cd ae 

       1 0 0 1  0      0           1  1  1  1  0  0  0  0  0  0  0  0  
       0 1 1 0  0      1           1  0  0  0  1  1  1  0  0  0  0  0  
Β =1 1 1 0  0 u =  0   R  = 1  1  0  0  1  1  1  1  1  0  0  0 
       0 0 1 1 1        1           1  0  1  0  0  1  0  0  0  1  1  0 
      1 1 0 1 1      1           1  1  1  1  1  0  0  1  0  1  0  1 
 
                             xT =  0  0  0  0  0  1  0  1  0  0  0  0 

There was solved also a more hard problem of the 
synthesis of AND/EXOR-circuits with minimum 
conjunctive terms and implementing systems of m 
Boolean functions of n variables specified on k inputs. 
The suggested method [46-49] is based on the theory of 
linear vector spaces and is especially efficient in case of 
weakly defined systems, with small k but without 
essential restriction on n and m which can reach several 
hundreds - for an approximating algorithm. This method 
was extended onto many-valued functions in [50].  

Some impression about this problem can be received 
from the following example where the matrix B gives the 
whole area of definition, F  presents the values of 
regarded functions on this area, rows of K show selected 
positive conjunctive terms, and Z demonstrates their 
distribution between mod-2-sums which implement the 
regarded functions: u = b⊕ c⊕ d, v = b⊕ d⊕ be, w = b⊕ 
c⊕ ac. 

                a  b  c  d  e              u  v  w 

                0  1  0  0  1             1  0  1 
                1  0  0  1  0             1  1  0 
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                1  1  1  0  1             0  0  1 
       Β =   0  1  1  1  0             1  0  0   = F 
                1  1  0  0  0             1  1  1 
                0  0  1  1  1             0  1  1 
                1  0  1  1  1             0  1  0 
 
                0  1  0  0  0             1  1  1 
                0  0  1  0  0             1  0  1 
       K =   0  0  0  1  0             1  1  0   = Z             
                1  0  1  0  0             0  0  1 
                0  1  0  0  1             0  1  0 

5. SOME PROBLEMS OF THE AUTOMATA THEORY 

When a binary relation represented by a Boolean matrix 
B is defined on one set and is symmetrical, it can be 
interpreted as the relation of incompatibility on the set of 
partial states of a parallel automaton [51], and solving this 
problem - as looking for a minimum interval displacing 
code for these states, what is necessary for the hardware 
implementation of parallel algorithms for logical control 
[52-53]. This problem can be regarded also as the 
problem of covering the graph of incompatibility between 
partial states by a minimum number of complete bipartite 
subgraphs which can be represented by ternary vectors 
with 1s marking components of one part and 0s - marking 
the other part.   

This can be illustrated by the following example of an 
incompatibility graph. A minimum solution of the 
regarded problem for this graph includes three complete 
bipartite subgraphs represented by the corresponding 
columns of a ternary matrix shown on the right. 

        0 1 0 1 0 1    1 1 0 
        1 0 0 1 1 0    1 0 1 
        0 0 0 1 0 0    1 - - 
        1 1 1 0 1 1    0 1 1 
        0 1 0 1 0 1    1 1 0 
        1 0 0 1 1 0    1 0 1 

Practically efficient algorithms for solving this problem 
were proposed in [54-56].  

Rather rich in the sense of possible interpretations is 
also the problem of compact packing which specifically 
was applied for checking logical control algorithms for 
correctness [57]. For example, let a Boolean matrix B to 
present the relation of belonging of places of some net of 
free choice [58] to reachable markings, and the columns 
of a matrix C - to show all possible compact packages for 
B. Then (as follows from the Hack theorem [58]) every 
row of C will have at least one unit if the net is live and 
safe. 

6. LOGICAL INFERENCE IN RECOGNITION PROBLEMS 

It is worth-while to note that many problems of pattern 
recognition are also reduced to solving combinatorial 
tasks. In [59],  a logical approach has been suggested to 

their solving in the Boolean space of attributes, including 
inductive inference (obtaining knowledge from data) and 
deductive inference (using knowledge for computation of 
some goal attributes values). Data present information 
concerning individual objects of an experimental 
selection from a regarded subject area, and knowledge - 
information about this area as a whole, defining relations 
between attributes inherent in it. Knowledge is presented 
by a set of implicative regularities, which can be regarded 
as a generalization of the functional ones. Both data and 
knowledge are represented by binary and ternary vectors 
and matrices, and methods of Boolean functions theory 
are effectively used for their processing. For instance, 
many problems of equality transformations and logical 
inference are reduced to checking CNF for satisfiability.  

The methods of the theory of Boolean functions were 
extended later onto finite predicates [60,61], sectional 
Boolean vectors and matrices were proposed for 
representation of data and knowledge, and the suggested 
approach was generalized for recognition in the space of 
many-valued attributes [62-64]. 

The following example illustrates the recognition via 
deductive inference. Suppose the objects of a regarded 
area are described in terms of the attributes a, b, c taking 
values accordingly from the sets {1,2,3}, {1,2,3,4} and 
{1,2}, and knowledge is represented by a sectional 
Boolean matrix D with rows demonstrating separate 
regularities-disjuncts (given on the right in the algebraic 
form). 

            a           b         c 

         1 2 3 . 1 2 3 4 . 1 2 

         0 0 1 . 0 0 1 0 . 0 0    (a=3) ∨ (b=3) 
D =   0 0 0 . 0 0 1 1 . 0 1    (b=3) ∨ (b=4) ∨ (c=2)  
         0 1 0 . 1 1 0 0 . 1 0    (a=2) ∨ (b=1) ∨ (b=2) ∨ (c=1)  
         0 0 1 . 0 0 0 0 . 0 1    (a=3) ∨ (c=2) 

Any object of the regarded area has some definite value 
for every attribute and is represented by a vector with one 
1 in each of three sections. It should satisfy all regularities 
and that means that three columns of D corresponding to 
the given values of attributes should cover all rows - have 
together at least one 1 in each of them. For example, the 
object presented by the vector 010.0010.01 satisfies this 
condition, and the object presented by 001.0001.01 - does 
not satisfy. 

Suppose now that some object of the given area 
possesses the value 1 of the attribute c. Using this 
information we can reduce the knowledge matrix D, 
deleting the third row (the corresponding regularity is 
satisfied) and the last section (corresponding to the 
attribute  c  with fixed value). We obtain by that: 

       a           b  

                 1 2 3   1 2 3 4 

                 0 0 1 . 0 0 1 0 
                 0 0 0 . 0 0 1 1 
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                   0 0 1 . 0 0 0 0 

It is easy to conclude that the analysed object has the 
value 3 of the attribute a and the value 3 or 4 of the 
attribute  b. 

A knowledge matrix can be defined either by an expert 
or be obtained automatically from data - by the algorithm 
of inductive inference [65]. When data are strongly 
restricted, it is reasonable to use the syllogistic approach - 
in this case regularities tie attributes in pairs, and 
computations are fulfilled much faster than in the general 
case of arbitrary regularities [66-68]. It is necessary 
sometimes to take into account the effects of asymmetry - 
for instance, they could result in impossibility of 
transforming the regularity “if a=1, then  b≠3” into “if  
b=3, then  a≠1” [69]. 

Some expert logical recognition systems were made  on 
the base of the suggested methods [70-72]. 

7. METHODS OF COMBINATORIAL SEARCH 

Solving combinatorial problems over logical matrices is 
unavoidably connected with exhaustive search, but the 
latter can be sometimes greatly reduced when taking into 
account peculiarities of concrete problems.  

The most general approach to solving combinatorial 
problems is based on scanning a search tree that is 
growing while we look for a solution [73-75]. This 
process has a recursive character: on each step a 
considered problem is changed for several alike ones but 
over reduced data. The descendant problems are regarded 
in some order and reduced if possible, and less worth-
while of them can be deleted. The processes of 
decomposing of arising situations are intertwined by that 
with reducing of them, and it is natural to strive for 
decomposition into minimum number of more simple 
situations. In the most effective way this striving can be 
satisfied only by a profound analysis of concrete 
problems and developing corresponding formal theories. 
Some results in this direction are reflected in [76-80]. 

8. CONCLUSION 

Logical matrices can serve as universal means for 
formulating various problems of logic design and 
artificial intelligence (and not only for these problems). 
They are well co-ordinated with features of modern 
discrete mathematics and peculiarities of computers. They 
can provide a good base for combinatorial support of 
processes of logic design and artificial intelligence, 
enabling to raise essentially the efficiency of solving 
numerous problems from these areas. 

In this article, only some of these problems were 
described, and next to nothing was said about methods for 
their solution - because of lack of space. One can find the 

appropriate information using the list of publications 
given below. 
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