
REVISTA DO DETUA, VOL. 2, Nº 4, JANEIRO 1999 463

* Work developed, in the scope of the MSc course on Computer Visualization, during the academic year of 97/98.

Resumo - Este artigo descreve a implementação de um
coprocessador de hardware destinado a volume rendering.
Este tipo de aplicação requer bastantes recursos, quer de
armazenamento, quer computacionais. Felizmente, os
primeiros já não são tão problemáticos hoje em dia. No
entanto, altos desempenhos de processamento não são
facilmente atingidos sem a utlização de hardware dedicado.
A abordagem proposta tira partido da utilização de
hardware reconfigurável, permitindo que o mesmo seja
partilhado por diferentes aplicações, contribuindo assim
para uma diminuição dos custos de aquisição de
coprocessadores especificos para cada aplicação.

Abstract - This paper discusses the implementation of an

hardware coprocessor for volume rendering. This type of
applications requires much storage and computational
resources. However, high performance processing isn’t easily
achieved without dedicated hardware. The proposed
approach takes full advantage of reconfigurable hardware,
which allows sharing the same hardware among different
applications, thus saving the investment cost of specific
coprocessors for each application.

I. INTRODUCTION

Volume rendering means rendering voxel-based data [1].
Rendering voxels currently finds two major applications:
rendering CSG models and the visualization of scalar
functions of three spatial variables. This work is
concerned with the second case, which corresponds to one
of the most important applications of Scientific
Visualization. Such data, prior to the availability of
hardware and software for volume rendering, was
visualized using such “traditional” techniques as
isocontours in cross-sectional planes.
A voxel volume is either produced by a mathematical

model, such as in computational fluid dynamics, or the
voxels are collected from the real world, as in the medical
imaging. Visualization software generally treats both
types in the same way. Medical imaging has turned out to
be one of the most popular applications of volume
rendering. It has enabled data collected from a
tomographic system as a set of parallel planes to be
viewed as a three-dimensional object [1, 2, 3].
The basic idea of volume rendering is that a viewer

should be able to perceive the volume from a rendered

projection on the view plane. In medical imaging we may
want to view a surface, the volume, or just part of the
volume. Thus, we view the extraction and display of
“hard” surfaces that exist in the data as part of volume
rendering problem. In many cases we may have a volume
data set from which we may have to extract and display
surfaces that exist anywhere within the volume. Rather
than bounding surfaces of an object, we may be dealing
with an object that possesses many “nested” surfaces –
like the skin of an onion. If such surfaces are extractable
by some unique property then we can render them visible
by making them 100% opaque and all other data in
volume 100% transparent. More generally, we may try to
view either the whole volume or a subset of it by
assigning a color and an opacity to each voxel and
accumulating these values along a viewing direction.
This paper presents the results of a first approach to

develop an hardware coprocessor for ray caster volume
rendering. The work is divided in two main parts:
• Hardware coprocessor - based on Xilinx XC6200
development system [4];
• Software application - developed for Windows family
of operating systems providing full access to the hardware
and other useful functionality.
The paper is organized in eight sections. Section I is this

introduction. Section II describes the ray caster algorithm.
Section III provides a brief description of the development
system used. In section IV some implementation
guidelines are discussed. Section V presents the complete
hardware architecture. In section VI the most important
topics of the software application are described. Results
are presented in section VII. Finally, some conclusions are
drawn in section VIII.

II. RAY CASTER ALGORITHM

There are two major approaches to volume rendering:
ray casting (backward mapping) [2] and plane
compositing (forward mapping). We will consider only
the first approach.
The ray caster algorithm has the following general

structure:
for {each pixel}

{ fire a ray and find the voxels through

which it passes }

The ray caster algorithm scheme is displayed in figure 1.

Design and Implementation of a Hardware Coprocessor for Ray Caster Volume
Rendering*

Arnaldo Oliveira, Beatriz Sousa Santos

2 REVISTA DO DETUA, VOL. 2, Nº 4, JANEIRO 1999

This method accumulates information from all voxels
that intersect the current ray casted through the current
pixel. A single loop of the algorithm provides the final
value for a pixel.
The voxels are stored in a three dimensional array and

indexed by:
X = (x, y, z)
To apply this algorithm, each voxel must be mapped to a

given color C(X) and opacity α(X) (where α=1 implies an
opaque voxel and α=0 implies a transparent voxel). After
that, we trace a set of parallel rays into the data. If a pixel
coordinate is (i, j) we define a ray as the vector:
R = (i, j, k)
where:
(i, j) = r is the pixel index of the ray
k is the distance along the ray, k = 1,…, K
For each ray, we progress along it resampling the data at

evenly spaced intervals, computing C(R) and α(R). As
each color and opacity are computed, we accumulate
those values progressing along the ray in a front-to-back
order. This accumulation process uses the standard
transparency formula and for a sample R we define an
accumulated color and opacity after R has been processed
as follows:

[]),(1)(),(),(*** RrRCRrCRrC ininout α−+=

[]),(1)(),(),(*** RrRRrRr ininout αααα −+=
where:

),(),(),(* RrRrCRrC ininin α=

),(),(),(* RrRrCRrC outoutout α=
),(),(),(* RrRrCRrC α=

Note that all colors (R, G, B) are premultiplied by their
associated opacity and become (Rα, Gα, Bα) in the
accumulation process. The reason for this is easily
understood by considering simple examples. If α=0 the
object is completely transparent and its color contribution
to the accumulation must be (0, 0, 0). If, on the other
hand, α=1 then the object is completely opaque and its
color contribution is (R, G, B). Also when α=1, from
thereafter in a (brute force) accumulation algorithm, αin=1
and the second term of the equation is always zeroed. The
final color is then the color accumulated when the opaque
voxel is hit by the ray. At the end of the loop, for each
ray, the final color is obtained by:

),(
),()(

*

Rr
RrCrC

out

out

α
=

where R=(i, j, k).

III. DEVELOPMENT SYSTEM OVERVIEW

The platform used to implement the coprocessor was a
Xilinx 6200 development system [4]. From its features,
the more relevant for this application are:
• PCI based board;
• 16K User programmable gates within the XC6216;
• 512 Kbytes of fast SRAM;
• Plug and Play compliant.
It consists of a Xilinx 4013E FPGA and a compute

element. The compute element is a Xilinx 6200 FPGA [5],
four 8-bit wide SRAM’s and six bus controller chips to
control data flow. A Xilinx 4013E FPGA [6] is used as
the PCI bus interface. The primary component of the
compute element is a Xilinx 6216. The board architecture
allows the XC6216 to be reconfigured through the PCI
interface during run-time. The PCI interface provides
direct access from the host PC to logic cells within the
user’s circuit. The compute element memory is organized
into two banks, each bank consisting of two 128K × 8 bits
SRAM’s. A bank of RAM can be accessed from either the
PCI interface or the XC6216.
Figure 2 shows the design flow that was adopted in order

to implement the coprocessor in the development system.
The starting point is the description of the circuit in a
hardware description language, in this case VHDL [7].
This step is performed with a text editor and results in one
or more VHDL source files (*.vhd) containing the
description of all components needed. The next step is the
compilation of these files using Velab [8] (available from
Xilinx) which outputs a file containing an EDIF netlist.
Next, based on the information contained in the netlist
file, the XACT6000 [9] software (also available from
Xilinx and specific of this FPGA family) performs the
placement and routing of the circuit. When finished it can
produce two types of output files:
• CAL - Contains the bit-stream used to configure the
FPGA.
• SYM - Contains information about the placement of
the components in the FPGA cells.
These files can be used as the input to a debugger such

as IDELS [10] developed at the department or PCITest
that comes with the board. Once the correctness of the
circuit has been verified, they can also be used by the
application in order to configure and access the hardware.
However, in this application only the CAL file is used.
Due to performance reasons, a low-level access
mechanism is used.

IV. IMPLEMENTATION GUIDELINES

In this section some important implementation decisions
will be presented.
The maximum voxel range must be 0 to 65535 (16 data

bits). This range is large enough to accommodate both
practical and simulated data. For most practical
applications, data is sampled with less than 16 bit
(normally between 8 and 16). In case of simulation, the

Data

Pixel
rayfor {each pixel

ray}

Pixel

View plane

Figure 1 - Ray casting schematic representation (adapted from [1]).

 3

results can be represented in 16, 32, or 64 bit either in
fixed or floating-point notation. We will assume that it’s
possible to convert from any of these representations to 16
bit fixed point without visible loss of information.
The implemented algorithm requires the mapping of each

voxel value to color and opacity values. If this mapping is
performed by one or several expressions, it can take some
time (even if these expressions are calculated in
hardware). To accelerate this step, a lookup table was
used. This table is organized in the following way:
• The number of entries depends on the voxel range;
• Each entry is composed by a 32-bit word used to store
a 24 bit RGB encoded color and an 8-bit opacity value.
The amount of memory occupied by the lookup table is

negligible compared to the amount of volume data (even
if the table has 64K entries corresponding to 256 Kbytes).
In the beginning of the project, we thought to implement

the algorithm using floating-point arithmetic, however,
after some research it was decided to use fixed-point
arithmetic. The justification is the following: to perform
an addition between two floating-point numbers in the
form
n1 = m1 × be1 m - mantissa
n2 = m2 × be2 b - base (fixed)
 e - exponent

it is necessary to ensure that e1=e2. Each
increment/decrement on the exponents corresponds to a
shift in the mantissa, which unfortunately is a sequential
process and can take several clock cycles, thus
corresponding to a performance bottleneck. Moreover, the
opacity range is limited to the interval [0, 1] (which helps
to avoid floating-point representation). In order to
perform any addition and multiplication in only one clock
cycle, the opacity values are fixed-point encoded between
0(00000000b) and 128(10000000b), therefore
corresponding to 129 levels. The number of opacity levels
is large enough for most applications. Furthermore, we
will see later that its adjustment is performed graphically
in our application and the pointing device has a lower
resolution.
A first design strategy was based on the transfer of voxel

data already mapped to color and opacity values to the
board local memory. The resulting rendered image was
also stored in local memory and then transferred to the
host memory. However, during implementation the
following problems occurred:
• Due to the limited memory available on the board (512
Kbytes), and depending on the volume size, it could be
necessary to perform several cycles of data transfer. This
time, from the processing point of view is useless, which
contributes to slow the overall system performance;

• The map table must be implemented in host memory,
which is slower than the board static RAM, increasing the
mapping time.
• Finally, to synchronize the datapath with the memory
access, it is necessary a control unit. To ensure a correct
operation of the circuit, the number of states must be
greater than desirable for a high system performance.
Together, these problems lead to a change in the design

strategy. The current design is asynchronous as will be
shown in next section, however, some problems have not
been solved yet. In the last section an approach that
combines the best of the initial and implemented
strategies, in order to achieve higher performances, is
presented.

V. HARDWARE ARCHITECTURE

The hardware architecture of the developed coprocessor
is presented in figure 3. It can be divided in the following
main components:
• A datapath composed by 4 multipliers (12 × 8 bits), 4
accumulators (12 bits) and 1 subtractor (12 bits). The
circuit implements the ray caster equations presented in II
and is located within the XC6216 FPGA cells;
• Output buffers, which align the outputs of all
accumulators to the same FPGA column. This procedure
allows the simultaneous reading of all accumulator
outputs with a 32-bit bus width. These buffers are also

Opacity
Multiplier

Green
Multiplier

Red
Multiplier

Blue
Multiplier

Opacity
Acc

Red
Acc

Green
Acc

Blue
Acc

Opacity
Sub

Color and Opacity Map
Memory

Voxel Input Register

Opacity
Out

Buffer

Red
Out

Buffer

Green
Out

Buffer

Blue
Out

Buffer

PCI
Bus

Interface

Address

Data

"1"

XC4013 FPGAXC6216 FPGA

Local SRAM

16

16

8

8

8

8

12

12

12

12

12

12

12

8

8

8

12 8

8

8

8

12

12

CLK_IPAD

CLR_IPAD

CLK_IBUF

CLR_IBUF

GCLK

GCLR

GCLR

ACC_CLK

ACC_CLK

ACC_CLK

ACC_CLK

GCLR

GCLR

GCLR

ACC_CLKGCLK

Figure 3 - Hardware coprocessor architecture.

VHDL
files

Text
editor

Velab
complier

XACT6000
place and

router

Hardware

IDELS
debugger

EDIF
netlist

CAL
file

SYM
file

Correction of semantic errors

Correction of syntactic errors

Correction of netlist errors / unroutes
Figure 2 - XC6200 Design flow.

4 REVISTA DO DETUA, VOL. 2, Nº 4, JANEIRO 1999

implemented in the XC6216 FPGA;
• A color and opacity map memory that converts the
voxel data into color and opacity values, acting as a
lookup table. This block is implemented on the board
memory built with static RAM. The great advantage of
this approach is the fast conversion rate that can be
achieved (approx. 50 MHz). For 16 bit voxel data, 24 bit
color and 8 bit opacity the required memory is 256
Kbytes, corresponding to half of the total memory
available on the board (512 Kbytes);
• A voxel input register that latches and routes the voxel
value from the FPGA data bus to the memory address bus.
Each time a new value is written in this register, a clock
pulse is applied to the accumulators, thus updating their
outputs;
• A PCI bus interface circuit. Its function was already
introduced in section III.
Figure 3 also represents the FPGA input pads used for

clock and clear purposes. The clock signal is used only to
synchronize the Voxel Input Register write operations. All
the remaining circuit is completely asynchronous. The
clear signal when asserted resets the contents of the
accumulators.
One feature available in reconfigurable hardware

systems is the possibility of hardwire values frequently
used in calculations, saving chip area and improving
performance, this approach is used in the opacity
subtractor. The additive is fixed and equal to 1 (in fact is
128, see section IV for details). The complete layout of
the circuit is shown in figure 4.

VI. SOFTWARE APPLICATION

The software application was developed using Microsoft
Visual C++ 5.0 and is intended to run on Windows
95/98/NT operating systems. It provides full access to the
hardware and software renderers. Additionally it offers
the following functionality:
• Create, open and save volume files
• Open and save colormaps
• Select render type

• Generate a test volume (sphere with custom radius and
voxel values)
• Data analysis (data histogram)
• Render error analysis (error versus precision bits)
• Edit colormap
• Render direction, quality, bounding box and scale.
The application architecture is full object oriented. In

addition to interface classes, the following classes were
developed in order to simplify and increase access safety
to the corresponding objects: CData, CRenderImage,
CMapTable, CRender, CSoftRender and CHardRender.
Together, they provide the application with important
characteristics such as flexibility and extensibility. It is
also possible to reuse them in other applications. The
names are clear enough to justify their purposes. The
CRender class serves as a base class for CSoftRender and
CHardRender. It provides methods and encapsulates
properties, which are common to software and hardware
render objects. Additionally it allows the use of
polymorphism [11, 12].
An interesting comment is related to the memory

allocation inside class CData. Initially, the allocation was
performed using arrays of pointers, where each pointer
was used to allocate an array of voxels within the same
voxel line. However, during program execution, we
verified that for large data volumes, this operation takes
too much time. Because Windows is a virtual memory
operating system, we have decided to change the memory
allocation strategy. Therefore, in the actual
implementation all memory required to store the volume
data is allocated in one step as a "large" array of voxels.
This improves the allocation, deallocation and traverse
times. To achieve the best program performance is
recommended to fix the minimum swap file size to a large
value (>50 Mbytes, depending on the volume size and
running programs). Figure 5 displays the application main
window. After startup the default volume size is
32×32×32. The maximum volume size allowed by the
application is 256×256×256 voxels with a 16 bits
resolution corresponding to a maximum of 33,5 Mbytes.

A. Functionality

The menu and toolbar placed on its top offers the
following functionality:
• File
• New – Creates a new volume (figure 5). The user can select the

volume size and resolution.
• Open – Opens a previously saved volume data file (*.vdt). The

accepted file format is binary and specific of this application.
• Save – Saves the current volume data into a "vdt" file.
• Save As – Saves the current volume data into a "vdt" file under a

new name.
• Open Map Table – Opens a previously saved map table, checking if

the table to be read is compatible with the current resolution.
• Save Map Table – Saves the current map table into a file.

Blue
Multiplier

Red
Multiplier

Opacity
Accumulator

Green
Multiplier

Green
Accumulator

Blue
Accumulator

Red
Accumulator

Opacity
Subtractor

Opacity
Multiplier

Opacity Output Buffer

Blue Output Buffer

Green Output Buffer

Red Output Buffer

Voxel
Input

Register

SRAM Address
Bus Pads

Clear
Pad

Clock
Pad

SRAM Data
Bus Pads

Figure 4 - FPGA global layout.

 5

• Import Data – Opens a raw data file. The user should select the
volume size and resolution. The file can have a variable length
header and data can be stored in big endian or little endian formats.

• Print/Print Preview/Print Setup – Standard print commands.
• Exit – Exits the application.

• View
• Toolbar / Status Bar - Shows / hides the toolbar / status bar.
• Data Properties – Displays volume size and resolution information.

• Render
• Start - Starts the render process.
• Software - Switches to software render.
• Hardware - Switches to hardware render. If an error occurs during

hardware initialization, the user is notified and the selection returns
to software render.

• Tools
• Generate Data - Generates voxel data for testing purposes. On the

current release, only a sphere can be generated. The user can specify
its radius, inside voxel value and outside voxel value.

• Data Analysis - Calculates and displays the data histogram. It can be
useful to build a first color map draft.

• Render Analysis - Performs the analysis - render quality versus
number of bits used in accumulators.

• Options - Displays the options window containing two pages: Color
and opacity mapping and render

B. Selection of application and render parameters

The options window is supposed to provide a usable
interface to select application and render parameters. It is
divided in two tabs:
• Color and opacity map (figure 6) - This tab provides
the controls necessary to build an arbitrary map table. The
color and opacity map layouts are displayed on the two
upper rectangles. The third rectangle (components plot)
shows the relation between each color component (R, G,
B, Op) and the voxel value. To modify the map, the user
should first select the desired component and then specify
its configuration with the mouse on the components plot.
The button "Reset" allows to perform the reset of the
selected component. Two pre-defined maps are available:
gray and spectral. They are automatically built by pressing
the respective buttons. The "Apply" button makes the
displayed map available to the render module (either

software or hardware). The "Restore" button replaces the
displayed map by the render map, thus discarding any
changes.
• Render (figure 7) - The render tab gives access to
render options. The user can select one from the six
render directions available: X, -X, Y, -Y, Z, -Z. Three
render qualities are available: standard, maximum and
custom. Only standard quality is implemented in
hardware. Its precision is enough for most applications
(12 bit accumulators). The maximum quality uses double
precision floating point arithmetic. In this case, we
assume that the error introduced by the render is
negligible. The selection of custom quality activates the
precision combo box, where the user can specify the
number of bits to use in the accumulation process (8 – 16
bits). When the area of interest is limited to a volume
section and/or the response time must be improved, it's
possible to apply a bounding box. The display group
allows the user to change some view-related parameters
(scale, center and background color).

C. Error analysis

For performing a render analysis it is assumed that the
maximum quality is achieved using double precision
floating point arithmetic. After rendering, the resulting
image is stored in memory for comparison purposes.
Next, a render is performed for each value of

Figure 6 - Color and opacity map options page.

Figure 5 - Application main window with the new volume dialog box

opened.

Figure 7 - Render options page.

6 REVISTA DO DETUA, VOL. 2, Nº 4, JANEIRO 1999

accumulation bits. All the resulting images are compared
with the maximum quality image. At the end of the
process a dialog box displays the results. No intermediate
images appear on the screen. The expressions used to
calculate the render error are the following:

() () ()∑∑
−

=

−

=

++=
1

0

1

0

222M

i

N

j

M
ij

M
ij

M
ij BGRI

() () ()∑∑
−

=

−

=

−+−+−=
1

0

1

0

222N

i

M

j
ij

M
ijij

M
ijij

M
ij BBGGRRE

INM
EEr

**
=

where:

M * N – spatial resolution of the image;

M
ij

M
ij

M
ij BGR ,, - values of the components of each pixel

in the maximum quality image;

ijijij BGR ,, - values of the components of each pixel

for a parameterizable quality image;
I - measure of the total image intensity;
E - value of the absolute error of a given image

compared with the maximum quality image;
Er - value of the relative error, per pixel and intensity

independent (corresponds to the absolute error normalized
by the total number of pixels and image intensity.
The values obtained depend on the current color and

opacity map configuration and render settings (direction
and bounding box). For a given application it is necessary
to vary these parameters and perform several render
analyses in order to determine the optimum accumulator
size.

VII. RESULTS

This section presents the results of some tests used to
measure the performance of the developed coprocessor
and to compare it to some software solutions. Three
different platforms were used:
• A Personal Computer equipped with a Pentium II
processor, 128 Mbytes of SDRAM and operating at 233
MHz - PII233 - (software render);
• A Computer equipped with a Pentium processor, 32
Mbytes of DRAM and operating at 120 MHz - P120 -
(software render);
• The developed hardware coprocessor connected to the
previous computer - HWonP120 - (hardware render).
All experiments comprised the following steps:

1. Generate a new volume (File->New + Tools-
>Generate Data)

2. Build an appropriate color map (View->Options)
3. Select the desired render (Render-

>Software/Hardware)
4. Start rendering and measure the time.

The volume size used was 128*128*128 voxels. Table 1
displays the results obtained.
Only one volume size is presented. However, the render

time varies linearly with the size.

Direction Quality Time(sec)

 PII233 P120 HwonP120

X Standard 1.1 2.9 1.7
 Maximum 1.4 3.0 Na

Y Standard 1.1 2.5 1.5
 Maximum 1.4 2.7 Na

Z Standard 0.7 2 1.4
 Maximum 0.9 2.3 Na

Table 1 - Rendering times for a volume size of 128*128*128 voxels.

Custom quality results are not displayed since this
feature is provided for error analysis only.
During the experiments, we observed the following:
• As expected, the render speed is independent of the
reverse parameter (render direction);
• The scale factor doesn't affect the overall performance.
This parameter is used only at the end of the render
process by the Windows GDI functions. The practical
results demonstrate that the overhead generated by these
functions is practically zero and the final image quality
seems acceptable.
Analyzing Table 1 it is possible to draw the following

conclusions:
• The ray caster algorithm runs faster (about 40%) on
the developed hardware coprocessor than on the Pentium
120 computer. However, the same is not true if we
compare to the Pentium II computer. Actually the last
comparison is more reasonable today;
• On a Pentium II it is possible to run interactively the
algorithm with a volume size of 128×128×128 or
equivalent;
• The algorithm treats all render directions in the same
way. Thus, the performance differences are caused by an
external parameter. This parameter is the cache-hit rate.
While in Z direction the voxels used to calculate a given
pixel are always placed in adjacent memory positions, the
same is not true for X and Y directions. In Y direction, the
difference between adjacent voxels is "z dimension". In X
direction this value is "y dimension × z dimension". This
contributes for a bad data locality and consequently to a
smaller cache-hit rate. The difference is not obvious on a
Pentium II processor due to its large internal cache.
Figure 8 shows the concatenation of some rendered

images. They correspond to a sphere generated with the
following parameters:
• Volume size - 128×128×128;
• Resolution - 16 bits;
• Sphere radius - 64;
• Inside voxel value - 60000;
• Outside voxel value - 10000;
Only image a) presents a visible low quality. This is

caused by the low precision of the accumulators (8 bits).
The visual quality of all remaining pictures is very
difficult to distinguish. The render analysis graphic
confirms that beyond 12 bits precision (standard quality)
the render error is practically zero (<0.5% with 12 bits
precision).

 7

VIII. CONCLUSIONS

The results obtained during this work, and presented in
the last section, prove the feasibility of implementing the
ray caster algorithm in hardware. However, to be
considered a real coprocessor, the hardware must process
a given volume data set at higher performance than the
available by software solutions. As referred in the
previous section, it was not possible to achieve this goal
when we compared the hardware performance to the
performance of the last generation of Pentium II
processors. The bottleneck is the mechanism used to
transfer the voxel data from the host memory to the
coprocessor board. Even using an optimized data traverse
algorithm, which is independent on the render direction
(but always orthogonal to two axes), the render time
varies with the selected direction.
An interesting point to be addressed in future work is the

implementation of additional hardware components that
allow the data to be transferred to the coprocessor
independently on the render direction. This approach is
more appropriate to implement in hardware since the
voxels are always processed sequentially, making possible
the use of efficient data transfer mechanisms. A
requirement of this approach is the storage of the rendered
image in local memory and its complete transfer to the
host memory at the end of the render process. In the
current implementation, each pixel is transferred
individually after its final value has been calculated. The
memory available on the development system allows the
simultaneous storage of a map table with 64K entries (16
bit resolution) of 32 bits each (256 Kbytes) and an image
of 256×256 pixels of 32 bits (R, G, B, Op) (256 Kbytes).
A complexity that results from this approach is the need to
multiplex the memory access. A real coprocessor must
have two independent memory banks, one for color
mapping and the other for image storing.
The improvement in the data transfer mechanism will

also demand faster components in the datapath. The
architecture of the used FPGA makes very difficult the
implementation of carry look-ahead circuits due to the
unavailability of gate primitives with 3, 4, … inputs.
Consequently, to improve the performance of

accumulators and subtractor the recommended scheme is
based on carry-select circuits [13].
An improved design must also explore a better multiplier

structure, instead of direct implementation of the
algorithm. In [14] several multiplier schemes are
proposed; the high performance requirements force a
parallel implementation, however, is necessary to perform
a study in order to adapt the scheme to the FPGA
architecture.
Another important topic is the required precision in the

accumulators and multipliers. For some applications, 12
bits can be enough to obtain a good quality image,
however, depending on the color and opacity values used
in the map table, it could be necessary to implement a 16
bits datapath to obtain full precision. The number of cells
available in the used FPGA allows a maximum of a 14
bits datapath. To implement a 16 bit datapath is necessary
to use a development system with a larger FPGA such as a
XC6236 or XC6264 also from Xilinx.
Finally, the presented approach and the proposed

modifications don't use the dynamic reconfiguration
feature available in the used FPGA (introduced in section
III). Thus it is possible to use another FPGA family such
as the Xilinx XC4000 [6], which allows the
implementation of more complex designs with a lower
cost and better performances.

IX. REFERENCES

[1] Watt, A., 3D Computer Graphics, 2nd Ed. Addison Wesley, 1994.
[2] Elvis, T., “A survey of Algorithms for Volume Visualization”,

Computer Graphics, Vol. 26, N. 3, August, 1992, pp. 194-201
[3] Brodlie, K., L. Carpenter, R. Earnshaw, J. Gallop, R. Hubbold, A.

Mumford, C. Osland, P. Quarendon, Scientific Visualization,
Techniques and Applications, Springer Verlag , 1992.

[4] Xilinx, XC6200 Development System, Preliminary Datasheet,
February 1997.

[5] Xilinx, XC6200 Field Programmable Gate Arrays, Product
Description, (http://www.xilinx.com/partinfo/6200.pdf), April
1997.

[6] Xilinx, The Programmable Logic Data Book, 1996.
[7] Ashenden, P., The designer’s guide to VHDL, Morgan Kaufmann,

1996.
[8] Xilinx, Velab: VHDL Elaborator for XC6200 (V0.52),

http://www.xilinx.com/apps/velabrel.htm.
[9] Xilinx, Series 6000 User Guide, 1997.
[10] Sklyarov, V., Monteiro, R. S., Lau, N., Melo, A., Oliveira, A.,

Kondratjuk, K., “Integrated Development for Logic Synthesis
Based on Dynamically Reconfigurable FPGAs”, 8th International
Workshop, FPL’98, September 1998.

[11] Stroustrup, B., The C++ Programming Language, Second
Edition, Addison-Wesley Publishing Company, 1995.

[12] Prosise, J., Programming Windows 95 with MFC, Microsoft Press,
1996.

[13] Katz, R., Contemporary Logic Design, The Benjamin/Cummings
Publishing Company, Inc., 1995.

[14] Cavanagh, J., Digital Computer Arithmetic, McGraw-Hill, Inc.,
1984.

Figure 8 - Examples of rendered images - a) Custom 8 bit; b) Standard;

c) Custom 16 bit; d) Maximum (floating point in s/w).

