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Resumo – Este artigo descreve a implementação de um 
sistema de codificação que integra aspectos psico-acústicos do 
ouvido humano para conseguir compressão dos dados áudio 
mantendo a qualidade do sinal áudio após a reconstrução. 

 
Abstract – This paper reports the implementation of a 
coding system that includes the psychoacoustic aspects of 
the human ear to achieve compression of audio data while 
keeping the quality of the audio signal after the 
reconstruction.  

I. INTRODUCTION∗ 

During the enormous progress in multimedia it became 
more and more important to find convenient algorithms for 
the compression of audio signals of high quality. Those are 
needed for transmission as well as for storage of 
multimedia sequences. In recent years, it became common 
to design audio coding systems according to the 
psychoacoustic properties of the human hearing system. 
Traditional distortion measures like the signal-to-noise ratio 
(SNR) or the mean square error (MSE) are not adequate 
measures for the perceived quality of an audio signal, 
because auditory perception depends largely on the 
frequency contents of the signal. Experiments during recent 
years show that the same amount of noise injected to 
different bands causes more or less audible effects. This 
leads to the analysis and encoding of spectral components 
instead of the time domain coding. One of the most used 
coding systems that takes advantage of these 
psychoacoustical properties is the ISO/MPEG audio 
standard [1]. 

The aim of this project is to implement a coding and 
decoding system in the programming language C that uses 
a psychoacoustical model to estimate the introduceable 
amount of quantization noise. The coder should be able to 
take audio information from files in wave format and write 
the quantized samples to an output file. The decoder side 
should of course be able to decode this file and write the 
data to a WAVE file in order to reproduce the audio data. 
The whole coding and decoding system should not leave a 
disturbing noise, so that the perceived quality after 
decoding stays almost the same in spite of bit rate 
reduction. 

The structure of the coder and decoder 
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Fig. 1: Structure of the coder/decoder 

Figure 1 shows the block diagram of the complete coder 
and decoder structure, where x is the input stream of PCM 
samples that is read in blocks of M samples from a file in 
the WAVE format. Other information besides the samples 
that is needed for the process like, for instance, the 
sampling rate is taken from the WAVE file header. 

The basic idea of this coding system is to transmit the 
signal split in its frequencies. With the modulated lapped 
transform (MLT) the time signal is transformed into the 
frequency domain. Since an audio signal is a non-stationary 
random signal, the spectrum varies in time, so it should be 
computed in short periods of M samples. Those spectrum 
fragments are the so-called short-time spectrum of the 
signal and their time and frequency resolution depend on 
the dimension of the transform (M) as well as on the 
sampling rate (fs). 

Prior to storage, the frequency domain samples are 
quantized so that only a limited number of symbols are 
used to represent the whole range of possible values. This 
quantization is non-uniform with a quasi-logarithmic 
compression characteristic. 

In order to reach high quality compression, it is necessary 
to control the amount of noise that is introduced in the 
signal by the quantization. In the quantizer this is done by a 
scaling factor which changes the scale of the compression 
curve according to the psychoacoustical properties of the 
ear and the current state of the signal. The computation of 
the scaling factor is done by the psychoacoustical model, 
which estimates the scaling factor for the next block from 
the current signal power distribution in the frequency 
domain. 
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A distinctive feature in this coding system is that the 
scaling factor is computed backwards [5]. That means the 
power is computed from the dequantized signal (X1). The 
advantage of this is the reproducibility of the factor on the 
decoder side without transmitting any side information for 
the inverse quantizer. The quantized samples (Xquant) are 
written to a formatted output file together with a small 
header containing a few coding parameters. 

The decoder takes the samples and dequantizes them. 
This results in exactly the same signal (X1) that was used in 
the coder in order to find the signal power distribution. The 
same is done in the dequantizer by using the same 
psychoacoustic model as in the coder. 

After the dequantization, the samples are inverse 
transformed into the time domain by using the inverse 
MLT. The resulting signal (x1) is the reconstructed signal, 
which is written to a WAVE file by using some pieces of 
information from the header. 

II. THEORETICAL FUNDAMENTALS 

A. Block Transforms 

To get an idea of what the MLT is doing and how it can 
be implemented the starting point is the Discrete Fourier 
Transform (DFT). The traditional and most common form 
of the DFT is: 
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Where 1ˆ −= MM . X[k] can also be interpreted as the 
result of a simple matrix multiplication, which can easily be 
implemented in MATLAB, for instance. 

 xAX T ⋅=  (2) 

Where X is the transform of x and A is the transformation 
matrix. The superscript T denotes the conjugated 
transposition. Or, equivalently, 
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So the DFT can also be defined by the coefficients of the 
transform matrix A: 
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The scaling factor M1  is chosen to keep the 
orthogonality of A. The inverse transform is given by the 
inverse of the transform matrix: 

 [ ] XAx T ⋅=
−1

 (5) 

Since the matrix A is orthogonal, which means that 
1−= AAT , the inverse transform is quite easy, because the 

computation of the inverse matrix turns to a simple 
transposition. In that case the inverse transform is given by: 

 XAx ⋅=   (6) 

From a number of M real input samples, the DFT 
produces an equal number of complex output samples. That 
means the computed spectrum contains information about 
the magnitude as well as the phase of each existing 
frequency component. The M frequency samples are in the 
interval of 0 to fs, but the spectrum has conjugate symmetry 
around fs/2. This means that the last M/2 samples have the 
same amplitude and opposite phase as the first and so they 
do not contain new information. 

Instead of directly using the definitions, there is a more 
efficient family of algorithms to compute the transform; the 
so-called Fast Fourier transforms (FFT). These algorithms 
take advantage of the discrete Fourier transform properties 
to reduce the number of multiplications to be executed. The 
Fourier transform is one of the most important transforms 
in signal processing, so that FFT algorithms are available in 
signal processing libraries for a number of different 
platforms. 

A second and special kind of block transform is the 
Discrete Cosine Transform (DCT). The main difference 
between the DFT and the DCT is that the DCT is a real 
transform. For M real input samples it produces M different 
real frequency coefficients in the interval of [0...fs/2]. 
Recall that the DFT returns just M/2 different spectral 
samples in the same interval, because of the symmetry 
around fs/2. The following Figure 2 shows the absolute 
value of the DFT and the DCT of a 32-sample rect pulse. 

Fig. 2: DFT versus DCT of a rect pulse. 

This means that the spectral resolution of the DCT is 
twice as high as that of the DFT, but the spectrum contains 
no phase interpretation. This can lead to problems. If, for 
instance, the input signal has a strong component with a 90 
degrees phase shift to a DCT basis function the 
corresponding DCT coefficient will be zero, even if that 
spectral component is a significant part of the input signal. 
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Hence, the transform of just one block can easily lead to 
mistakes in the interpretation of the spectrum. Only an 
average of some blocks leads to a good interpretation of the 
DCT output. 

There are, in fact, several types of DCT. We are 
particularly interested in the DCT Type-IV (DCT-IV) 
which is used as a building block in the fast MLT algorithm 
described below. 

1. Fast Algorithm for the DCT-IV 

A fast algorithm for the DCT-IV, which takes advantage 
of the FFT properties, is described in [4]. The advantage of 
this implementation is the usage of an M/2-point complex 
FFT for each block of M real input samples. 
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The first step is to interpret the sequence of real input 
samples as a vector of M/2 complex values: 

 12/,,1,0212 −=+= −− MnjxxZ nMnn "  (7) 

Now the complex values have to be phase shifted (Phase 
shift 1) according to: 
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Z is now passed to the M/2-point complex FFT 
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The factor of M
2  is chosen for normalization. The 

result is again a complex structure, which has to be shifted 
in phase (Phase shift 2). 
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Finally the result is converted back into a number of M 
real samples, which are the result of the DCT-IV. 
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It is important to mention that the DCT-IV transform is its 
own inverse. 

B. Lapped Transforms 

If a signal is transformed block by block, no error will 
occur after the inverse transform. However, if quantization 
of the frequency domain samples is done, quantization 

errors will occur after the inverse transform and these will 
be most noticeable near the edges of each block. These 
disturbances are the so-called “blocking effects”. Those 
happen because of the independent processing of each 
block: the encoded last samples of one block will not match 
the first samples of the following and will result in audible 
transitions. 

To reduce these blocking effects the input blocks can be 
overlapped, for instance by 50%. The spectrum is in fact 
less disturbed, but the number of output samples will be 
twice as high as the number of input samples. This problem 
led to the development of lapped transforms. The 
modulated lapped transform, for instance, returns the same 
number of output samples as of input samples, even though 
the windows are overlapped by 50%.  

During this project a fast algorithm of the MLT is used 
which was introduced by [4]. This MLT uses a special 
block transform (DCT-IV) and a special way of windowing 
and overlapping. 

1. Fast Algorithm for the MLT 

An algorithm for a modulated lapped transform with low 
computational complexity is one using the DCT-IV 
described in [4]. 

To achieve perfect reconstruction, a window function is 
needed. This windowing is implemented by a so-called 
butterfly structure. Each butterfly implements a 
multiplication by a matrix: 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
ΘΘ
ΘΘ−

=⎥
⎦

⎤
⎢
⎣

⎡

−−−− iM

i

ii

ii

iM

i

x
x

x
x

11 )cos()sin(
)sin()cos(

'
'

 (12) 

For the butterfly structure, M/2 of those butterflies are 
needed. Hence, M/2 butterfly angles are also needed. They 
are computed, as required, in the half-sine window: 
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Where i = 0, 1,...., M/2-1. The block diagrams in Figure 4 
and Figure 5 show the structure of the MLT and the inverse 
MLT completely. Besides the blocks of the decimator, the 
butterfly and the DCT-IV, the samples have to be swapped. 
While swapping the samples, M/2 of the samples are stored 
for the next block and the samples from the previous block 
have to be inserted. This implements the overlapping in the 
lapped transform. 
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Fig. 5: The IMLT 

C. The Psychoacoustical Model 

During the development of audio coders, some properties 
of the human auditory system were found and advantage of 
those was taken to hide introduced quantization noise. It 
was discovered that quite some information was coded 
even if it is not perceptible by the human ear. This led to a 
model of human hearing, which uses so-called critical 
bands to analyze the wide band audio signals. The aim of 
this psychoacoustical model is to split the signal into these 
critical bands in order to find the amount of noise that can 
be introduced by quantization and coding in each of those 
bands, and so to adapt the coding process to the human 
hearing properties. Other important aspects of the 
psychoacoustical model are the so-called masking effect 
and the absolute threshold of hearing. These items of 
psychoacoustics will be discussed below and their use in 
coding will be described as well. 

1. The Absolute Threshold 

The absolute threshold denotes the threshold of human 
perceptibility of pure tones. Tones below this threshold, 
shown in Figure 6, are not perceptible; therefore it is not 
necessary to encode them. Instead of that, all sound signals 
under or around this threshold are suppressed or coarsely 
quantized. 
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Fig. 6: The absolute threshold 

2. Critical bands 

Through various experiments it was found that the human 
ear separates signals into its frequencies by several 
processes for further processing. The ear uses a kind of 
special scale for that, which is revealed by the so-called 
critical bands which were measured by hearing 
experiments. Those kinds of tests done with many different 
volunteers gave the idea for a model of how the human ear 
works. 

One such experiment was summarized in [3] as follows: 
• A tone was presented at a fixed level, well above the 

absolute threshold. 
• A narrow band noise source was injected into the sine 

wave, with the center of the noise band at the tone 
frequency. 

• The energy of the noise was adjusted until it reached 
the Just Noticeable Difference (JND), i.e.: the level at 
which the noise was perceptible. 

• The noise source was then adjusted to a slightly wider 
bandwidth by moving either the lower or upper cut-off 
a small distance away from the tone. 

• The level test was repeated. 
 
The result of these tests was that the JND power of the 

noise remained almost constant as long as the width 
remained within a certain frequency band around each tone. 
Those frequency bands are called the critical bands and 
their width grows nonlinearly with the center frequency. To 
reflect this nonlinearity a new frequency scale was devised 
in which an interval of one unit would always represent a 
critical band. This unit is called the Bark and the scale is 
known as the Bark scale [7]. 

3. The Masking Effect 

When a strong signal is present, the audibility of a weaker 
signal or noise is reduced or even eliminated. This hiding of 
noise under other sound events is the so-called Masking 
Effect. Masking depends on the time domain as well as the 
frequency domain proximity of the signal and noise. 
Specifically, a short time before and after a sound burst, 
other events with lower intensity are not perceptible. 
Similarly, strong frequency components preferentially mask 
nearby noise bands. These effects effectively raise the 
perceptibility threshold above the absolute threshold of 
hearing. The aim of the psychoacoustical model in the 
coder is to compute this global masking threshold. 

4. Computation of the Global Masking Threshold 

As discovered by psychoacoustical research, the amount 
of maskable noise power depends foremost on the power 
distribution of the signal in the Bark domain. Hence, the 
first step to compute the masking threshold is to find out 
the power of the signal in each Bark band. Then, time 
averaging of the power in each band is computed by a first-
order IIR low-pass filter that simultaneously models the 
forward time masking effect. 
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To compute the frequency masking effect on a certain 
band, it is necessary to consider the influence of all the 
other bands and this is modeled by a convolution of the 
Bark spectrum with an empirically-derived spreading 
function given by (see e.g. [7, p.257]): 
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Where the distance between two critical bands in Bark is 
denoted as Δi. To find the actual threshold Bm(i) in a given 
Bark band in consideration of the influence of all the other 
bands, the S(Δi) must first be computed for every Δi=i-j, 
then it must be multiplied with the band power B(j) and at 
last, it has to be summed up. This operation can be 
expressed by a matrix multiplication, as shown below: 
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Before the computation of the global masking threshold, 
the offset between the signal level and the masking 
threshold has to be calculated. This offset grows with the 
Bark frequency and depends on the tonal or noisy character 
of the signal. 
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The tonality index Φ represents the type of the signal. It 
can be between Φ=1 for a tone-like signal masking noise 
and Φ=0 for noise-like signals masking a tone. Φ set to 1 is 
the worst case (larger offset), and so this should result in 
the best quality, which means that less noise is injected 
even if the computed tonality index would allow more. The 
factor Φ can be computed from the Spectral Flatness 
Measure (SFM). The SFM is defined as the ratio of the 
geometric to the arithmetic mean of the power spectrum 
values [7, p.256]. 

After the computation of the spreading function and the 
offset, the global masking threshold can be computed. This 
is the threshold of noise that can be introduced into the 
critical band without being audible. The global masking 
threshold is given by [7, p.258]: 
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Actually, as described in [2], a deconvolution should be 

made to find the masking threshold. However, this process 
is unstable and often results in zero thresholds, negative 
threshold energy, etc. Instead of that, Johnston suggests a 
renormalization, which is done by the multiplication of Tm 
by the inverse of the energy gain that results when a 
uniform energy of 1 is input in each band. This 
renormalized threshold is called T’m. 

It is important to mention that this threshold denotes the 
total noise power that can be introduced into a critical band, 
but the single frequency components in that band have to 

be individually quantized. Therefore, the noise power that 
can be injected into each frequency line inside a Bark band 
must be estimated as T’m divided by the number of 
frequency lines in that critical band. 

Finally, any values that are below the absolute hearing 
threshold are set to that absolute threshold, resulting in the 
final estimate of the global masking threshold (em

2). 
Figure 7 shows the global masking threshold around a 

sinusoid with a frequency of 4 kHz. This result is labeled as 
the threshold of the noise. The spectrum shown is 
computed by a 128-band MLT and a sampling frequency of 
64 kHz, which means that the signal peak has the index 16. 

 

 
Fig. 7: Masking threshold of a pure tone 

D. The Quantizer  

The samples of the frequency domain produced by the 
MLT must be quantized in order to assign them to a limited 
set of symbols that can later be encoded in several ways 
before storage in a digital medium. Quantization causes 
errors, which are also known as quantization noise. It is 
known that if a uniform quantizer with a step of Δ is used, 
then the error em will be uniformly distributed in the 
interval ±Δ/2, and its Root Mean Square (RMS) value is [6, 
p. 81]: 

 
12
Δ

=
RMSme  (18) 

From this, the noise power is available by simple 
squaring. Since the amount of introduceable noise is given 
by the global masking threshold (em

2) of the 
psychoacoustical model, the needed quantizer step size is 
found by solving (18) with respect to Δ: 

 212 me⋅=Δ  (19) 

When doing this, the quantizer is dynamically adapted 
according to perceptibility constraints, and so the 
introduced noise should not be audible at all. 
Recall, however, that instead of a uniform quantizer, we 
have employed a quasi-logarithmic quantizer to achieve a 
large dynamic range without an excessive number of levels. 
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Nevertheless, the noise characteristics of this quantizer 
were studied [5] with realistic input amplitude distributions 
and it was found that equations 1 and 2 still apply over the 
expected operating range of the quantizer. 

II. RESULTS 

To evaluate the performance of any coding system, the 
main criteria are the quality of the reconstructed signal and 
the compression factor. The only reasonable way of 
measuring the quality of a perceptual audio coder is to 
subject reconstructed signals to comparative listening tests 
against the original versions. In this project only very 
informal preliminary tests were conducted with a few 
volunteers. The results were quite satisfactory: the 
quantization noise was not that disturbing and not 
perceptible at all in some of the test files. 

Since no entropy coding was integrated into this system, 
we evaluated the achievable compression by finding the 
entropy of the symbols output by the quantizers. 
Additionally, we decided to use an external program, the 
Winzip application, to compress the output data of the 
quantizers. By comparing the sizes of the original and the 
resulting file, an effective compression factor was 
computed. Table 1 contains the compression results for 
various test files. It shows the size of the original WAVE 
file, the size of the Winzip-compressed quantizer output file 
(ZIP file), and the estimated entropy of the quantizer 
output. The values in parenthesis represent the percentages 
of information reduction in each case. 

 
Original 

WAVE File 
(16 bit/sample) 

Size of the 
WAVE file 

(bytes) 

Size of the 
ZIP file 
(bytes) 

Entropy 
(bits/sample) 

Suzanne.wav 856.108 225.889 
(-74%) 

2,95 
(-82 %) 

Violin.wav 851.298 215.587 
(-75%) 

1,60 
(-90%) 

Castanets.wav 595.132 154.562 
(-74%) 

1,64 
(-90%) 

Harpsichord.wav 464.940 150.565 
(-68%) 

3,60 
(-78%) 

Table 1. Compression results. 

By directly compressing the original files with Winzip, 
we found that less than 20% of reduction is achieved. 
These results show that the implemented coding system 
significantly reduces the amount of information to store, 
with almost no loss of signal quality. 

III. CONCLUSIONS 

During this project a coding system for audio signals was 
developed, which uses a psychoacoustical model to control 
the amount of introduced quantization noise. The coding 
system can be used to compress WAVE files, which are a 
very common format in multimedia applications. This work 
shows the principles used in the implementation of the 

system, which includes the concept of lapped transform, the 
development of a psychoacoustical model and the 
quantization of the audio data. Of course coders like MPEG 
are much more advanced but this project highlights the 
important points in the different modules that are needed to 
design an audio compression system. This project started 
from scratch and so it is possible to improve the quality and 
the compression factor by future enhancements in the single 
modules. 

The Diploma thesis [8] that describes this work is 
available in the library of the Universidade de Aveiro. The 
C-language program source code for the coder and decoder 
and some audio test files are included in the accompanying 
CD-ROM. 
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