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Abstract - This paper presents a systematic scheduling 

method to guarantee the end-to-end constraints including 
precedence constraints of tasks, messages and both. The 
presented systematic method is the integrated or joint one of 
both tasks executed in each node and messages transmitted 
via the network. The presented method is designed to apply 
to the general distributed control system that has multiple 
loops and in a single loop has sensor nodes with multiple 
sensors, actuator nodes with multiple actuators, controller 
nodes with multiple tasks, and several constraints. The 
worst-case response time is analysed using the proposed 
method. 

I. INTRODUCTION  

Nowadays, the distributed control via fieldbus systems 
becomes one of very important requirements in the field 
area but has a following restriction: a designer of the 
distributed control system should consider some 
constraints such as timing constraints, execution times of 
tasks, allocation of tasks in each node and their priorities, 
and precedence relationship of either tasks or messages. 
These constraints make the system design difficult. 
Considering a current distributed control system, the 

processing power and the transmission speed via a 
network are increasing. This means that one processor or 
node should execute several kinds of tasks and a certain 
task exchanges several types of messages with other tasks. 
For examples, sensor nodes (actuator nodes) execute 
several tasks such as sampling (output operation), 
diagnostics, and communication. Controller executes 
more complex tasks than sensor/actuator nodes, examples 
of which are computing of control values, diagnostics, 
sending and receiving of data, monitoring of data, 
processing of events, and logging of data. For an example, 
if a task for sending (or receiving) message to (or from) 
actuators (or sensors) has lower priority than task for 
diagnostics, the former is completed after the latter is 
finished. In other words, the worst-case response time is 
changed according to the priorities of the tasks. Note that 
an example of the worst-case response time is the time 
elapsed from sampling time from sensor to the time to 
output the control value to a plant via actuator. That is, the 
execution time of these tasks as well as transmission time 
of messages should be considered because they affect the 
end-to-end timing or the worst-case response time. 

 Researches on the real-time scheduling can be divided 
into three categories: scheduling for tasks in a processor 
[1-4], scheduling for messages via a network [5-7] and 
scheduling for an integrated model of both tasks and 
messages [8-10]. There have been a few researches on 
joint scheduling method considering both task execution 
time and message transmission time at the same time, via 
which the worst-case response time was analysed [8-10]. 
In [8-9], the systematic scheduling method was suggested 
under assumptions that a controller node has only one 
computation task and a sensor(actuator) node has one 
sensor(actuator) and the CAN protocol is used. In the 
suggested method, the tasks running in a single 
processor(node), multiple inputs and multiple outputs in a 
single loop weren’t considered. In addition, the control 
value can output to a plant after new data is sampled from 
the plant, which makes the performance of the control 
system deteriorate. In [10], the heuristic scheduling 
method was proposed under assumptions that no task can 
receive more than one message and TDMA protocol is 
used. Since one task receives only one message, the 
proposed method is not suitable in a general control 
system, which receives multiple messages from multiple 
analog/digital sensors, computes control values from 
several tasks, and transmits one or more values to one or 
more actuators at the same time. In addition, the proposed 
method can be difficult to be used in a case that several 
constraints in the control system such as precedence 
relation are applied.  
This paper suggests a systematic joint scheduling method 

of messages and tasks used in general distributed control 
systems, in which multiple control loops exists and 
multiple sensor/actuator nodes and the controller in a 
single control loop have several computation tasks, which 
affect the worst-case response time, and all the tasks in 
these nodes can receive one or more messages. Also this 
paper analyses the worst-case response time. The 
proposed method is based on [8] but is the extended 
method, which solves the sampling problem discussed 
above and considers multiple tasks, executed in all the 
nodes and their priorities.  
In Section 2, problem statements are discussed. In 

Section 3 intermediate constraints are derived and finally, 
we give some conclusions. 
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II. PROBLEM STATEMENTS 

To meet the end-to-end constraints, we should consider 
all the relationship from sensors to actuators so that some 
relationships such as precedence of either tasks or 
messages should be derived. If the output task of the 
actuator node is executed over the next sampling time of 
the sampling task, it may make the performance of system 
worse. That is, it means that the data is sampled before the 
control value has an effect on the plant. 
To solve this problem, the additional constraint for the 

systematic scheduling is necessary. 
 

Constraint: The sum of initial phase time and deadline of 
the actuator task at a control loop has to be less 
than or equal to the sensor task. 

sensoractuatoractuator Td ≤+φ  

where  iT  : Period of the task i,  

iφ  : Initial phase time of the task i, and 

id  : Deadline of the task i. 
 
If the above constraint is not satisfied on solving 

intermediate constraints, the parameters of tasks have to 
be recalculated repeatedly with larger periods. But larger 
period makes a later initial phase time because of an 
assumption that the deadline is equal to period. It is well 
known that the performance of system is better as the 
period is smaller and the worst-case response time has a 
limited value. Note that the worst-case response time is 
smaller than or equal to the period. So, it is necessary to 
find more an optimal period to minimize initial phase time. 
In the system based on pre-emptive, independent tasks 

and fixed task priorities, the worst-case execution time, 
i
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where T
iB : Longest time that the task i can be blocked by 

a lower priority task to complete its use of 
protected data, 

T
jT : Period of the task j,  
T
iC : Execution time of the task i, 

)( ihp τ : Set of tasks having higher priority  

than },...,,{ 21 ni ττττ ∈ , and 

iτ : the task i. 
 

And the worst-case transmission times of CAN, m
iR of 

the message i[10] is 
 

m
i

m
j

mhpj
m
j

m
im

i
m
i CC

T
RBR

i

+
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

∈∀ )(

       (2) 

where m
iB : Longest time that im  can be delayed by 

a lower priority messages, 
m
jT : Period of the message j, 
m
iC : Transmission time of the message i, 

)( imhp : Set of messages having higher priority 

than },...,,{ 21 ni mmmm ∈ , and 

im  : the message i. 
 

Because τ
iR  satisfies the following condition (3), the 

deadline of the task i can be shorter. 
T
i
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There is a virtual communication task that executes data 

transmission between two ports or nodes as shown in 
Fig.1. A virtual communication task is not a real task but 
represents the state that data is being transmitted. 

H ost 1 H ost 2virtual com m uniation task

taks 1 port 1 taks 2port 2  

Fig.1 Virtual Communication Task 

III. TASK-BASED SCHEDULING METHOD 

A.  System Model and Task Model 

An example of the target system considered in this 
paper consists of multiple control loop, where each 
control loop has multiple sensors and multiple actuators 
connected via CAN, as shown in Fig.2. 
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Fig. 2 Target System with Multiple loops 

Totally 4 control loops are considered, one of which 
consists of two sensor nodes, a controller node and an 
actuator node. Some sensor value in nodes such as 
Sensor2 and Sensor5, are transmitted to multiple 
controller nodes at same time. For an example, the 1st 
control loop in Fig.2 consists of Sensor1, Sensor2, 



REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000 

 

Controller1 and Actuator1. And the 2nd control loop 
consists of Sensor2, Sensor3, Controller2, and Actuator2. 
Generally sensor nodes have the same number of 

sampling task as the number of sensors. But in this case, 
it’s not easy to synchronize data input from several 
sensors. In a case that several sensors can have effects on 
an actuator, input data synchronization might be the 
important constraint because sensor data could be valid 
when they were sampled in the specified input data 
synchronization time. Therefore, as shown in Fig.3(b), a 
task, called sampling server task 0τ , is added to Fig.3(a) 
to guarantee input data synchronization.  It samples all 
sensors within the input data synchronization time. And 
then, as shown in Fig.3(c), we integrated 0τ with 1τ , 2τ  

into one task named sτ . 

(a) Original Task 
Graph

(b) After Adding a Sampling 
Server

(c) Final Task Graph After 
Integrating
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Fig.3 Modification of task graph in Sensor node 

In Fig.3, sτ  denotes as a sampling server, siπ as port for 
transmitting to network transmitting to network. In 
controller nodes, it is assumed there are several tasks 
whose only one task is the control task. The task graph of 
the whole system is shown in Fig.4. 
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Fig.4 The Task Graph of Whole System 

B. Deriving Intermediate Constraints 

In this subsection, intermediate constraints will be 
derived, which represents equations or inequalities for the 

period, initial phase time and deadline of tasks. Those 
intermediate constraints consist of two constraints sets: set 
on period and set on phase and deadline. Constraints on 
period are as follows: 
 

1
1

1 | mS TT , 1
2

1 | mS TT , 2
1

2 | mS TT , 11
1 | Cm TT , 11

2 | Cm TT , 12
1 | Cm TT  

1
3

1 | mC TT , 1
4

1 | mC TT , 11
3 | Am TT , 11

4 | Am TT  
where i

jT  is the period of task i
jτ  

 

Table.1 The notation for Fig. 4 

and constraints on phase and deadline are 
 

1111 MAVTdASA ≤+−φφ  , 1121 MAVTdASA ≤+−φφ  
11211 ),min( MAVTdASSA ≤+− φφφ  

111
SAA Td ≤+φ  , 211

SAA Td ≤+φ  
),min( 2111

SSAA TTd ≤+φ  

),max( 1
2

1
1

111
mmSSC ddd ++≥ φφ  , 2

1
221

mSSC dd ++≥ φφ  
),,max(),max( 2

1
1

2
1

1
22111

mmmSSSSC ddddd +++= φφφ  
),max( 1

4
1

3
111

mmCCA ddd ++= φφ  
where 1MAVT  is Maximum Allowable Validity Time or 

deadline of the loop 1 and i
jφ  is the initial phase  

time of task i
jτ . 

 
Constraints for the 2nd, 3rd and 4th loops are derived using 
the same way. 

C.  Solving Intermediate Constraints 

After deriving intermediate constraints, they can be 
solved by 3 pruning steps[8,9]. The applicable period sets 
of each task is calculated by time granularity, utilization 
and harmonicity pruning with a time granularity of 5 and 
utilization factor of 0.8. After selecting a period for each 
task in the applicable period sets, deadline of each control 
task and each message task can be calculated using (1), 
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(2) and (3) and finally starting time, priority, period and 
deadline are obtained as shown in Table 2. 
It is shown in Fig.5 that the end-to-end worst-case 

response time of each control loop increases as the 
number of the tasks with higher priority than control task 
increases in the control node. That is, Fig.5 shows the 
effect of the number of tasks in the single processor, it can 
be known from Fig.5 that the priorities of tasks related to 
loop are very important. 
The process listed above is summarized in Fig. 6. 

 
Table 2.  The results of scheduling tasks 

 

Fig.5 The effect of tasks in the control node 

IV.  CONCLUSIONS 

 This paper suggested the systematic scheduling 
methodology for the general fieldbus-based distributed 
control system, which has multiple loops, all the nodes in 
the loop are connected to CAN and in a single loop has 
several sensor nodes with multiple sensors, several 
actuator nodes with multiple actuators, a controller node 
with multiple tasks such as control task, event processing 
task. 
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End-to-End Constraints

Task graph design

Task allocation

Solving intermediate constraints

Priority, Starting time, Deadlines
 Periods of Task and Messages

Redesign

Integration of tasks

Adjustment of task 
execution time, priority, etc.

 
Fig.6 The process for solving the end-to-end constraints 

This paper suggested the systematic joint scheduling 
method of tasks and messages to guarantee the end-to-end 
constraints including several types of precedence 
constraints for the distributed control system, via which 
the initial phase, priority, and period of each task and of 
each message can be derived easily and the effects of 
priorities of tasks can be known. 
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