
REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

Graphic LOTOS Specification of an EN50254 System

L. Durante (‡), R. Sisto (‡), and A. Valenzano (†)
{durante, sisto, valenzano}@polito.it

(‡) Dipartimento di Automatica e Informatica, Politecnico di Torino
(†) IRITI – CNR, Politecnico di Torino

Abstract - This paper reports on our experience in using a

graphical tool for protocol specification based on the G-
LOTOS language, the graphical extension of ISO LOTOS,
and presents as a case study the development of a formal
description of an EN50254 (INTERBUS) factory
communication system. The tool is an MS Windows
application, thus running on commonly available PC
platforms, which lets the user edit a G-LOTOS specification
performing on-line checks of syntactic and static semantics
rules, generate a corresponding textual LOTOS
specification, and invoke an integrated syntax and static
semantics analyser. Experience with the tool has shown its
usefulness in making industrial protocol specification,
editing and understanding an easier task.

I. INTRODUCTION

Formal methods for the specification of complex
software and hardware systems have received
considerable attention from the scientific community in
the last decade, especially in the areas of safety critical
applications such as factory communication systems
[1][2][3]. As a consequence, the basic idea that the design
and the development activities of concurrent systems, in
general, and communication protocols, in particular, can
derive substantial benefits from the adoption of rigorous
and formal techniques is now widely accepted all over the
world.
On the other hand, however, the main appealing features

of a formal approach to the specification and design of a
system such as the ability to correct specification errors at
an early stage, the possibility of checking the design
correctness, for instance by simulating the system's
behaviour, together with the enhancement of productivity
in the design and test phases, heavily depend on the
availability of powerful tools that can be viewed as the
building blocks of an integrated “computer-aided-
specification-development-environment” (CASDE).
In the communication protocols scenario several well-

established formal description techniques (FDTs) exist
today, which were conceived to reduce the specification
effort by exploiting one or more design aspects. In
particular, LOTOS [5] consists of an algebraic language
that allows the user to describe the system's temporal
evolution by means of concurrent processes, behaviour
expressions and abstract data types. The advantages of

LOTOS are significant because of the expressiveness of
the language and its mathematical foundation, but non-
experts find it difficult to adopt and, to a certain extent, it
is unfamiliar and cannot be considered to be user-friendly.
A graphic formalism (graphic syntax) for LOTOS called
G-LOTOS [6] was defined at a later date so as to make
the language more user-attractive, in order to overcome
the kind of problems mentioned above and to enable the
user to focus on the structure of the specification rather
than being confused by syntactical details.
This paper discusses the use of a graphic tool called GL-

Designer for the development of G-LOTOS specifications
of factory communication systems, presenting as a case
study the specification of a small INTERBUS network.
GL-Designer has been conceived and developed at the
Computer Engineering Department of the Politecnico of
Turin within the framework of ongoing activities oriented
to studying and experimenting suitable software tools to
build up a CASDE for LOTOS.

II. MODELING THE COMMUNICATION CYCLE

The communication cycle is a critical aspect of the
INTERBUS protocol [4], thus it has been specified in
LOTOS by means of our graphic tool and then formally
verified.
The communication cycle involves three different

entities: the master, the slaves and the medium connecting
the master to the slaves.
The master acts as a message sender and receiver at the

same time while each slave behaves as a repeater that
sometimes returns information to the master. Finally, the
medium can be thought of as a set of point to point
channels that transmit messages and introduce delays. In
fact a message transmission with delay can be considered
as a read operation followed by a write action.
As the master transmits frames or fill sequences

continuously, each section of the ring is always carrying
signals i.e. each link connecting two adjacent stations is
always active. The same amount of data sent on the
medium by a station, must be received from the same link
by the next station in the ring. Obviously, each station can
receive information from its input connection only if it is
able to repeat it on its outgoing link.
A low-level synchronisation of the system could be

based on the property explained above i.e. the sequence of

REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

receiving and sending operations defines the kind of
system timing. A time-tick is defined as a shift of the
information stream along the ring.

A.. Synchronisation and timings

LOTOS does not provide any construction to handle time
explicitly but, due to the particular features of periodicity
and time invariance of the protocol to be modeled, it is
possible to overcome such a drawback with the same
technique presented in [3]. In fact an INTERBUS ring can
be seen as a shift register where all connected stations
output a certain amount of bits and, at the same time, they
input the same number of bits, thus the sequence of
receive and send operations defines the timing of the
system and the time-tick can be put into correspondence
with the shifting of the information stream along the ring.
The time granularity depends on how frequently atomic

steps are performed to shift the information stream along
the ring: an accurate choice is, for instance, one step every
bit time. In our case study, one word can be assumed as
the atomic information unit. In this way, the tasks of
reconstructing a word from its bits during the input
operations and splitting a word into bits during the output
operations is transparent to the G-LOTOS specification.
In this paper we adopt an atomic information unit equal

to one word, thus the atomic time-tick is equated to the
time needed to transmit a word on the medium, and this
choice simplifies the description.
The consequences of our assumption can be negligible

for some configurations and/or applications but could be
unacceptable for others. However, to remove such a
constraint, it is sufficient to select the bit transmission
time as the atomic delay and to specify the packing and
unpacking operations for translating words into bits and
vice versa. In this case, the model and the formalisation of
the protocol remain the same: only the time unit has to be
changed. The approach followed in this paper simplifies
the description without affecting the underlying model.
The timing rule introduced above has been specified in

LOTOS by using a synchronisation event that involves all
the entities of the specification. The event occurs when
each entity performs a read-write or a write-read operation
i.e. in each entity of the network the information stream
has been shifted by one atomic step.
At the beginning all the stations (master and slaves)

execute an output operation, then, after global rendez-
vous synchronisation, each station performs an input
operation. A second rendez-vous synchronises the stations
once again so that a network step is completed.

III. GRAPHICAL SPECIFICATION OF AN INTERBUS SYSTEM

Figure 1 shows the system configuration described by
our LOTOS specification: there is a ring with a master
(M), two slaves (S1 and S2), and three channels (C)
interconnecting the nodes. The inps and outs events take
into account the different stations behaviours i.e. outM is

an output performed by the master, inp1 is an input
performed by the salve 1 and so on. Thus each channel
performs an input by synchronising on an out event. The
circular, dotted arrow highlights the data flow in the ring.

The syn gate is needed for timing synchronisation: all

stations perform an output operation and a global rendez-
vous occurs at the gate syn, then all stations perform an
input and another rendez-vous occurs at syn. In this way
two input operations which are not interleaved by an
output (or vice versa) cannot occur and the data stream is
transferred along the ring step by step. A syn rendez-vous
can be interpreted as a clock-tick. A complete step of the
data stream is made up of an output and input pair with
two syn rendez-vous taking place.
 Our specification describes the behaviour of the system

after the initialisation phase (that is in a steady state
condition), when each slave already knows the position of
its data inside the master's frame. In the following the
graphical specification is introduced together with the
corresponding textual form.

Fig. 2 - The specification structure.

A.. Specification structure

Figure 2 shows the graphical and the textual description
of the specification structure based on a full
synchronisation between the set of nodes and channels.
Processes inside each box (the master, the two slaves,

and the three channels) are synchronised only on the gate
syn, in fact there is no direct connection between the

M

S2

S1

C

C

C

outM

out1

out2

inpM

inp1

inp2

syn

Fig. 1 - Topology model..

specification interbus [syn, inp1, out1, inp2, out2, inpM,
outM]: noexit
 library Boolean, NaturalNumber, Word endlib
behaviour
 (master[syn,inpM,outM)
 |[syn]|
 slave[syn,inp1,out1](fillchar,i1,2)
 |[syn]|
 slave[syn,inp2,out2](fillchar,i2,2))
 |[syn, inp1, out1, inp2, out2, inpM, outM]|
 (channel[syn,inp1,outM]
 |[syn}|
 channel[syn,inp1,outM]
 |[syn}|
 channel[syn,inp1,outM])
where
 …
endspec

REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

boxes describing the stations (between any pair of nodes
there is a channel and vice versa). The gate names are the
same as in Figure 1, while abstract types Boolean,
NaturalNumber and Word have been defined in an
external library file.
The focus of our specification is on the data

communication aspects and not on the data processing.
Thus all the different kinds of words have been defined as
LOTOS nullary operators of a single abstract data type.
 The two slaves are parameterised by means of fillchar,

i1, 2 and fillchar, i2, 2, where fillchar is the fill sequence
that each slave outputs at the beginning of the operations,
i1 and i2 correspond respectively to inp (1) and inp (2) in
Figure 1, (i.e. data that the slaves send to the master); 2 is
the number of words in the master frame that precede out
(1) and out (2) respectively. Such a number is computed
starting with the first word of the frame received by a
slave.

Fig. 3 - Channel and master processes.

Fig. 4 - The slave process.

B. The channel process

Figure 3 shows the structure of the process describing
the channel. The first action performed by the system is a
station output on gate out, which corresponds to a data
input on the same gate: the data variable is read and, after
the syn event, the same data is passed to the next station.
After another syn event occurs, the cycle is restarted: this

procedure is handled by the recursive instantiation of the
process.

C. The master process

The activity of the master of Figure 3 has been di vided
into two independent tasks: readAlways which reads data
coming from the ring, and sendMACSDU which sends
the summation-frame on every cycle. The two processes
are fully independent, since we are interested in the
communication mechanism only, and in the processing
activity local to each station.

D. The slave process

The slave is the most important process of the whole
specification: it behaves as a repeater (recursively
recalling) when it receives fill sequence. The end of the
fill pattern is used to detect the beginning of the
summation-frame, so process slavebuf is entered in order
to send data to the master and to read data coming from
the master. When such an operation is completed, a new
FCS word (fcs1) is transmitted, followed by fcs2, then
the slave process is restarted.

IV. EXPERIMENTAL RESULTS

The specification has been translated into a textual form
and has been analysed by a logical simulation tool [9]
which proved that the frame sent by the master, the one
received and then sent by each slave, and the one received
by the master are exactly those foreseen in [4].
The tool described in this paper was tested not only with

the INTERBUS case study, but also taking some other
well-known G-LOTOS specifications as test cases.
The tests were aimed both at measuring some of the

tool's numerical performance figures and at obtaining a
preliminary assessment of some of its qualitative and
functional features such as user-friendliness and to what
extent the tool facilitates the designer in developing a
specification. All the tests were conducted by assigning
the job of developing the graphical specifications to
undergraduate students with some minimal knowledge of
LOTOS. They succeeded in their job after a short training
period. For what concerns numerical results, we measured
some parameters related to speed and memory
requirements. All tests were done on a low cost PC with
48MB of main memory using a 90MHz Intel Pentium
processor and the Windows NT Server 4.0 operating
system. The results are collected in Table 1.
For each test case the table reports the total number of

graphical blocks making up the specification and the
number of lines in the textual LOTOS version. For what
concerns memory requirements, we measured and
reported the binary file dimensions (Grf File) and the
amount of main memory used. The latter was measured by
means of the Windows NT Task Manager that gives the
amount of memory allocated by each running process.

process master [syn,inp,out]:
noexit :=
 readAlways[syn, inp]
 |[syn]|
 sendMACSDU[syn, out]
where
 ………

endproc

process channel[syn, inp, out]:
noexit :=
out ?data: Word;
syn;
inp !data;

 syn;
channel[syn, inp, out]

endproc

process slave[syn, inp, out]
(data, input: Word, num: Nat): noexit :=
out !data; syn; inp ?data: Word; syn;
 ([data eq fillChar] -> slave[syn, inp, out](data, input,num)
 []
 [data ne fillChar] -> slavebuf[syn, inp, out](input, data,
 num) >>
 out !fcs1; syn; inp ?data: Word; syn;
 slave[syn, inp, out](fcs2, input, num))
where
…
endproc

REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

More precisely, the values obtained are computed as the
difference between the amount of memory occupied by
the tool process before and after the file was loaded. For
what concerns speed, we measured the time needed to
load the graphical file, and the time needed to generate the
corresponding textual LOTOS specification.

Test case # Blocks # lines Grf File size
(Kbytes)

Memory
(Kbytes)

Time to load
(seconds)

Time to convert
(seconds)

INTERBUS 10 200 28 1704 3 1
BRP Service 9 150 14 1540 2 0
CCR Service 39 658 138 2068 5 2
TP Service 87 1129 360 3184 9 4

Tab. 1 - Numerical Experimental results.

IV. EXPERIMENTAL RESULTS

The GL-designer project has been aimed at developing
and experimenting a graphical environment designed to
create LOTOS specifications and to demonstrate its
feasibility using conventional low-cost hardware and
software resources such as Personal Computers and MS
Windows operating systems. The prototype currently
running on some machines in our department has been
tested by designing formal G-LOTOS descriptions for
some typical and well-known medium and large size
standard protocols, including factory communication
protocols. We have also verified that non-expert users
such as undergraduate students in computer engineering
are able, after a short period of training, to develop quite
complex specifications by focusing primarily on their
hierarchical organisation rather than being bored with a
number of syntactical and unessential details. Numerical
experimental results show that the tool can deal with large
specifications with reasonable performance.
The GL-designer can be considered as a building block

for a CASDE system, even though further activities have
still to be done to improve some functionalities and to
enhance its flexibility. In particular we plan to extend the
capabilities of GL-designer so as to automatically
generate graphic representations of (pre-existing) textual
LOTOS specifications and to integrate other LOTOS tools
such as simulators in it. Furthermore additional

investigations will be carried out in order to port the editor
on different machines and operating systems, by using
other types of programming supports such as Java.
To our knowledge, only two other graphical tools

supporting in some way the G-LOTOS formalism have
ever been developed: the ELUDO toolkit [7], developed
at the University of Ottawa, and GLD (Graphical LOTOS
Designer), developed at UPM, Madrid [8]. Both tools run
on Unix platforms and are based on the X-Window
system.

REFERENCES

[1] L. Durante, R. Sisto, A. Valenzano, “Formal Specification and
Verification of the Real-time Scheduler in FIP”, in Proc. WFCS95,
1st IEEE Workshop on Factory communications Systems, Leysin,
Switzerland, October 1995, pp. 99-106.

[2] N. Petalidis, D S. Gill, "The formal Specification of the Fieldbus
Foundation Link Scheduler in E-LOTOS", in Proc. 2nd
International Conference on Formal Engineering Methods, 1998.

[3] L. Durante, R. Sisto, and A. Valenzano, "A LOTOS Specification
of the SERCOS Field-bus Protocol", in Proc. 6th International
Conference on Software Engineering and Knowledge Engineering,
1994.

[4] CENELEC, "High Efficiency Communication Subsystem for Small
Data Packages", Final Draft EN 50254, 1997.

[5] ISO “Information Processing Systems - Open Systems
Interconnection - LOTOS - a Formal Description Technique Based
on the Temporal Ordering of Observational Behaviour”, IS N.
8807, 1989.

[6] ISO/IEC “ Information Processing Systems - Open Systems
Interconnection – LOTOS – A Formal Description Technique
Based on the Temporal Ordering of Observational Behaviour –
Amd. 1: G-LOTOS”, JTC 1/SC 21/N. 8913, Oct. 1994.

[7] The Xeludo User Manual, http://LOTOS.csi.UOttawa.ca/eludo/
usrman.

[8] GLD V.1.2b Graphical Designer for LOTOS User Manual, Dept.
Of Telematic Systems Engineering, Technical University of
Madrid, Spain, 1994.

[9] DAI/Polito LOTOS-C Compiler, http://www.dai-arc.polito.it/dai-
arc/auto/tools/tool3.shtml.

