
REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

PSCoP – A Planning Scheduler Coprocessor

E. Martins, P. Neves, J. Fonseca
evm@det.ua.pt; pneves@ua.pt; jaf@det.ua.pt

Dep. Electrónica e Telecomunicações, Universidade de Aveiro, P-3810-193 Aveiro, Portugal

Abstract - The use of a centralised planning scheduler in

fieldbus-based systems requiring real-time operation has
proved to be a good compromise between operational
flexibility and timeliness guarantees.

In this paper a preliminary implementation of a hardware
scheduling coprocessor based in the planning paradigm is
presented. The coprocessor is installed in a special node of
the fieldbus, the bus arbiter, and generates scheduling tables
to be dispatched by the node CPU. With this solution it is
possible to decrease the response time to changes in the
system configuration or message parameters of the software-
based planning scheduler. This opens the possibility of
allowing automatic on-line changes requested by system
nodes in addition to the ones requested by human operators,
thus improving system reactivity.

In this paper the focus is on the coprocessor’s interface with
the node CPU and its overall functionality. Initial
calculations showing the feasibility of the unit and its
expected performance are also derived.

I. INTRODUCTION

The dissemination of embedded fieldbus based
distributed systems in real-time applications has triggered
a significant research activity on many of the related
problems and associated solutions. One of them is the
improvement of distributed embedded systems reactivity
and flexibility without loosing the timeliness guarantees
required for a real-time operation. Some promising results
have been studied in [1], concerning the use of a planning
scheduler technique in systems based on low-processing
power microcontrollers and in fieldbuses such as CAN [2]
and FIP [3]. This technique and an associated protocol
named FTT-CAN (flexible time-triggered protocol),
proposed in [4], can be used to achieve real-time
performance in distributed systems based in CAN, keeping
a runtime overhead in the nodes that is compatible with
the CPUs of most industrial embedded applications.
However, a further step towards systems reactivity implies
decreasing the response time to required changes. This can
be achieved with several solutions, including the use of a
specific scheduling coprocessor implemented in hardware.
In this paper, preliminary results concerning the

development and use of a scheduling coprocessor in a
CAN-based distributed system are presented. Since the
coprocessor implements a planning scheduler, the paper
starts in section II with a short introduction of this
technique. Next, in section III, the motivation to adopt the
hardware scheduler solution is briefly discussed and some
previous works following the same line are shortly presen-
ted. In section IV the coprocessor is described focusing on

its functionality and interface with the node CPU. Its
internal architecture is then briefly presented. This section
also includes some figures showing the feasi-bility of the
proposed architecture. The paper concludes, pointing out
future improvements to the current architecture.

II. THE PLANNING SCHEDULER

Message scheduling on a fieldbus can be done statically
or dynamically. Table driven and priority-based approa-
ches such as the ones in FIP and CAN respectively, fall in
the category of static scheduling while dynamic
scheduling can be done using planning based or best effort
approaches. Although dynamic planning-based schedulers
are not com-monly found in current standard fieldbuses,
recent work on the subject [5], has shown they could
become a good compromise between the static and
dynamic approaches.
The planning scheduler and an associated dispatcher can

be implemented in fieldbus-based systems imposing an
overhead compatible with the low-processing power
microprocessors or microcontrollers used as typical nodes’
CPUs. Also, it presents some degree of flexibility resulting
from the possibility to change, from plan to plan, the
message’s set, adding or deleting messages or changing
their parameters. The underlying concept is the reservation
of resources into the future. So, when a new message is
accepted, the additional bus bandwidth required is
reserved. To do this, the scheduler builds static schedules
for consecutive fixed duration periods of time called plans.
The static schedules are called plan tables. The creation of
a plan table is overlapped with the dispatching of the

1 2 3... N
1 ...
1 2 ...
1 3 ...

 Ec 1
 Ec 2
 ...

Ec K

id bytes period type time
1
...
N

Scheduler

Dispatcher

Dispatch each
message to the bus

1 2 ...
1 ...
1 2 3 ...
1 ...

 Ec K+1
 Ec K+2
 ...

 Ec 2*K

plan (i) plan (i+1)

(Completely on-line)

Periodic messages desc. table

Fig. 1 – The planning scheduler.

REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

previous. In figure 1 the operation of the planning
scheduler is illustrated. The dispatcher works with plan i,
while the scheduler builds plan i+1.
In common implementations of the planning scheduler,

the available bus time is divided in fixed duration time
slots called Elementary Cycles (ECs). Each plan includes a
fixed number of ECs. Messages’ periods are then
restricted to an integer multiple of the EC time.
Transmission time of the longest message is supposed to
be less than the EC duration.
The simple mechanism of this scheduler reduces run-time

overhead mainly because it is invoked fewer times. So,
comparing with a dynamic scheduler, each time it is
invoked, instead of determining the next message to be
transmitted, only, it determines all the bus activity, for all
the messages, for a certain period of time corresponding to
the plan duration.

III. SCHEDULING IN A DEDICATED COPROCESSOR

A. Motivation

Experimental results [6] taken in a CAN-based system
where the planning scheduler was implemented supported
on a protocol named FTT-CAN (Flexible Time-Triggered)
showed the exponential decrease of run-time overhead
with the plan duration. Results from the same source have
shown also that, for a typical EC duration of, say, 8.9ms,
and 20-EC plans, the response time to a request of change
in the message set is normally more than adequate when it
comes from a human operator. Also, the response time can
be reasonable for automatic changes during set-up or
upgrade of the system. However, if more dynamic
mechanisms are to be thought for the system operation,
e.g., changing messages’ periodicity to react to a bus
overload or to adapt the sampling period of a distributed
control system (operation following a QoS - quality of
service model), then the response time is clearly
insufficient. To overcome this limitation the plan duration
should be reduced. Adding to the increased runtime
overhead caused by the reduction of the plan, the
implementation of automatic procedures to allow on-line
changes in the communication parameters will also require
relevant processing power at the arbiter node CPU.
Apart from the obvious solution of simply adopting a

much more powerful CPU to keep up with all this
processing needs, another interesting possibility is to use
dedicated hardware to offload the node CPU in the
scheduling task. The repetitive nature of the scheduling
process, the robustness required for the arbiter node and
the desire to reduce strongly the response time to changes
led to choose the hardware coprocessor as the first
solution to explore. This option was reinforced by the fact
that the planning technique makes very easy the exchange
of data between the coprocessor and the arbiter CPU, even
when the worst case execution time of the scheduling
process is not completely determined. The output of the
scheduler is, in this case, a list of messages to be produced
during several ECs. Although other solutions such as a

scheduling coprocessor based in another CPU are yet to be
studied in the future, the use of dedicated hardware is
presently a good and easy option namely due to the
availability of support tools [7].

B. Related Work

While virtually nothing has been reported on specialised
hardware for message scheduling in fieldbuses, some
recent papers have surfaced describing coprocessors
aiming at improving the execution time and predictability
of operating system functions.
The Real Time Unit (RTU) reported in [8] is a complete

multitasking kernel implemented in an ASIC. It consists of
a number of units which handle most of the time-critical
functions of a typical real-time kernel. Task scheduling is
based on the rate monotonic algorithm. The RTU can
handle a maximum of 64 tasks at 8 priority levels, and
supports up to 3 application processors. For each
processor there is a dedicated ready queue. The prototype
described was used in a VME system with 3 CPU boards
executing tasks. The interaction between the processors
and RTU is through interrupts and registers which makes
it easy to use the RTU with different types of processors.
The Spring Scheduling CoProcessor (SSCoP) [9] is a

VLSI coprocessor dedicated only to the task of
scheduling. It was designed to work together with the
Spring kernel and supports also multiple processors. The
SSCoP can use different scheduling algorithms,
considering shared resour-ce requirements and precedence
constraints. The operating system writes the attributes of a
set of tasks in the copro-cessors registers. Using these
attributes SSCoP tries to build a complete feasible
schedule, which, if successfully created, can be read back
by the operating system.
Finally, [10] describes a universal scheduling

coprocessor for single processor systems. The coprocessor
is provided with the task parameters and states, and gives
back to the operating system the identification of the task
that has to be executed next. The architecture approach is
suited for the implementation of nearly every scheduling
algorithm that is based on comparison of task parameters.
The coprocessor was implemented in FPGA technology
and its latest version uses the Enhanced Least-Laxity-First
(ELLF) scheduling algorithm and supports up to 32 tasks
with a parameter resolution of 16-bits.

IV. THE PLANNING SCHEDULER COPROCESSOR (PSCOP)

The coprocessor currently under development somehow
differs from the previous solutions because it directly
follows the planning paradigm. PSCoP has then a limited
amount of memory to store a scheduler plan i.e. the
identification of the messages that must be transmitted
each EC of the plan. PSCoP memory is divided in two
banks allowing the coprocessor to generate one schedule
plan while the CPU dispatches the other.
It the present stage of implementation PSCoP is targetted

to work with the FTT-CAN protocol. This simplifies the

REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

interface with the node CPU as explained in the next
paragraph. The solution described in B presents some
degree of scalability since the number of messages can be
adapted depending on the operational needs.

A. The Node CPU Interface

To start working, PSCoP needs to be initialised first with
the parameters of each variable to be scheduled. These
include the variable’s period (P), its initial phasing (Ph)
and associated transaction duration (C). The parameters of
each variable are written by the node CPU in a three
register slot within PSCoP’s interface. There are as many
register slots as the maximum number of variables
supported by the coprocessor.
In this experimental version there is no support for

explicit deadline or priority parameters. The deadline of all
variables is assumed to be the same as their period.
Relative priorities are dictated by the allocation of register
slots. These are numbered 1 to N and have assigned
decreasing priorities. The scheduling priority of a given
variable is thus set by mapping its parameters to the
appropriate register slot at initialisation time. Clearly,
priorities are always static.
The interface includes also an EC register which must be

initialised with the elementary cycle duration parameter. A
control/status register allows the CPU to start or stop the
coprocessor, and provides information about the current
state of the scheduling operation.
After instructed to begin PSCoP starts generating

schedules. The message schedule for each EC in the plan
is presented to the node CPU as an N-bit word which
identifies the transactions that must be carried out during
that EC. If a transaction of message i is allocated in a
given EC, then bit i is set in that EC schedule.
This coding scheme was chosen in view of the FTT-CAN

protocol-based experimental system where PSCoP is
expected to be used. Since the FTT-CAN trigger message
data field uses the same coding principle, the dispatching
overhead is thus drastically reduced.

B. Architecture Overview

In devising a hardware structure where the planning
scheduler functionality could be mapped, two separate

activities were identified within the scheduler algorithm.
One of them is performed in the context of each variable
and acts basically as a timer, keeping track of the instants
when the variable must be produced. The other concerns
the placing of transactions in the respective ECs in the
plan table. This partitioning of activities inspired the
architecture depicted in figure 2. Here, the Variable’s
Production Timer (VPT) units are responsible for the first
activity while the Schedule Plan Builder (SPB) takes care
of the second activity.
Each variable to be scheduled is allocated to one VPT

unit which holds the variable’s period (P) and initial phase
(Ph) parameters. Global timing information received from
the SPB allows all VPTs to be synchronised while keeping
track of the EC schedule currently being generated. When
a VPT detects that the scheduling for a particular EC
where its variable should be produced has started, it
signals the SPB requesting the allocation of the associated
transaction. Based on the transactions’ duration (C) and on
the remaining EC time left, the SPB unit decides to
allocate or reject the transaction. If the transaction is
accepted, further requests for allocation in the same EC
(from other VPTs) are received, otherwise the current EC
schedule is finished and a new one is started.
Because more than one VPT can request allocation in the

same EC, a mechanism must exist to help SPB to select
which request to serve first. A daisy chain structure similar
to the one commonly found in microprocessor-based
systems to solve interrupt or bus arbitration, is used with
this purpose. The chain signal ripples through VPT1 down
to VPTN. When a VPT unit raises a request for allocation
its chain signal output is deactivated. After this, the unit is
allowed to communicate with SPB only if its chain signal
input is true, which means that, in a contention situation,
the leftmost VPT with a pending request is always the
only one with the chain signal input set to true, and
therefore the one which can engage communication with
SPB.
Besides the VPTs and SPB the PSCoP architecture inclu-

des two other functional blocks, the Configuration Control
Unit (CCU) and the Schedule Plan Memory (SPM). The
former includes control and status registers and provides
access to the parameter registers in the VPTs and SPB.

VPT1 VPT2 VPTN

CCU

SPB

SPM

uC Interface Port

Fig.2 - PSCoP architecture. SPB - Schedule Plan Builder; VPT -
Variable's Production Timer; SPM - Schedule Plan Memory; CCU -

Configuration Control Unit.

A A A A AB B BC CD DF H

ECs

1 011 0 0 0 0

1 1

00000

000000

0000

000000

1

111

1

111

1

X1

X5

X4

X3

X2

HGFEDCBA

Fig. 3 - EC schedules in the SPM and the corresponding bus
transactions. An example showing a 5-EC plan table supporting 8

variables and, above it, the respective timeline diagram.

REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

The SPM unit is where SPB builds the plans with the EC
schedules it generates. In the SPM memories an EC sche-
dule is represented by an N-bit word where each bit set
represents a specific transaction in that EC. The diagram
in figure 3 illustrates the relationship between the
transactions placed in EC time slots, and EC schedules in
the SPM.

C. Preliminary Feasibility Assessment

The first prototype of PSCoP will be implemented on a
XC4010XL FPGA. It will have 64 VPTs and a parameter
resolution of 8-bits. The memory banks in SPM will
support 20-EC plans, or, in other words, will be 20 x 64-
bits FIFO memories. The prototype will be tested on a
CAN master node based on a XS40 development kit from
XESS® Corporation [11].
At the time of writing the coprocessor is still in the
design entry stage, and so simulation results are not yet
available. Nevertheless, an accurate estimate of perfor-
mance was obtained by carrying out a step by step analy-
sis of the various phases of the coprocessor’s internal
operation, counting the number of clock cycles required
by each.
Each variable allocation takes 6 clock cycles. In the end
of each EC, another 3 clock cycles are needed to transfer
the schedule to the SPM unit and to begin the next
schedule. The time taken by PSCoP to build a complete
plan with W ECs, tsched, can thus be expressed (in clock
cycles) as written below, where Nv(ECi) is the number
of variables allocated in ECi.
To calculate a worst case scheduling time in our

prototype version, we shall assume a maximum number of
allocations in every EC of the plan. For this to occur all
messages must have the smallest possible length, which, if
we consider CAN2.0A format and a 1Mbit/s data rate,
corresponds to a minimum transmission time of 44μs [12].
If we consider an EC duration of 1ms, then we can have at
most 22 of these minimum length messages per EC, in
every EC. Using the expression above, the scheduling time
in this worst case scenario is computed as 2700 clock
cycles. Since the FPGA in the development board is
clocked at 12MHz, this translates to 0.22ms, or 1.1% of
the time taken by the CPU to dispatch an entire plan.

V. CONCLUDING REMARKS AND FUTURE WORK

A coprocessor for traffic scheduling in a field-bus system
was described in this paper. Named PSCoP the
coprocessor works according to the planning scheduler
principle, and builds internally the plan tables in a format
which is particularly adapted to the FTT-CAN protocol.
Its architecture was defined with a main goal in mind: the
design of a simple, working coprocessor which could be
implemented in a medium-sized FPGA, and used as an ini-
tial testbed to obtain insight on the real performance gains
and problems of the architecture. This is expected to allow

the identification of the design changes needed to explore
the whole benefits of the planning scheduler paradigm.
A first implementation of PSCoP will be available

shortly. As shown with the rough performance estimate
given for this initial version working at a modest clock
rate, PSCoP can easily create a plan table in a small
fraction of an EC in a field-bus running at 1Mbit/s. This
result is quite encouraging in the development of the
coprocessor because it suggests that some of the
performance room may be sacrificed in favour of a few
design improvements and additional functionality.
At this point it is clear that one of these improvements

must concern the arbitration method used to resolve the
contention between several VPTs requesting to allocate
their transactions in the same EC. In fact the current daisy-
chain mechanism, while very simple to implement,
strongly compromises the operational flexibility of the
planning scheduler. Once the variables are allocated to
VPTs it is not possible to change dynamically their
priorities. Also, it is not possible to introduce at run-time a
new variable with a priority in between the ones already
mapped. To get rid of these limitations we are considering
to use a self-selection arbitration system in the next
version of PSCoP. Since this scheme relies on dynamic
priority vectors it will be easy to implement various
scheduling policies like RM, EDF or simply priorities-
based, and even to switch dynamically between these
policies. Another interesting feature to include in this new
design will be the possibility to change the plan size while
the coprocessor is running.

REFERENCES

[1] L. Almeida; “Flexibility and Timeliness in Fieldbus-Based Real Time
Systems”, PhD Thesis, University of Aveiro. Portugal, Nov. 1999.

[2] Bosch, “CAN specification version 2.0 - Tech. Report”, Bosch
GmbH, Stuttgart, Germany, 1991.

[3] P. Leterrier, “The FIP Protocol”, WorldFip Europe, 2-4 Rue de Bône,
92160 Antony – France, 1992.

[4] J. Fonseca, L Almeida; “Using a Planning Scheduler in the CAN
Network”, Proc. ETFA’99 – 7th IEEE Int. Conf. on Emerging
Technologies and Factory Automation, Spain, October 1999.

[5] L. Almeida, R. Pasadas, J. Fonseca - “Using The Planning Scheduler
to Improve Flexibility in Real-Time Fieldbus Networks” IFAC,
Control Eng. Practice Vol. 7, Nº 1, pp. 101-108, Jan. de 1999.

[6] L. Almeida, J. Fonseca, P. Fonseca - “A Flexible Time-Triggered
Communication System Based on the Controller Area Network”
Proc. FeT '99 - Fieldbus Systems and their Applications Conf.,
Germany, Sept. 1999.

[7] Valery Sklyarov et. al.; “Development System for FPGA-Based
Digital Circuits”, Proc. FCCM’99: IEEE Symp. Field-Prog. Custom
Computing Machines, USA, April de 1999.

 [8] J. Adomat et. al.; “Real-Time Kernel in Hardware RTU: A Step
Towards Deterministic and High-Performance Real-Time Systems”;
Proc. of Euromicro RTS ’96, L’Aquila, Italy, 1996, pp.164-168.

[9] D. Niehaus et. al.; “The Spring Scheduling Coprocessor: Design, Use,
and Performance”; Proc. of the 14th IEEE Real-Time Systems
Symposium, USA, 1993, pp.106-111.

[10] J. Hildebrandt, F. Golatowski D. Timmermann; “Scheduling
Coprocessor for Enhanced Least-Laxity-First Scheduling in Hard
Real-Time Systems”; Proc. 11th Euromicro Conf. on Real-Time
Systems, England, June, 1999, pp.208-215.

[11] XESS Corporation, URL: http://www.xess.com.

∑
=

+=
W

i
isched ECNvWt

1
)(.6.3

REVISTA DO DETUA, VOL. 3, Nº 1, SETEMBRO 2000

[12] K. Tindell, A. Burns, and A. Wellings; “Calculating Controller Area
Network Message Response Times”; Proc. IFAC Workshop on
Distributed Computer Control Systems, Toledo, Spain, Sept. 1994.

