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Abstract - The use of a centralised planning scheduler in 

fieldbus-based systems requiring real-time operation has 
proved to be a good compromise between operational 
flexibility and timeliness guarantees. 

In this paper a preliminary implementation of a hardware 
scheduling coprocessor based in the planning paradigm is 
presented. The coprocessor is installed in a special node of 
the fieldbus, the bus arbiter, and generates scheduling tables 
to be dispatched by the node CPU. With this solution it is 
possible to decrease the response time to changes in the 
system configuration or message parameters of the software-
based planning scheduler. This opens the possibility of 
allowing automatic on-line changes requested by system 
nodes in addition to the ones requested by human operators, 
thus improving system reactivity. 

In this paper the focus is on the coprocessor’s interface with 
the node CPU and its overall functionality. Initial 
calculations showing the feasibility of the unit and its 
expected performance are also derived.  

I. INTRODUCTION  

The dissemination of embedded fieldbus based 
distributed systems in real-time applications has triggered 
a significant research activity on many of the related 
problems and associated solutions. One of them is the 
improvement of distributed embedded systems reactivity 
and flexibility without loosing the timeliness guarantees 
required for a real-time operation. Some promising results 
have been studied in [1], concerning the use of a planning 
scheduler technique in systems based on low-processing 
power microcontrollers and in fieldbuses such as CAN [2] 
and FIP [3]. This technique and an associated protocol 
named FTT-CAN (flexible time-triggered protocol), 
proposed in [4], can be used to achieve real-time 
performance in distributed systems based in CAN, keeping 
a runtime overhead in the nodes that is compatible with 
the CPUs of most industrial embedded applications. 
However, a further step towards systems reactivity implies 
decreasing the response time to required changes. This can 
be achieved with several solutions, including the use of a 
specific scheduling coprocessor implemented in hardware. 
In this paper, preliminary results concerning the 

development and use of a scheduling coprocessor in a 
CAN-based distributed system are presented. Since the 
coprocessor implements a planning scheduler, the paper 
starts in section II with a short introduction of this 
technique. Next, in section III, the motivation to adopt the 
hardware scheduler solution is briefly discussed and some 
previous works following the same line are shortly presen-
ted. In section IV the coprocessor is described focusing on 

its functionality and interface with the node CPU. Its 
internal architecture is then briefly presented. This section 
also includes some figures showing the feasi-bility of the 
proposed architecture. The paper concludes, pointing out 
future improvements to the current architecture. 

II. THE PLANNING SCHEDULER 

Message scheduling on a fieldbus can be done statically 
or dynamically. Table driven and priority-based approa-
ches such as the ones in FIP and CAN respectively, fall in 
the category of static scheduling while dynamic 
scheduling can be done using planning based or best effort 
approaches. Although dynamic planning-based schedulers 
are not com-monly found in current standard fieldbuses, 
recent work on the subject [5], has shown they could 
become a good compromise between the static and 
dynamic approaches. 
The planning scheduler and an associated dispatcher can 

be implemented in fieldbus-based systems imposing an 
overhead compatible with the low-processing power 
microprocessors or microcontrollers used as typical nodes’ 
CPUs. Also, it presents some degree of flexibility resulting 
from the possibility to change, from plan to plan, the 
message’s set, adding or deleting messages or changing 
their parameters. The underlying concept is the reservation 
of resources into the future. So, when a new message is 
accepted, the additional bus bandwidth required is 
reserved. To do this, the scheduler builds static schedules 
for consecutive fixed duration periods of time called plans. 
The static schedules are called plan tables. The creation of 
a plan table is overlapped with the dispatching of the 
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Fig. 1 – The planning scheduler. 
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previous. In figure 1 the operation of the planning 
scheduler is illustrated. The dispatcher  works with plan i, 
while the scheduler builds plan i+1. 
In common implementations of the planning scheduler, 

the available bus time is divided in fixed duration time 
slots called Elementary Cycles (ECs). Each plan includes a 
fixed number of ECs. Messages’ periods are then 
restricted to an integer multiple of the EC time. 
Transmission time of the longest message is supposed to 
be less than the EC duration. 
The simple mechanism of this scheduler reduces run-time 

overhead mainly because it is invoked fewer times. So, 
comparing with a dynamic scheduler, each time it is 
invoked, instead of determining the next message to be 
transmitted, only, it determines all the bus activity, for all 
the messages, for a certain period of time corresponding to 
the plan duration.  

III. SCHEDULING IN A DEDICATED COPROCESSOR 

A. Motivation 

Experimental results [6] taken in a CAN-based system 
where the planning scheduler was implemented supported 
on a protocol named FTT-CAN (Flexible Time-Triggered) 
showed the exponential decrease of run-time overhead 
with the plan duration. Results from the same source have 
shown also that, for a typical EC duration of, say, 8.9ms, 
and 20-EC plans, the response time to a request of change 
in the message set is normally more than adequate when it 
comes from a human operator. Also, the response time can 
be reasonable for automatic changes during set-up or 
upgrade of the system. However, if more dynamic 
mechanisms are to be thought for the system operation, 
e.g., changing messages’ periodicity to react to a bus 
overload or to adapt the sampling period of a distributed 
control system (operation following a QoS - quality of 
service model), then the response time is clearly 
insufficient. To overcome this limitation the plan duration 
should be reduced. Adding to the increased runtime 
overhead caused by the reduction of the plan, the 
implementation of automatic procedures to allow on-line 
changes in the communication parameters will also require 
relevant processing power at the arbiter node CPU.  
Apart from the obvious solution of simply adopting a 

much more powerful CPU to keep up with all this 
processing needs, another interesting possibility is to use 
dedicated hardware to offload the node CPU in the 
scheduling task. The repetitive nature of the scheduling 
process, the robustness required for the arbiter node and 
the desire to reduce strongly the response time to changes 
led to choose the hardware coprocessor as the first 
solution to explore. This option was reinforced by the fact 
that the planning technique makes very easy the exchange 
of data between the coprocessor and the arbiter CPU, even 
when the worst case execution time of the scheduling 
process is not completely determined. The output of the 
scheduler is, in this case, a list of messages to be produced 
during several ECs. Although other solutions such as a 

scheduling coprocessor based in another CPU are yet to be 
studied in the future, the use of dedicated hardware is 
presently a good and easy option namely due to the 
availability of support tools [7].  

B. Related Work 

While virtually nothing has been reported on specialised 
hardware for message scheduling in fieldbuses, some 
recent papers have surfaced describing coprocessors 
aiming at improving the execution time and predictability 
of operating system functions. 
The Real Time Unit (RTU) reported in [8] is a complete 

multitasking kernel implemented in an ASIC. It consists of 
a number of units which handle most of the time-critical 
functions of a typical real-time kernel. Task scheduling is 
based on the rate monotonic algorithm. The RTU can 
handle a maximum of 64 tasks at 8 priority levels, and 
supports up to 3 application processors. For each 
processor there is a dedicated ready queue. The prototype 
described was used in a VME system with 3 CPU boards 
executing tasks. The interaction between the processors 
and RTU is through interrupts and registers which makes 
it easy to use the RTU with different types of processors. 
The Spring Scheduling CoProcessor (SSCoP) [9] is a 

VLSI coprocessor dedicated only to the task of 
scheduling. It was designed to work together with the 
Spring kernel and supports also multiple processors. The 
SSCoP can use different scheduling algorithms, 
considering shared resour-ce requirements and precedence 
constraints. The operating system writes the attributes of a 
set of tasks in the copro-cessors registers. Using these 
attributes SSCoP tries to build a complete feasible 
schedule, which, if successfully created, can be read back 
by the operating system. 
Finally, [10] describes a universal scheduling 

coprocessor for single processor systems. The coprocessor 
is provided with the task parameters and states, and gives 
back to the operating system the identification of the task 
that has to be executed next. The architecture approach is 
suited for the implementation of nearly every scheduling 
algorithm that is based on comparison of task parameters. 
The coprocessor was implemented in FPGA technology 
and its latest version uses the Enhanced Least-Laxity-First 
(ELLF) scheduling algorithm and  supports up to 32 tasks 
with a parameter resolution of 16-bits. 

IV. THE PLANNING SCHEDULER COPROCESSOR (PSCOP) 

The coprocessor currently under development somehow 
differs from the previous solutions because it directly 
follows the planning paradigm. PSCoP has then a limited 
amount of memory to store a scheduler plan i.e. the 
identification of the messages that must be transmitted 
each EC of the plan. PSCoP memory is divided in two 
banks allowing the coprocessor to generate one schedule 
plan while the CPU dispatches the other. 
It the present stage of implementation PSCoP is targetted 

to work with the FTT-CAN protocol. This simplifies the 
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interface with the node CPU as explained in the next 
paragraph. The solution described in B presents some 
degree of scalability since the number of messages can be 
adapted depending on the operational needs. 

A. The Node CPU Interface 

To start working, PSCoP needs to be initialised first with 
the parameters of each variable to be scheduled. These 
include the variable’s period (P), its initial phasing (Ph) 
and associated transaction duration (C). The parameters of 
each variable are written by the node CPU in a three 
register slot within PSCoP’s interface. There are as many 
register slots as the maximum number of variables 
supported by the coprocessor. 
In this experimental version there is no support for 

explicit deadline or priority parameters. The deadline of all 
variables is assumed to be the same as their period. 
Relative priorities are dictated by the allocation of register 
slots. These are numbered 1 to N and have assigned 
decreasing priorities. The scheduling priority of a given 
variable is thus set by mapping its parameters to the 
appropriate register slot at initialisation time. Clearly, 
priorities are always static. 
The interface includes also an EC register which must be 

initialised with the elementary cycle duration parameter. A 
control/status register allows the CPU to start or stop the 
coprocessor, and provides information about the current 
state of the scheduling operation. 
After instructed to begin PSCoP starts generating 

schedules. The message schedule for each EC in the plan 
is presented to the node CPU as an N-bit word which 
identifies the transactions that must be carried out during 
that EC. If a transaction of message i is allocated in a 
given EC, then bit i is set in that EC schedule. 
This coding scheme was chosen in view of the FTT-CAN 

protocol-based experimental system where PSCoP is 
expected to be used. Since the FTT-CAN trigger message 
data field uses the same coding principle, the dispatching 
overhead is thus drastically reduced. 

B. Architecture Overview 

In devising a hardware structure where the planning 
scheduler functionality could be mapped, two separate 

activities were identified within the scheduler algorithm. 
One of them is performed in the context of each variable 
and acts basically as a timer, keeping track of the instants 
when the variable must be produced. The other concerns 
the placing of transactions in the respective ECs in the 
plan table. This partitioning of activities inspired the 
architecture depicted in figure 2. Here, the Variable’s 
Production Timer (VPT) units are responsible for the first 
activity while the Schedule Plan Builder (SPB) takes care 
of the second activity. 
Each variable to be scheduled is allocated to one VPT 

unit which holds the variable’s period (P) and initial phase 
(Ph) parameters. Global timing information received from 
the SPB allows all VPTs to be synchronised while keeping 
track of the EC schedule currently being generated. When 
a VPT detects that the scheduling for a particular EC 
where its variable should be produced has started, it 
signals the SPB requesting the allocation of the associated 
transaction. Based on the transactions’ duration (C) and on 
the remaining EC time left, the SPB unit decides to 
allocate or reject the transaction. If the transaction is 
accepted, further requests for allocation in the same EC 
(from other VPTs) are received, otherwise the current EC 
schedule is finished and a new one is started. 
Because more than one VPT can request allocation in the 

same EC, a mechanism must exist to help SPB to select 
which request to serve first. A daisy chain structure similar 
to the one commonly found in microprocessor-based 
systems to solve interrupt or bus arbitration, is used with 
this purpose. The chain signal ripples through VPT1 down 
to VPTN. When a VPT unit raises a request for allocation 
its chain signal output is deactivated. After this, the unit is 
allowed to communicate with SPB only if its chain signal 
input is true, which means that, in a contention situation, 
the leftmost VPT with a pending request is always the 
only one with the chain signal input set to true, and 
therefore the one which can engage communication with 
SPB. 
Besides the VPTs and SPB the PSCoP architecture inclu-

des two other functional blocks, the Configuration Control 
Unit (CCU) and the Schedule Plan Memory (SPM). The 
former includes control and status registers and provides 
access to the parameter registers in the VPTs and SPB. 
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CCU

SPB
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uC Interface Port
 

Fig.2 - PSCoP architecture. SPB - Schedule Plan Builder; VPT - 
Variable's Production Timer; SPM - Schedule Plan  Memory; CCU - 

Configuration Control Unit. 
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The SPM unit is where SPB builds the plans with the EC 
schedules it generates. In the SPM memories an EC sche-
dule is represented by an N-bit word where each bit set 
represents a specific transaction in that EC. The diagram 
in figure 3 illustrates the relationship between the 
transactions placed in EC time slots, and EC schedules in 
the SPM. 

C. Preliminary Feasibility Assessment 

The first prototype of PSCoP will be implemented on a 
XC4010XL FPGA. It will have 64 VPTs and a parameter 
resolution of 8-bits. The memory banks in SPM will 
support 20-EC plans, or, in other words, will be 20 x 64-
bits FIFO memories. The prototype will be tested on a 
CAN master node based on a XS40 development kit from 
XESS® Corporation [11]. 
At the time of writing the coprocessor is still in the 
design entry stage, and so simulation results are not yet 
available. Nevertheless, an accurate estimate of perfor-
mance was obtained by carrying out a step by step analy-
sis of the various phases of the coprocessor’s internal 
operation, counting the number of clock cycles required 
by each. 
Each variable allocation takes 6 clock cycles. In the end 
of each EC, another 3 clock cycles are needed to transfer 
the schedule to the SPM unit and to begin the next 
schedule. The time taken by PSCoP to build a complete 
plan with W ECs, tsched, can thus be expressed (in clock 
cycles) as written below, where Nv(ECi) is the number 
of variables allocated in ECi. 
To calculate a worst case scheduling time in our 

prototype version, we shall assume a maximum number of 
allocations in every EC of the plan. For this to occur all 
messages must have the smallest possible length, which, if 
we consider CAN2.0A format and a 1Mbit/s data rate, 
corresponds to a minimum transmission time of 44μs [12]. 
If we consider an EC duration of 1ms, then we can have at 
most 22 of these minimum length messages per EC, in 
every EC. Using the expression above, the scheduling time 
in this worst case scenario is computed as 2700 clock 
cycles. Since the FPGA in the development board is 
clocked at 12MHz, this translates to 0.22ms, or 1.1% of 
the time taken by the CPU to dispatch an entire plan. 

V. CONCLUDING REMARKS AND FUTURE WORK 

A coprocessor for traffic scheduling in a field-bus system 
was described in this paper. Named PSCoP the 
coprocessor works according to the planning scheduler 
principle, and builds internally the plan tables in a format 
which is particularly adapted to the FTT-CAN protocol. 
Its architecture was defined with a main goal in mind: the 
design of a simple, working coprocessor which could be 
implemented in a medium-sized FPGA, and used as an ini-
tial testbed to obtain insight on the real performance gains 
and problems of the architecture. This is expected to allow 

the identification of the design changes needed to explore 
the whole benefits of the planning scheduler paradigm. 
A first implementation of PSCoP will be available 

shortly. As shown with the rough performance estimate 
given for this initial version working at a modest clock 
rate, PSCoP can easily create a plan table in a small 
fraction of an EC in a field-bus running at 1Mbit/s. This 
result is quite encouraging in the development of the 
coprocessor because it suggests that some of the 
performance room may be sacrificed in favour of a few 
design improvements and additional functionality. 
At this point it is clear that one of these improvements 

must concern the arbitration method used to resolve the 
contention between several VPTs requesting to allocate 
their transactions in the same EC. In fact the current daisy-
chain mechanism, while very simple to implement, 
strongly compromises the operational flexibility of the 
planning scheduler. Once the variables are allocated to 
VPTs it is not possible to change dynamically their 
priorities. Also, it is not possible to introduce at run-time a 
new variable with a priority in between the ones already 
mapped. To get rid of these limitations we are considering 
to use a self-selection arbitration system in the next 
version of PSCoP. Since this scheme relies on dynamic 
priority vectors it will be easy to implement various 
scheduling policies like RM, EDF or simply priorities-
based, and even to switch dynamically between these 
policies. Another interesting feature to include in this new 
design will be the possibility to change the plan size while 
the coprocessor is running. 
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