
REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

Running Distributed Applications Using MMS-CORBA

T.Ariza and F.R.Rubio
matere@trajano.us.es, rubio@cartuja.us.es
Dept. Ingeniería de Sistemas y Automática.

Escuela Superior de Ingenieros. Univ. de Sevilla. Spain

Abstract - Nowadays, distributed computing systems are
widely used. Developing software for these systems has
proven to be a complicated task, due to the heterogeneity of
the distributed system components and the underground
communication layers. MMS is a suitable language to carry
out the communication between devices in a heterogeneous
manufacturing system because it provides uniformity in
accessing them. CORBA architecture has been used in recent
work in order to implement this protocol in an easier way.
The most important objects defined in MMS have been
adapted to this new architecture (VMD, Domain, Program
Invocation, Event, ...). This paper proposes the use of these
objects in order to build distributed applications in a
flexible manufacturing system.

I. INTRODUCTION

Distributed systems have obtained great importance in
the past few years. They have been introduced into a great
diversity of environments but more explicitly in
manufacturing systems. Where there were isolated
components, there are now integrated components where
communication and cooperation between them is
permitted, although this advantage is reduced due to the
heterogeneity of the devices that can be found in the
manufacturing environments. Because of this, the
necessity to use a common protocol in order to
communicate these interconnected elements arises.

MMS is an application layer protocol that homogenises

the use of the devices that compound the system. MMS
makes use of this approach to specify the services that a
user can invoke to communicate with these devices. On
the other hand, distributed object methodologies, where
CORBA is framed, provide all the object oriented
methodology advantages in distributed systems. CORBA
can make the MMS service user application to request the
service easier, as it allows to structure the system in
objects and at the same time to have these objects
distributed along the several components of the system,
making the distribution transparent to the user.

The objective of this work is to propose CORBA and

MMS as the framework to run distributed applications in
manufacturing environments. In the following sections, a
summary of the MMS and CORBA features are going to

be given, as well as the way to run applications using
these facilities.

In the previous work [3,4,5] the proposal carried out in

[1] has been extended in order to include the event
management and the specification Inter-domain
Management: Specification Translation of The Open
Group [2] is followed in order to carry out the translation
of MMS services from ASN.1 to IDL.

By doing this, access to the most important MMS objects

by means of the ORB of CORBA has been achieved. The
features of the model that has been followed can be
summarised in this way:

• The MMSserver is a CORBA object and its
interface corresponds to the MMS services
provided by the VMD, it is defined in an IDL
specification.

• The confirmed MMS services are declared as
synchronous invocation methods.

• The request to send unsolicited information is
implemented by means of one-way invocation
methods; the MMSserver uses the TrapServer
object of the client in order to send this.

• The association management is not implemented
due to the fact that the ORB manages them.

This approach is used to communicate clients to the

several virtual manufacturing devices by means of the
ORB, using the MMS interface.

II. AIM OF THE WORK

With this work the run of distributed applications in
manufacturing systems is intended to be made easy. The
distributed application is considered as compounded for
several tasks carried out in different components of the
distributed system. The concurrent execution of various
tasks at the same time must be allowed but
synchronisation points between them must also be
considered.

These various components are modelled as Virtual

Manufacturing Devices (VMD) specified in MMS. The
task activation is accomplished by using the services

REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

associated to the Program Invocation object contemplated
in this standard.

The task activation is carried out as a result of event

notifications received from the various VMDs.

A component that is responsible of supervising the

distributed application execution is introduced and which
has to undertake the responsibility for:

• Building the Program Invocation Objects in the
various VMDs. These Program Invocations are
monitored. This is a possibility that MMS allows,
and which means that an event notification will be
sent to the application (specified in the Program
Invocation object) when the program execution
ends.

• Starting the different tasks in the several VMDs
when it is necessary.

• Receiving the event notifications sent by the
VMDs.

• Controlling the system state, updating this with the
notifications received from the VMDs and ordering
the execution of tasks in accordance with the
evolution of the system state.

All the communication between this supervisor

component and the VMDs is carried out using the ORB of
CORBA. The services that the supervisor is able to
request from the VMDs are ones that are specified in
MMS.

In order to specify the system behaviour, Petri Nets have

been used, as they are a specification tool that allow
model concurrent actions and synchronisation. Binary
Petri Nets have been used due to their simplicity and easy
implementation.

On one hand, the start of the execution of a task is

modelled as a place in the Petri Net, on the other hand, the
event notification is modelled as a transition that is able to
be fired when the notification arrives if the input places
are marked.

The supervisor component must carry out the suitable

upgrading in the Petri Net when an event notification
arrives. This means that it must upgrade the state of the
transition corresponding to this event notification
indicating that the event has happened and so the
transition can now be fired. Next, it has to check if the
Petri Net is able to evolve after the change in the state of
the transition. In order to do this, it verifies if the
transition is enabled. If this is the case, the firing of it is
carried out, and as a result, the task associated to the
output places are started.

In short, the supervisor controls the evolution of the Petri

Net, firing transitions when the events happen and starting
the tasks associated to the places.

III. SYSTEM DESCRIPTION

The scheme of the system architecture is shown in figure
1. It shows the several components that are necessary on
both the client and server side.

EventActionEventAction

EventConditon

Prog.Inv.

ORB

EventConditon

Real Device

VMD

Prog.Inv.

VMD

SKELETON

Real Device

SKELETON STUBSTUB

CORBA
Object

MMSserver

CORBA
Object

MMSserver

STUBSKELETON

CORBA
Object

TrapServer

SUPERVISOR
MMS-Client

MMS
server
Implementation

MMS
server
Implementation

Variable EventConditon

EventEnrollmentProg.Inv.

Domain

EventEnrollment

Domain EventAction

Real Device

Variable

. . .

Fig. 1 - System Architecture.

On the server side the components are the followings:
• MMS Server: CORBA object that can be accessed

through the object bus. The services provided by
this object are the services specified in the MMS
standard for the server. The description of this
object is specified using the Interface Definition
Language (IDL).

• MMS Server Implementation: It is the method
implementation of the CORBA object MMS
Server. In order to carry out the methods of this
object specified in IDL, the objects defined in
MMS are used.

• Skeleton: It allows the clients to call the MMS
Server methods using the ORB.

• Stub: It is used in order to carry out the remote
invocation to the methods of the TrapServer object
so that the server can notify the events to the client
when they happen.

• Real Device: It is the physical device that is hidden
by the MMS Server object.

On the client side, the following components can be

identified:
• Supervisor: It is the object that is in charge of

controlling the execution of the distributed

REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

application. In order to achieve this, it must
activate the several tasks in the different
manufacturing devices and receive the event
notifications sent by them. It is a MMS client.

• TrapServer: It is the CORBA object that allows the
reception of events on the client side. The
specification has been carried out using IDL.

• Skeleton: It allows the TrapServer object methods
to be called through the ORB.

• Stub: It undertakes the responsibility for calling the
remote methods of the MMS Server object.

All the communication between the supervisor and the

several Virtual Manufacturing Devices that compound the
manufacturing system, and have to carry out the different
tasks in order to accomplish the execution of the
distributed application, is fulfilled through the CORBA
object bus, the ORB (Object Request Broker).

IV. AN APPLICATION

In this section, the system described in the previous
section will be illustrated by an example. The
manufacturing system, where the application is run, is
shown in figure 2 (this is the cell which is in our
laboratory). It is compounded by several manufacturing
devices (robots, conveyor, warehouse, numerical control
machine, and so on).

P4

Robot Sony

P2

P5

P3P6

Pallet

P1

Conveyor

Robot
Warehouse

Robot Puma
Robot RM10

Numerical Control
Machine

Automaton

Warehouse

Fig. 2 - Manufacturing System.

A distributed application is going to be executed in this
manufacturing system. The application consists of a set of
tasks, carried out by several devices which allows two
types of parts to be taken from the warehouse, processed,
assembled and them to be returned once again.

There are tasks that can be run in a concurrent way but

taking into account certain synchronisation points. The
application has been as simplified as possible in order to
be clearer. Anomalous situations are not considered, but
the system functionality may be extended to deal with
some of these system malfuctionings.

t1

p1

p2

t2

t4

t5

p3

p4

p7

t6

p8

p10

t7

p9

t8

t9

p11

t10

p12

t11

p13

p5

p6

t3

p14

t12

p15

t13

p16

t14

p17

t15

t19

t18

p20

p21

p22

p18

t16

p19

t17

Fig. 3 - Behaviour model using Petri nets.

 The Petri net is shown in figure 3 and the different tasks
that compound the application are the following:

• P1WAREHOUSE: Move part type 1 from the
warehouse to the pallet.

• P2WAREHOUSE: Move part type 2 from the
warehouse to the pallet.

• P3WAREHOUSE: Move the part from the pallet
to the warehouse.

• PijCONVEYOR: Move the pallet from position Pi
to position Pj.

• P1SONY: Process part type 2.
• P2SONY: Assembly part type 1 and type 2.
• P1RM10: Move part type 2 from position P3 to

position P4.
• P2RM10: Move part type 2 from position P4 to

position P3.
• P1NCM: Process part type 2.
• P1PUMA: Check the new part.
• P2PUMA: Throw out the part.

REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

Event notifications happen when the tasks end and when

the PUMA detects that the assembling of the parts have or
have not been suitably completed.

The event communication carried out by the

manufacturing devices has been associated with the
transitions in the net. Moreover, transitions have been
introduced in order to mean synchronisation. The
transitions are shown in figure 4. The execution of tasks
in the several components and the wait have been
associated to the places. They are shown in figure 5.

t11: Notification: P2SONY ended
t12: Synchronization
t13: Notification: P56CONVEYOR ended
t14: Notification: P1PUMA ended
t15: Notification: CORRECTPIECE
t16: Notification: P61CONVEYOR ended
t17: Notification: P3WAREHOUSE ended

t19: Notification: P2PUMA

t1: Notification: P1WAREHOUSE ended
t2: Notification: P12CONVEYOR ended
t3: Notification: P1SONY ended

t7: Notification: PNCM ended
t8: Notification: P2RM10 ended
t9: Notification: P35CONVEYOR ended
t10: Synchronization

t18: Notification: NOCORRECTPIECE

t4: Notification: P2WAREHOUSE ended
t5: Notification: P13CONVEYOR ended
t6: Notification: P1RM10 ended

Fig. 4 - Transitions.

p1: Start P1WAREHOUSE
p2: Start P12CONVEYOR
p3: Start P2WAREHOUSE
p4: Start P13CONVEYOR
p5: Start P1SONY
p6: Wait
p7: Start P1RM10
p8: Start PNCM
p9: Start P2RM10
p10: Start P35CONVEYOR
p11: Wait

p12: Start P2SONY
p13: Wait

p15: Start P56CONVEYOR
p16: Start P1PUMA

p14: Wait

p17: Wait

p19: Start P3WAREHOUSE
p20: Wait
p21: Start P2PUMA
p22: Wait

p18: Start P61CONVEYOR

Fig. 5 – Places.

The supervisor receives the Petri net as the input. The
Petri net is specified as a set of input places, output places
and the initial marks. The programs that are run in the
different devices are also given as input to the supervisor.
With this information it must create the Program
Invocation objects in each Virtual Manufacturing Device.

In order to begin the application it starts the tasks

associated to the marked places on the initial mark. When

it receives an event notification it must upgrade the state
of the corresponding transition and fire it if possible.
When the transition is fired, the supervisor will activate
the tasks associated to the output places.

V. IMPLEMENTATION

A prototype for this work has been built, where the
object-oriented programming language JAVA has been
used. This prototype can be run in any computer and
operating system where the Java interpreter can be run.
The VMD used is a CORBA object developed in [3] that
attend to MMS requirements.

CORBA has been used as the communication

architecture and the ORB chosen is JAVAIDL because
previous work had been done with it. Threads have had to
be used in order to divide the supervisor into client and
TrapServer.

VI. CONCLUSION

 The aim of developing this work is to run distributed
applications in a manufacturing system using the VMD
specified in MMS and the CORBA architecture as the
support of the communications.

 More explicitly, a supervisor component has been

proposed. This supervisor starts tasks and receives event
notifications of the different VMDs by means of the
Object Bus defined in CORBA and is responsible for
running the distributed application, taking into account the
concurrent work and the synchronisation carried out
between the several devices.

VII. ACKNOWLEDGEMENT

This work is partially supported by the CICYT under
grant num. TAP-98-0541.

REFERENCES

[1] G. Guyonnet, E. Gressier-Soudan, F. Weis, "COOL-MMS: a
CORBA approach for ISO-MMS", ECOOP'97 WorkShop,1997.

[2] Open Group, "Inter-domain Management: Specification
Translation", X/Open Document Number: P509,1997.

 [3] T. Ariza, F.R. Rubio, "Communicating MMS Events in a
Distributed Manufacturing System using CORBA", Preprints
DCCS'98,1998.

[4] T. Ariza, F.R. Rubio, "MMS-Manager: Device Management in
Heterogeneous Environment Based on CORBA", Preprints
Controlo'98,1998.

 [5] T. Ariza, F.R. Rubio, "Notifying MMS Events to CORBA
Objects", Preprints MIC'99,1999.

