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Resumo - Este artigo descreve a implementação de um 
coprocessador de hardware destinado a volume rendering. 
Este tipo de aplicação requer bastantes recursos, quer de 
armazenamento, quer computacionais. Felizmente, os 
primeiros já não são tão problemáticos hoje em dia. No 
entanto, altos desempenhos de processamento não são 
facilmente atingidos sem a utlização de hardware dedicado. 
A abordagem proposta tira partido da utilização de 
hardware  reconfigurável, permitindo que o mesmo seja 
partilhado por diferentes aplicações, contribuindo assim 
para uma diminuição dos custos de aquisição de 
coprocessadores especificos para cada aplicação. 
 
Abstract - This paper discusses the implementation of an 

hardware coprocessor for volume rendering. This type of 
applications requires much storage and computational 
resources. However, high performance processing isn’t easily 
achieved without dedicated hardware. The proposed 
approach takes full advantage of reconfigurable hardware, 
which allows sharing the same hardware among different 
applications, thus saving the investment cost of specific 
coprocessors for each application. 

I. INTRODUCTION 

Volume rendering means rendering voxel-based data [1]. 
Rendering voxels currently finds two major applications: 
rendering CSG models and the visualization of scalar 
functions of three spatial variables. This work is 
concerned with the second case, which corresponds to one 
of the most important applications of Scientific 
Visualization. Such data, prior to the availability of 
hardware and software for volume rendering, was 
visualized using such “traditional” techniques as 
isocontours in cross-sectional planes.  
A voxel volume is either produced by a mathematical 

model, such as in computational fluid dynamics, or the 
voxels are collected from the real world, as in the medical 
imaging. Visualization software generally treats both 
types in the same way. Medical imaging has turned out to 
be one of the most popular applications of volume 
rendering. It has enabled data collected from a 
tomographic system as a set of parallel planes to be 
viewed as a three-dimensional object [1, 2, 3]. 
The basic idea of volume rendering is that a viewer 

should be able to perceive the volume from a rendered 

projection on the view plane. In medical imaging we may 
want to view a surface, the volume, or just part of the 
volume. Thus, we view the extraction and display of 
“hard” surfaces that exist in the data as part of volume 
rendering problem. In many cases we may have a volume 
data set from which we may have to extract and display 
surfaces that exist anywhere within the volume. Rather 
than bounding surfaces of an object, we may be dealing 
with an object that possesses many “nested” surfaces – 
like the skin of an onion. If such surfaces are extractable 
by some unique property then we can render them visible 
by making them 100% opaque and all other data in 
volume 100% transparent. More generally, we may try to 
view either the whole volume or a subset of it by 
assigning a color and an opacity to each voxel and 
accumulating these values along a viewing direction. 
This paper presents the results of a first approach to 

develop an hardware coprocessor for ray caster volume 
rendering. The work is divided in two main parts: 
• Hardware coprocessor - based on Xilinx XC6200 
development system [4]; 
• Software application - developed for Windows family 
of operating systems providing full access to the hardware 
and other useful functionality. 
The paper is organized in eight sections. Section I is this 

introduction. Section II describes the ray caster algorithm. 
Section III provides a brief description of the development 
system used. In section IV some implementation 
guidelines are discussed. Section V presents the complete 
hardware architecture. In section VI the most important 
topics of the software application are described. Results 
are presented in section VII. Finally, some conclusions are 
drawn in section VIII.  

II. RAY CASTER ALGORITHM 

There are two major approaches to volume rendering: 
ray casting (backward mapping) [2] and plane 
compositing (forward mapping). We will consider only 
the first approach. 
The ray caster algorithm has the following general 

structure: 
for {each pixel} 

{ fire a ray and find the voxels through 

which it passes } 

The ray caster algorithm scheme is displayed in figure 1. 
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This method accumulates information from all voxels 
that intersect the current ray casted through the current 
pixel. A single loop of the algorithm provides the final 
value for a pixel. 
The voxels are stored in a three dimensional array and 

indexed by:  
X = (x, y, z) 
To apply this algorithm, each voxel must be mapped to a 

given color C(X) and opacity α(X) (where α=1 implies an 
opaque voxel and α=0 implies a transparent voxel). After 
that, we trace a set of parallel rays into the data. If a pixel 
coordinate is (i, j) we define a ray as the vector: 
R = (i, j, k) 
where: 
(i, j) = r is the pixel index of the ray 
k is the distance along the ray, k = 1,…, K 
For each ray, we progress along it resampling the data at 

evenly spaced intervals, computing C(R) and α(R). As 
each color and opacity are computed, we accumulate 
those values progressing along the ray in a front-to-back 
order. This accumulation process uses the standard 
transparency formula and for a sample R we define an 
accumulated color and opacity after R has been processed 
as follows: 

[ ]),(1)(),(),( *** RrRCRrCRrC ininout α−+=  

[ ]),(1)(),(),( *** RrRRrRr ininout αααα −+=  
where: 
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Note that all colors (R, G, B) are premultiplied by their 
associated opacity and become (Rα, Gα, Bα) in the 
accumulation process. The reason for this is easily 
understood by considering simple examples. If α=0 the 
object is completely transparent and its color contribution 
to the accumulation must be (0, 0, 0). If, on the other 
hand, α=1 then the object is completely opaque and its 
color contribution is (R, G, B). Also when α=1, from 
thereafter in a (brute force) accumulation algorithm, αin=1 
and the second term of the equation is always zeroed. The 
final color is then the color accumulated when the opaque 
voxel is hit by the ray. At the end of the loop, for each 
ray, the final color is obtained by: 
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where R=(i, j, k). 

III. DEVELOPMENT SYSTEM OVERVIEW 

The platform used to implement the coprocessor was a 
Xilinx 6200 development system [4]. From its features, 
the more relevant for this application are: 
• PCI based board; 
• 16K User programmable gates within the XC6216; 
• 512 Kbytes of fast SRAM; 
• Plug and Play compliant. 
It consists of a Xilinx 4013E FPGA and a compute 

element. The compute element is a Xilinx 6200 FPGA [5], 
four 8-bit wide SRAM’s and six bus controller chips to 
control data flow. A Xilinx 4013E FPGA [6] is used as 
the PCI bus interface. The primary component of the 
compute element is a Xilinx 6216. The board architecture 
allows the XC6216 to be reconfigured through the PCI 
interface during run-time. The PCI interface provides 
direct access from the host PC to logic cells within the 
user’s circuit. The compute element memory is organized 
into two banks, each bank consisting of two 128K × 8 bits 
SRAM’s. A bank of RAM can be accessed from either the 
PCI interface or the XC6216. 
Figure 2 shows the design flow that was adopted in order 

to implement the coprocessor in the development system. 
The starting point is the description of the circuit in a 
hardware description language, in this case VHDL [7]. 
This step is performed with a text editor and results in one 
or more VHDL source files (*.vhd) containing the 
description of all components needed. The next step is the 
compilation of these files using Velab [8] (available from 
Xilinx) which outputs a file containing an EDIF netlist. 
Next, based on the information contained in the netlist 
file, the XACT6000 [9] software (also available from 
Xilinx and specific of this FPGA family) performs the 
placement and routing of the circuit. When finished it can 
produce two types of output files: 
• CAL - Contains the bit-stream used to configure the 
FPGA. 
• SYM - Contains information about the placement of 
the components in the FPGA cells. 
These files can be used as the input to a debugger such 

as IDELS [10] developed at the department or PCITest 
that comes with the board. Once the correctness of the 
circuit has been verified, they can also be used by the 
application in order to configure and access the hardware. 
However, in this application only the CAL file is used. 
Due to performance reasons, a low-level access 
mechanism is used. 

IV. IMPLEMENTATION GUIDELINES 

In this section some important implementation decisions 
will be presented. 
The maximum voxel range must be 0 to 65535 (16 data 

bits). This range is large enough to accommodate both 
practical and simulated data. For most practical 
applications, data is sampled with less than 16 bit 
(normally between 8 and 16). In case of simulation, the 
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Figure 1 - Ray casting schematic representation (adapted from [1]). 
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results can be represented in 16, 32, or 64 bit either in 
fixed or floating-point notation. We will assume that it’s 
possible to convert from any of these representations to 16 
bit fixed point without visible loss of information.  
The implemented algorithm requires the mapping of each 

voxel value to color and opacity values. If this mapping is 
performed by one or several expressions, it can take some 
time (even if these expressions are calculated in 
hardware). To accelerate this step, a lookup table was 
used. This table is organized in the following way: 
• The number of entries depends on the voxel range; 
• Each entry is composed by a 32-bit word used to store 
a 24 bit RGB encoded color and an 8-bit opacity value. 
The amount of memory occupied by the lookup table is 

negligible compared to the amount of volume data (even 
if the table has 64K entries corresponding to 256 Kbytes). 
In the beginning of the project, we thought to implement 

the algorithm using floating-point arithmetic, however, 
after some research it was decided to use fixed-point 
arithmetic. The justification is the following: to perform 
an addition between two floating-point numbers in the 
form 
n1 = m1 × be1  m - mantissa 
n2 = m2 × be2  b  - base (fixed) 
   e  - exponent 

it is necessary to ensure that e1=e2. Each 
increment/decrement on the exponents corresponds to a 
shift in the mantissa, which unfortunately is a sequential 
process and can take several clock cycles, thus 
corresponding to a performance bottleneck. Moreover, the 
opacity range is limited to the interval [0, 1] (which helps 
to avoid floating-point representation). In order to 
perform any addition and multiplication in only one clock 
cycle, the opacity values are fixed-point encoded between 
0(00000000b) and 128(10000000b), therefore 
corresponding to 129 levels. The number of opacity levels 
is large enough for most applications. Furthermore, we 
will see later that its adjustment is performed graphically 
in our application and the pointing device has a lower 
resolution. 
A first design strategy was based on the transfer of voxel 

data already mapped to color and opacity values to the 
board local memory. The resulting rendered image was 
also stored in local memory and then transferred to the 
host memory. However, during implementation the 
following problems occurred: 
• Due to the limited memory available on the board (512 
Kbytes), and depending on the volume size, it could be 
necessary to perform several cycles of data transfer. This 
time, from the processing  point of view is useless, which 
contributes to slow the overall system performance; 

• The map table must be implemented in host memory, 
which is slower than the board static RAM, increasing the 
mapping time. 
• Finally, to synchronize the datapath with the memory 
access, it is necessary a control unit. To ensure a correct 
operation of the circuit, the number of states must be 
greater than desirable for a high system performance. 
Together, these problems lead to a change in the design 

strategy. The current design is asynchronous as will be 
shown in next section, however, some problems have not 
been solved yet. In the last section an approach that 
combines the best of the initial and implemented 
strategies, in order to achieve higher performances, is 
presented. 

V. HARDWARE ARCHITECTURE 

The hardware architecture of the developed coprocessor 
is presented in figure 3. It can be divided in the following 
main components: 
• A datapath composed by 4 multipliers (12 × 8 bits), 4 
accumulators (12 bits) and 1 subtractor (12 bits). The 
circuit implements the ray caster equations presented in II 
and is located within the XC6216 FPGA cells; 
• Output buffers, which align the outputs of all 
accumulators to the same FPGA column. This procedure 
allows the simultaneous reading of all accumulator 
outputs with a 32-bit bus width. These buffers are also 
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implemented in the XC6216 FPGA; 
• A color and opacity map memory that converts the 
voxel data into color and opacity values, acting as a 
lookup table. This block is implemented on the board 
memory built with static RAM. The great advantage of 
this approach is the fast conversion rate that can be 
achieved (approx. 50 MHz). For 16 bit voxel data, 24 bit 
color and 8 bit opacity the required memory is 256 
Kbytes, corresponding to half of the total memory 
available on the board (512 Kbytes); 
• A voxel input register that latches and routes the voxel 
value from the FPGA data bus to the memory address bus. 
Each time a new value is written in this register, a clock 
pulse is applied to the accumulators, thus updating their 
outputs; 
• A PCI bus interface circuit. Its function was already 
introduced in section III. 
Figure 3 also represents the FPGA input pads used for 

clock and clear purposes. The clock signal is used only to 
synchronize the Voxel Input Register write operations. All 
the remaining circuit is completely asynchronous. The 
clear signal when asserted resets the contents of the 
accumulators. 
One feature available in reconfigurable hardware 

systems is the possibility of hardwire values frequently 
used in calculations, saving chip area and improving 
performance, this approach is used in the opacity 
subtractor. The additive is fixed and equal to 1 (in fact is 
128, see section IV for details). The complete layout of 
the circuit is shown in figure 4.  

VI. SOFTWARE APPLICATION 

The software application was developed using Microsoft 
Visual C++ 5.0 and is intended to run on Windows 
95/98/NT operating systems. It provides full access to the 
hardware and software renderers. Additionally it offers 
the following functionality: 
• Create, open and save volume files 
• Open and save colormaps 
• Select render type 

• Generate a test volume (sphere with custom radius and 
voxel values) 
• Data analysis (data histogram) 
• Render error analysis (error versus precision bits) 
• Edit colormap 
• Render direction, quality, bounding box and scale. 
The application architecture is full object oriented. In 

addition to interface classes, the following classes were 
developed in order to simplify and increase access safety 
to the corresponding objects: CData, CRenderImage, 
CMapTable, CRender, CSoftRender and CHardRender. 
Together, they provide the application with important 
characteristics such as flexibility and extensibility. It is 
also possible to reuse them in other applications. The 
names are clear enough to justify their purposes. The 
CRender class serves as a base class for CSoftRender and 
CHardRender. It provides methods and encapsulates 
properties, which are common to software and hardware 
render objects. Additionally it allows the use of 
polymorphism [11, 12]. 
An interesting comment is related to the memory 

allocation inside class CData. Initially, the allocation was 
performed using arrays of pointers, where each pointer 
was used to allocate an array of voxels within the same 
voxel line. However, during program execution, we 
verified that for large data volumes, this operation takes 
too much time. Because Windows is a virtual memory 
operating system, we have decided to change the memory 
allocation strategy. Therefore, in the actual 
implementation all memory required to store the volume 
data is allocated in one step as a "large" array of voxels. 
This improves the allocation, deallocation and traverse 
times. To achieve the best program performance is 
recommended to fix the minimum swap file size to a large 
value (>50 Mbytes, depending on the volume size and 
running programs). Figure 5 displays the application main 
window. After startup the default volume size is 
32×32×32. The maximum volume size allowed by the 
application is 256×256×256 voxels with a 16 bits 
resolution corresponding to a maximum of 33,5 Mbytes. 

A. Functionality 

The menu and toolbar placed on its top offers the 
following functionality: 
• File 
• New – Creates a new volume (figure 5). The user can select the 

volume size and resolution. 
• Open – Opens a previously saved volume data file (*.vdt). The 

accepted file format is binary and specific of this application. 
• Save – Saves the current volume data into a "vdt" file. 
• Save As – Saves the current volume data into a "vdt" file under a 

new name. 
• Open Map Table – Opens a previously saved map table, checking if 

the table to be read is compatible with the current resolution. 
• Save Map Table – Saves the current map table into a file. 
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• Import Data – Opens a raw data file. The user should select the 
volume size and resolution. The file can have a variable length 
header and data can be stored in big endian or little endian formats. 

• Print/Print Preview/Print Setup – Standard print commands. 
• Exit – Exits the application. 
 
• View 
• Toolbar / Status Bar - Shows / hides the toolbar / status bar. 
• Data Properties – Displays volume size and resolution information. 
 
• Render 
• Start - Starts the render process. 
• Software - Switches to software render. 
• Hardware - Switches to hardware render. If an error occurs during 

hardware initialization, the user is notified and the selection returns 
to software render. 

 
• Tools 
• Generate Data - Generates voxel data for testing purposes. On the 

current release, only a sphere can be generated. The user can specify 
its radius, inside voxel value and outside voxel value. 

• Data Analysis - Calculates and displays the data histogram. It can be 
useful to build a first color map draft. 

• Render Analysis - Performs the analysis - render quality versus 
number of bits used in accumulators. 

• Options - Displays the options window containing two pages: Color 
and opacity mapping and render 

B. Selection of application and render parameters 

The options window is supposed to provide a usable 
interface to select application and render parameters. It is 
divided in two tabs: 
• Color and opacity map (figure 6) - This tab provides 
the controls necessary to build an arbitrary map table. The 
color and opacity map layouts are displayed on the two 
upper rectangles. The third rectangle (components plot) 
shows the relation between each color component (R, G, 
B, Op) and the voxel value. To modify the map, the user 
should first select the desired component and then specify 
its configuration with the mouse on the components plot. 
The button "Reset" allows to perform the reset of the 
selected component. Two pre-defined maps are available: 
gray and spectral. They are automatically built by pressing 
the respective buttons. The "Apply" button makes the 
displayed map available to the render module (either 

software or hardware). The "Restore" button replaces the 
displayed map by the render map, thus discarding any 
changes. 
• Render (figure 7) - The render tab gives access to 
render options. The user can select one from the six 
render directions available: X, -X, Y, -Y, Z, -Z. Three 
render qualities are available: standard, maximum and 
custom. Only standard quality is implemented in 
hardware. Its precision is enough for most applications 
(12 bit accumulators). The maximum quality uses double 
precision floating point arithmetic. In this case, we 
assume that the error introduced by the render is 
negligible. The selection of custom quality activates the 
precision combo box, where the user can specify the 
number of bits to use in the accumulation process (8 – 16 
bits). When the area of interest is limited to a volume 
section and/or the response time must be improved, it's 
possible to apply a bounding box. The display group 
allows the user to change some view-related parameters 
(scale, center and background color). 

C. Error analysis 

For performing a render analysis it is assumed that the 
maximum quality is achieved using double precision 
floating point arithmetic. After rendering, the resulting 
image is stored in memory for comparison purposes. 
Next, a render is performed for each value of 

 
Figure 6 - Color and opacity map options page. 

 
Figure 5 - Application main window with the new volume dialog box 

opened. 

 
Figure 7 - Render options page. 
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accumulation bits. All the resulting images are compared 
with the maximum quality image. At the end of the 
process a dialog box displays the results. No intermediate 
images appear on the screen. The expressions used to 
calculate the render error are the following: 
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where: 
 
M * N – spatial resolution of the image; 

M
ij

M
ij

M
ij BGR ,,  - values of the components of each pixel 

in the maximum quality image; 

ijijij BGR ,,  - values of the components of each pixel 

for a parameterizable quality image; 
I - measure of the total image intensity; 
E - value of the absolute error of a given image 

compared with the maximum quality image; 
Er - value of the relative error, per pixel and intensity 

independent (corresponds to the absolute error normalized 
by the total number of pixels and image intensity. 
The values obtained depend on the current color and 

opacity map configuration and render settings (direction 
and bounding box).  For a given application it is necessary 
to vary these parameters and perform several render 
analyses in order to determine the optimum accumulator 
size. 

VII. RESULTS 

This section presents the results of some tests used to 
measure the performance of the developed coprocessor 
and to compare it to some software solutions. Three 
different platforms were used: 
• A Personal Computer equipped with a Pentium II 
processor, 128 Mbytes of SDRAM and operating at 233 
MHz - PII233 - (software render); 
• A Computer equipped with a Pentium processor, 32 
Mbytes of DRAM and operating at 120 MHz - P120 - 
(software render); 
• The developed hardware coprocessor connected to the 
previous computer - HWonP120 - (hardware render). 
All experiments comprised the following steps: 

1. Generate a new volume (File->New + Tools-
>Generate Data) 

2. Build an appropriate color map (View->Options) 
3. Select the desired render (Render-

>Software/Hardware) 
4. Start rendering and measure the time. 

The volume size used was 128*128*128 voxels. Table 1 
displays the results obtained. 
Only one volume size is presented. However, the render 

time varies linearly with the size. 
 

Direction Quality  Time(sec)  

  PII233 P120 HwonP120 

X Standard 1.1 2.9 1.7 
 Maximum 1.4 3.0 Na 

Y Standard 1.1 2.5 1.5 
 Maximum 1.4 2.7 Na 

Z Standard 0.7 2 1.4 
 Maximum 0.9 2.3 Na 

Table 1 - Rendering times for a volume size of 128*128*128 voxels. 

Custom quality results are not displayed since this 
feature is provided for error analysis only.  
During the experiments, we observed the following: 
• As expected, the render speed is independent of the 
reverse parameter (render direction); 
• The scale factor doesn't affect the overall performance. 
This parameter is used only at the end of the render 
process by the Windows GDI functions. The practical 
results demonstrate that the overhead generated by these 
functions is practically zero and the final image quality 
seems acceptable. 
Analyzing Table 1 it is possible to draw the following 

conclusions: 
• The ray caster algorithm runs faster (about 40%) on 
the developed hardware coprocessor than on the Pentium 
120 computer. However, the same is not true if we 
compare to the Pentium II computer. Actually the last 
comparison is more reasonable today; 
• On a Pentium II it is possible to run interactively the 
algorithm with a volume size of 128×128×128 or 
equivalent; 
• The algorithm treats all render directions in the same 
way. Thus, the performance differences are caused by an 
external parameter. This parameter is the cache-hit rate. 
While in Z direction the voxels used to calculate a given 
pixel are always placed in adjacent memory positions, the 
same is not true for X and Y directions. In Y direction, the 
difference between adjacent voxels is "z dimension". In X 
direction this value is "y dimension × z dimension". This 
contributes for a bad data locality and consequently to a 
smaller cache-hit rate. The difference is not obvious on a 
Pentium II processor due to its large internal cache. 
Figure 8 shows the concatenation of some rendered 

images. They correspond to a sphere generated with the 
following parameters: 
• Volume size - 128×128×128; 
• Resolution - 16 bits; 
• Sphere radius - 64; 
• Inside voxel value - 60000; 
• Outside voxel value - 10000; 
Only image a) presents a visible low quality. This is 

caused by the low precision of the accumulators (8 bits). 
The visual quality of all remaining pictures is very 
difficult to distinguish. The render analysis graphic 
confirms that beyond 12 bits precision (standard quality) 
the render error is practically zero (<0.5% with 12 bits 
precision). 
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VIII. CONCLUSIONS 

The results obtained during this work, and presented in 
the last section, prove the feasibility of implementing the 
ray caster algorithm in hardware. However, to be 
considered a real coprocessor, the hardware must process 
a given volume data set at higher performance than the 
available by software solutions. As referred in the 
previous section, it was not possible to achieve this goal 
when we compared the hardware performance to the 
performance of the last generation of Pentium II 
processors. The bottleneck is the mechanism used to 
transfer the voxel data from the host memory to the 
coprocessor board. Even using an optimized data traverse 
algorithm, which is independent on the render direction 
(but always orthogonal to two axes), the render time 
varies with the selected direction. 
An interesting point to be addressed in future work is the 

implementation of additional hardware components that 
allow the data to be transferred to the coprocessor 
independently on the render direction. This approach is 
more appropriate to implement in hardware since the 
voxels are always processed sequentially, making possible 
the use of efficient data transfer mechanisms. A 
requirement of this approach is the storage of the rendered 
image in local memory and its complete transfer to the 
host memory at the end of the render process. In the 
current implementation, each pixel is transferred 
individually after its final value has been calculated. The 
memory available on the development system allows the 
simultaneous storage of a map table with 64K entries (16 
bit resolution) of 32 bits each (256 Kbytes) and an image 
of 256×256 pixels of 32 bits (R, G, B, Op) (256 Kbytes). 
A complexity that results from this approach is the need to 
multiplex the memory access. A real coprocessor must 
have two independent memory banks, one for color 
mapping and the other for image storing. 
The improvement in the data transfer mechanism will 

also demand faster components in the datapath. The 
architecture of the used FPGA makes very difficult the 
implementation of carry look-ahead circuits due to the 
unavailability of gate primitives with 3, 4, … inputs. 
Consequently, to improve the performance of 

accumulators and subtractor the recommended scheme is 
based on carry-select circuits [13]. 
An improved design must also explore a better multiplier 

structure, instead of direct implementation of the 
algorithm. In [14] several multiplier schemes are 
proposed; the high performance requirements force a 
parallel implementation, however, is necessary to perform 
a study in order to adapt the scheme to the FPGA 
architecture. 
Another important topic is the required precision in the 

accumulators and multipliers. For some applications, 12 
bits can be enough to obtain a good quality image, 
however, depending on the color and opacity values used 
in the map table, it could be necessary to implement a 16 
bits datapath to obtain full precision. The number of cells 
available in the used FPGA allows a maximum of a 14 
bits datapath. To implement a 16 bit datapath is necessary 
to use a development system with a larger FPGA such as a 
XC6236 or XC6264 also from Xilinx. 
Finally, the presented approach and the proposed 

modifications don't use the dynamic reconfiguration 
feature available in the used FPGA (introduced in section 
III). Thus it is possible to use another FPGA family such 
as the Xilinx XC4000 [6], which allows the 
implementation of more complex designs with a lower 
cost and better performances. 
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Figure 8 - Examples of rendered images - a) Custom 8 bit; b) Standard; 

c) Custom 16 bit; d) Maximum (floating point in s/w). 


