
REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

Systematic Scheduling Method for Messages and Tasks
in Distributed Control Systems

Hong Seong Park, Hyoung Yuk Kim, Weon Joon Kang
hspark@cc.kangwon.ac.kr, (petrus, tailhook)@control.kangwon.ac.kr

BK21 Dept. of Electrical and Computer Eng, Kangwon National University

Abstract - This paper presents a systematic scheduling

method to guarantee the end-to-end constraints including
precedence constraints of tasks, messages and both. The
presented systematic method is the integrated or joint one of
both tasks executed in each node and messages transmitted
via the network. The presented method is designed to apply
to the general distributed control system that has multiple
loops and in a single loop has sensor nodes with multiple
sensors, actuator nodes with multiple actuators, controller
nodes with multiple tasks, and several constraints. The
worst-case response time is analysed using the proposed
method.

I. INTRODUCTION

Nowadays, the distributed control via fieldbus systems
becomes one of very important requirements in the field
area but has a following restriction: a designer of the
distributed control system should consider some
constraints such as timing constraints, execution times of
tasks, allocation of tasks in each node and their priorities,
and precedence relationship of either tasks or messages.
These constraints make the system design difficult.
Considering a current distributed control system, the

processing power and the transmission speed via a
network are increasing. This means that one processor or
node should execute several kinds of tasks and a certain
task exchanges several types of messages with other tasks.
For examples, sensor nodes (actuator nodes) execute
several tasks such as sampling (output operation),
diagnostics, and communication. Controller executes
more complex tasks than sensor/actuator nodes, examples
of which are computing of control values, diagnostics,
sending and receiving of data, monitoring of data,
processing of events, and logging of data. For an example,
if a task for sending (or receiving) message to (or from)
actuators (or sensors) has lower priority than task for
diagnostics, the former is completed after the latter is
finished. In other words, the worst-case response time is
changed according to the priorities of the tasks. Note that
an example of the worst-case response time is the time
elapsed from sampling time from sensor to the time to
output the control value to a plant via actuator. That is, the
execution time of these tasks as well as transmission time
of messages should be considered because they affect the
end-to-end timing or the worst-case response time.

 Researches on the real-time scheduling can be divided
into three categories: scheduling for tasks in a processor
[1-4], scheduling for messages via a network [5-7] and
scheduling for an integrated model of both tasks and
messages [8-10]. There have been a few researches on
joint scheduling method considering both task execution
time and message transmission time at the same time, via
which the worst-case response time was analysed [8-10].
In [8-9], the systematic scheduling method was suggested
under assumptions that a controller node has only one
computation task and a sensor(actuator) node has one
sensor(actuator) and the CAN protocol is used. In the
suggested method, the tasks running in a single
processor(node), multiple inputs and multiple outputs in a
single loop weren’t considered. In addition, the control
value can output to a plant after new data is sampled from
the plant, which makes the performance of the control
system deteriorate. In [10], the heuristic scheduling
method was proposed under assumptions that no task can
receive more than one message and TDMA protocol is
used. Since one task receives only one message, the
proposed method is not suitable in a general control
system, which receives multiple messages from multiple
analog/digital sensors, computes control values from
several tasks, and transmits one or more values to one or
more actuators at the same time. In addition, the proposed
method can be difficult to be used in a case that several
constraints in the control system such as precedence
relation are applied.
This paper suggests a systematic joint scheduling method

of messages and tasks used in general distributed control
systems, in which multiple control loops exists and
multiple sensor/actuator nodes and the controller in a
single control loop have several computation tasks, which
affect the worst-case response time, and all the tasks in
these nodes can receive one or more messages. Also this
paper analyses the worst-case response time. The
proposed method is based on [8] but is the extended
method, which solves the sampling problem discussed
above and considers multiple tasks, executed in all the
nodes and their priorities.
In Section 2, problem statements are discussed. In

Section 3 intermediate constraints are derived and finally,
we give some conclusions.

REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

II. PROBLEM STATEMENTS

To meet the end-to-end constraints, we should consider
all the relationship from sensors to actuators so that some
relationships such as precedence of either tasks or
messages should be derived. If the output task of the
actuator node is executed over the next sampling time of
the sampling task, it may make the performance of system
worse. That is, it means that the data is sampled before the
control value has an effect on the plant.
To solve this problem, the additional constraint for the

systematic scheduling is necessary.

Constraint: The sum of initial phase time and deadline of
the actuator task at a control loop has to be less
than or equal to the sensor task.

sensoractuatoractuator Td ≤+φ

where iT : Period of the task i,

iφ : Initial phase time of the task i, and

id : Deadline of the task i.

If the above constraint is not satisfied on solving

intermediate constraints, the parameters of tasks have to
be recalculated repeatedly with larger periods. But larger
period makes a later initial phase time because of an
assumption that the deadline is equal to period. It is well
known that the performance of system is better as the
period is smaller and the worst-case response time has a
limited value. Note that the worst-case response time is
smaller than or equal to the period. So, it is necessary to
find more an optimal period to minimize initial phase time.
In the system based on pre-emptive, independent tasks

and fixed task priorities, the worst-case execution time,
i

TR of the task i was presented in [1] as

T
i

T
j

hpj
T
j

T
iT

i
T
i CC

T
RBR

i

+
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

∈∀)(τ

 (1)

where T
iB : Longest time that the task i can be blocked by

a lower priority task to complete its use of
protected data,

T
jT : Period of the task j,
T
iC : Execution time of the task i,

)(ihp τ : Set of tasks having higher priority

than },...,,{ 21 ni ττττ ∈ , and

iτ : the task i.

And the worst-case transmission times of CAN, m
iR of

the message i[10] is

m
i

m
j

mhpj
m
j

m
im

i
m
i CC

T
RBR

i

+
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

∈∀)(

 (2)

where m
iB : Longest time that im can be delayed by

a lower priority messages,
m
jT : Period of the message j,
m
iC : Transmission time of the message i,

)(imhp : Set of messages having higher priority

than },...,,{ 21 ni mmmm ∈ , and

im : the message i.

Because τ
iR satisfies the following condition (3), the

deadline of the task i can be shorter.
T
i

T
i RT ≥ , T

i
T
i Rd ≥ (3)

There is a virtual communication task that executes data

transmission between two ports or nodes as shown in
Fig.1. A virtual communication task is not a real task but
represents the state that data is being transmitted.

H ost 1 H ost 2virtual com m uniation task

taks 1 port 1 taks 2port 2

Fig.1 Virtual Communication Task

III. TASK-BASED SCHEDULING METHOD

A. System Model and Task Model

An example of the target system considered in this
paper consists of multiple control loop, where each
control loop has multiple sensors and multiple actuators
connected via CAN, as shown in Fig.2.

Controller 1

Sensor 1 Actuator 1

CAN

Controller 3

Sensor 4 Actuator 3

Controller 2

Sensor 3 Actuator 2

Controller 4

Sensor 6 Actuator 4Sensor 5Sensor 2

1
1S 1

2S 2
1S 3

1S 3
2S 4

1S 4
2S 5

1S 6
1S 6

2S
4
1A 4

2A3
1A 3

2A2
1A 2

2A
1
1A 1

2A

LOOP1
LOOP2

LOOP3
LOOP4

Fig. 2 Target System with Multiple loops

Totally 4 control loops are considered, one of which
consists of two sensor nodes, a controller node and an
actuator node. Some sensor value in nodes such as
Sensor2 and Sensor5, are transmitted to multiple
controller nodes at same time. For an example, the 1st
control loop in Fig.2 consists of Sensor1, Sensor2,

REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

Controller1 and Actuator1. And the 2nd control loop
consists of Sensor2, Sensor3, Controller2, and Actuator2.
Generally sensor nodes have the same number of

sampling task as the number of sensors. But in this case,
it’s not easy to synchronize data input from several
sensors. In a case that several sensors can have effects on
an actuator, input data synchronization might be the
important constraint because sensor data could be valid
when they were sampled in the specified input data
synchronization time. Therefore, as shown in Fig.3(b), a
task, called sampling server task 0τ , is added to Fig.3(a)
to guarantee input data synchronization. It samples all
sensors within the input data synchronization time. And
then, as shown in Fig.3(c), we integrated 0τ with 1τ , 2τ

into one task named sτ .

(a) Original Task
Graph

(b) After Adding a Sampling
Server

(c) Final Task Graph After
Integrating

1
1S

1
2S

1
1τ

1
1π

1
1mτ

1
2τ

1
2π

1
2mτ

1
1S

1
2S

1
0τ

1
1sπ

1
2sπ

1
1τ 1

1π
1

1mτ

1
2τ 1

2π 1
2mτ

1
1S

1
2S

1
sτ

1
1sπ

1
2sπ

1
1mτ

1
2mτ

Fig.3 Modification of task graph in Sensor node

In Fig.3, sτ denotes as a sampling server, siπ as port for
transmitting to network transmitting to network. In
controller nodes, it is assumed there are several tasks
whose only one task is the control task. The task graph of
the whole system is shown in Fig.4.

1
1S

1
2S

1
1mτ

1
2mτ

1
1Sπ

1
2Sπ

1
1mπ

1
2mπ 1

2Cπ

1
1Cπ

1
Cτ

1
1Cτ

1
3Cτ

1
2Cτ

1
3mπ

1
4mπ

1
3mτ

1
4mτ

1
1A

1
2A

3
1S

3
2S

3
1mτ

3
2mτ

3
1Sπ

3
2Sπ

3
1mπ

3
2mπ

2
3mπ

2
4mπ

2
3mτ

2
4mτ

2
1A

2
2A

N N

1
Sτ

3
Sτ

1
Aτ

2
Aτ

2
1S 2

1mτ
2
1Sπ

2
1mπ

2
Sτ

6
1S

6
2S

6
1mτ

6
2mτ

6
1Sπ

6
2Sπ

6
1mπ

6
2mπ 4

2Cπ

4
1Cπ

4
Cτ

4
1Cτ

4
3Cτ

4
2Cτ

4
3mπ

4
4mπ

4
3mτ

4
4mτ

4
1A

4
2A

6
Sτ

4
Aτ

4
1S

4
2S

4
1mτ

4
2mτ

4
1Sπ

4
2Sπ

4
1mπ

4
2mπ

3
3mπ

3
4mπ

3
3mτ

3
4mτ

3
1A

3
2A

4
Sτ 3

Aτ

5
1S 5

1mτ
5
1Sπ

5
1mπ

5
Sτ

2
2Cπ

2
1Cπ

2
Cτ

2
1Cτ

2
3Cτ

2
2Cτ

3
2Cπ

3
1Cπ

3
Cτ

3
1Cτ

3
3Cτ

3
2Cτ

Fig.4 The Task Graph of Whole System

B. Deriving Intermediate Constraints

In this subsection, intermediate constraints will be
derived, which represents equations or inequalities for the

period, initial phase time and deadline of tasks. Those
intermediate constraints consist of two constraints sets: set
on period and set on phase and deadline. Constraints on
period are as follows:

1
1

1 | mS TT , 1
2

1 | mS TT , 2
1

2 | mS TT , 11
1 | Cm TT , 11

2 | Cm TT , 12
1 | Cm TT

1
3

1 | mC TT , 1
4

1 | mC TT , 11
3 | Am TT , 11

4 | Am TT
where i

jT is the period of task i
jτ

Table.1 The notation for Fig. 4

and constraints on phase and deadline are

1111 MAVTdASA ≤+−φφ , 1121 MAVTdASA ≤+−φφ
11211),min(MAVTdASSA ≤+− φφφ

111
SAA Td ≤+φ , 211

SAA Td ≤+φ
),min(2111

SSAA TTd ≤+φ

),max(1
2

1
1

111
mmSSC ddd ++≥ φφ , 2

1
221

mSSC dd ++≥ φφ
),,max(),max(2

1
1

2
1

1
22111

mmmSSSSC ddddd +++= φφφ
),max(1

4
1

3
111

mmCCA ddd ++= φφ
where 1MAVT is Maximum Allowable Validity Time or

deadline of the loop 1 and i
jφ is the initial phase

time of task i
jτ .

Constraints for the 2nd, 3rd and 4th loops are derived using
the same way.

C. Solving Intermediate Constraints

After deriving intermediate constraints, they can be
solved by 3 pruning steps[8,9]. The applicable period sets
of each task is calculated by time granularity, utilization
and harmonicity pruning with a time granularity of 5 and
utilization factor of 0.8. After selecting a period for each
task in the applicable period sets, deadline of each control
task and each message task can be calculated using (1),

REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

(2) and (3) and finally starting time, priority, period and
deadline are obtained as shown in Table 2.
It is shown in Fig.5 that the end-to-end worst-case

response time of each control loop increases as the
number of the tasks with higher priority than control task
increases in the control node. That is, Fig.5 shows the
effect of the number of tasks in the single processor, it can
be known from Fig.5 that the priorities of tasks related to
loop are very important.
The process listed above is summarized in Fig. 6.

Table 2. The results of scheduling tasks

Fig.5 The effect of tasks in the control node

IV. CONCLUSIONS

 This paper suggested the systematic scheduling
methodology for the general fieldbus-based distributed
control system, which has multiple loops, all the nodes in
the loop are connected to CAN and in a single loop has
several sensor nodes with multiple sensors, several
actuator nodes with multiple actuators, a controller node
with multiple tasks such as control task, event processing
task.

Derive intermediate constraints

Requirements regarding
End-to-End Constraints

Task graph design

Task allocation

Solving intermediate constraints

Priority, Starting time, Deadlines
 Periods of Task and Messages

Redesign

Integration of tasks

Adjustment of task
execution time, priority, etc.

Fig.6 The process for solving the end-to-end constraints

This paper suggested the systematic joint scheduling
method of tasks and messages to guarantee the end-to-end
constraints including several types of precedence
constraints for the distributed control system, via which
the initial phase, priority, and period of each task and of
each message can be derived easily and the effects of
priorities of tasks can be known.

REFERENCES

[1] A. Burns, ”Preemptive priority based scheduling: An appropriate
engineering approach,” in Principles of Real-Time Systems(Ed. S.
Son), Prentice Hall, 1994.

[2] K. Ramamritham and J.A. Stankovic, “Scheduling algorithm and
operating systems support for real-time systems,” Proceedings of
IEEE, pp. 55-67, Jan. 1994.

[3] N.C. Audsley, A. Burns, and A.J. Wellings, “Deadline monotone
scheduling theory and application,” IFAC J. Control Engr. Practice,
Vol. 1, No. 1, pp.71-78, 1993.

[4] J. Xu and D. Parnas, “Scheduling processes with release times,
deadlines, precedence and exclusion relations,” IEEE Tr. on
Software Engineering, pp.360-369, Mar., 1990.

[5] P. Lorenz and Z. Mammeri, “ Real-time Software Architecture:
Application to FIP filedbus,” Proc of 1995 AARTC, pp.415-423,
1995.

[6] P. Raja and G. Ulloa, “Priority Polling and Dynamic Time-Window
Mechanisms in a Multicycle Fieldbus,” Proc of 1993 COMPEURO,
pp.452-460, 1993.

[7] K. Tindell, H. Hansson, and A. Wellings, “Analyzing Real-time
Communications: Controller Area Network,” IEEE Real-time
Systems Symposium, 1994.

[8] J.W. Park, Y.S. Kim, et al,”Network conscious of Distributed Real-
Time Systems,” Journal of System Architecture, pp. 131-156, 1998.

[9] Y.S.Kim, H.S.Park, and W.H.Kwon, “An Architecture for a Network
Based Robot Control System”, ETFA’99, Vol2, pp.875-880, Oct.,
1999.

[10] K. Tindell,”Holistic Schedulability Analysis for Distributed Hard
Real-time Systems,” Report, Dept. of Computer Science Report,
Univ. of York.

