
A Simulation Environment for EIA-709.1/IP Routers

Stefan Soucek, Dietmar Loy
soucek@ict.tuwien.ac.at, dloy@coactive.com

Institute of Computer Technology, TU Vienna, Austria
Coactive Networks Inc., Sausalito, Calif., U.S.A.

Abstract – EIA-709.1/IP routers enable the extension of Lon-
Works networks over the Internet, using it as just another
transmission channel. To investigate the influence of delay jit-
ter and loss rates, this paper presents a simulation framework
for both LonWorks nodes and routers. The Network Sim-
ulator ns-2 from UC Berkeley is extended by fieldbus nodes
and EIA-709.1/IP routers. The simulation executes EIA-709.1
transport layer transactions using a sender/receiver model.
Different router implementations can be analyzed using a
generic scenario with sending nodes connected to local and re-
mote receiving nodes.

I. INTRODUCTION

LonWorks is one of several widely used fieldbus systems
in the factory automation arena as well as in building au-
tomation. The system was originally developed by Echelon
Corp., Palo Alto, Calif., in the early 90’s [1], and its com-
munications protocol LonTalk has been standardized in the
U.S. by the EIA in EIA-709.1 [2]. The EIA-709.1 protocol
features a layered architecture quite closely modeled after
the OSI reference model and supports segmented networks
connected by routers. The LonTalk transport layer provides
a means for reliable end-to-end communication [3].

Both, its field of operation and the protocol properties
of LonWorks, have driven the effort to inter-connect Lon-
Works networks over or with the Internet. More specif-
ically, well established IP technology can be used to ex-
tend existing LonWorks segments acting as just another
transmission media, or to access certain application-centric
parts of the network remotely. The latter approach re-
quires some kind of LonWorks/IP gateway, which acts on
behalf of remote application-specific requests. A number
of different concepts have been presented to access a con-
trol network from the application level [4]-[6]. In order to
physically extend a LonWorks network, so-called tunneling
LT/IP routers are used [7]. From a LonWorks perspective,
they behave like ordinary LonWorks routers, from an IP
perspective, they tunnel EIA-709.1 packets through an IP
channel. The IP channel, however, behaves quite differently
than native LonWorks channels [8]. In order to analyze the
impact of packet loss, delay, delay jitter and re-ordering on
such a channel, this paper presents a simulation framework
that was created to host both LonWorks nodes and LT/IP
routers.

II. THE ns-2 SIMULATION FRAMEWORK

Among the desired features for a simulation framework are
the ability to extend the framework using a commonly used
programming language, the presence of existing modules
that can model an IP network and its protocols, as well as
some sort of scripting mechanism to create a number of dif-
ferent scenarios.
The Network Simulator Version 2 (ns-2) [9] of the VINT

project from UC Berkeley is being used for research includ-
ing TCP flow control and multi-cast algorithms and, thus,
provides substantial support to simulate IP related tasks.
Furthermore, ns-2 is based on a C++ object hierarchy at
its core, and is configurable by using an object-oriented Tcl
variant, OTcl [10]. The C++ hierarchy is referred to as the
compiled hierarchy, whereas the OTcl code is called the in-
terpreted hierarchy. The interpreted hierarchy is mirroring
C++ objects and also defines new aggregate objects, that
combine objects from the compiled hierarchy. This archi-
tecture has two key advantages: (1) run-time demanding al-
gorithms can be implemented using compiled code in C++,
and (2) combination and configuration of the simulation ob-
jects can be done in the interpreted hierarchy without the
penalty of a re-compilation for each simulated scenario or
parameter set.
The main mechanisms to access compiled objects from

OTcl are bound variables and a command handler method.
A bound variable is accessible as an ordinary OTcl instance
variable from the interpreted hierarchy. Anything, that is
beyond the capabilities of simple variables, is implemented
as an OTcl command which is passed to the compiled ob-
ject’s command method. The connector class makes use
of these mechanisms to enable the aggregation of different
ns-2 objects.
A typical ns-2 simulation consists of node objects, which

are interconnected by links and exchange packets. Agent
objects are attached to nodes and generate or consume traf-
fic. The node object is responsible to receive packets from
other nodes or one of its agents and send them over the cor-
responding link or to the addressed agent. The link itself
models a certain queuing discipline, transmission delay and
link errors (such as packet loss).
An extension of ns-2 to accommodate a new protocol basi-

cally needs to define new agent classes to handle that proto-
col as well as a set of simulator commands to conveniently
set up scenarios using these agents. The following work is
based on the methodology that was used to create an RSVP
extension for ns-2 [11].

III. EIA-709.1/NS

The EIA-709.1 protocol allows nodes to communicate in
a peer-to-peer fashion. Each node can send messages to
any other node or group of nodes on the network. This
means the communication relations on the network con-
sist of a number of one-to-many (1:�) relations. Each of
these relations can also be considered as � one-to-one rela-
tions. An appropriate model to describe such communica-
tion relations is a sender/receiver model. Therefore, EIA-
709.1/ns implements two agent classes: a traffic source
(Agent/Eia709) attached to a sending node and a traffic sink
(Agent/Eia709Sink) attached to a receiving node.
The node objects needed to simulate fieldbus nodes have

slightly different properties than typical ns-2 nodes. Field-
bus nodes do not implement routing functionality. There-
fore, EIA-709.1/ns uses nodes of class FieldbusNode,
which can attach to exactly one agent and transmit all sent
packets to each of their neighbors. This way, the native
broadcast nature of LonWorks channels can be modeled
without having to use a special network abstraction. This
approach neglects any bus arbitration times, but does con-
sider transmission delays over the links. Figure 1 shows a
simple setup with one sending node (subnet/node address
47/10) and three receiving nodes (47/11, 47/12, 47/13).
In situations where media contention cannot be neglected,
these nodes can also be connected to a network node, that
simulates a multiple access protocol.

SR

R

R

47/10

47/11

47/12

47/13

Figure 1 - Simple EIA-709.1/ns scenario.

The LonWorks agent attached to the fieldbus node imple-
ments the functionality of the EIA-709.1 transport layer.
Since messages are broadcasted to all connected nodes, the
agents have to perform address checking on the received
messages and must drop those packets not destined for
them. This is accomplished by supplying the subnet/node
address information at creation time of the agent. By using
the set-nid and add-group commands, agents can further be
assigned a LonWorks node ID and added to groups, respec-
tively.
The source agent provides an OTcl command to start a

transmit transaction. This command takes parameters for a
destination address, the transport service (unacknowledged
repeated, acknowledged, request/response), the number of
retries and the transmit timer ���. As in the Neuron-Chip,
a priority and a non-priority transmit transaction can be is-
sued in parallel. A transmit transaction in general involves
a number of packets sent to the receiver (request messages)
and replies from the receiver (confirmation messages). De-
pending on the service and addressing scheme, request mes-
sages can be normal data packets or reminders. Confirma-
tion messages are usually acknowledgment packets from
the receiver. The success or failure of a transmit transaction

is logged to a trace file and registered in global transaction
counters.

The sink agent processes the corresponding receive trans-
actions, which are triggered by the reception of indication
messages. Sink agents can be configured with an instance
variable for the non-group receive timer � �� (nongroup-
timer), that decides for how long a receive transaction will
be able to perform duplicate detection. Indication messages
may be ordinary data packets or reminders. Depending on
the used transport service the sink agent sends response
messages back to the sender. The reception of a new re-
ceive transaction is logged to a trace file and registered in a
global transaction counter.

On the sending node the packets are associated with a
transmit transaction space �� and on the receiving nodes
with receive transaction spaces �� as on the Neuron-Chip.
Consequently, confirmation messages are matched by their
priority attribute to a priority or a non-priority �� . Consid-
ering the packet filtering based on the packet’s destination
address, a certain �� in the simulation is fully identified
by a priority attribute and a source subnet/node address.
Packets for the receiving nodes are matched by their pri-
ority attribute, source subnet/node address and destination
address (not necessarily subnet/node) to a certain ��. Each
transaction in its transaction space (�� or ��) is uniquely
identified by a 4-bit transaction identifier (TID), if transmit
timers, receive timers and packet delays are within certain
limits. Unlike the Neuron-Chip, however, the simulation
does not impose an upper limit on the number of active re-
ceive transactions per node.

If the timers are mis-configured or the packet delay suf-
fers a high variance, TIDs may become ambiguous due to
wrap-arounds and cause the receiving node to either let a
duplicate packet start a new transaction or treat a packet of
a new transaction as a duplicate of an old one. Both situa-
tions result in protocol failures that the simulation catches
by tracking a simulation-wide unique transaction identifier
(Check-TID). Such error situations are logged to a trace file
and registered in global transaction counters. Table I lists
the available transaction counters, which provide statistics
across all nodes in the simulation.

Table I

TRANSACTION COUNTERS.

cnt-trans-ok completed transmit transactions
cnt-trans-fail failed transmit transactions
cnt-trans-rx indicated receive transactions
cnt-failures-tx failures in transmit transactions
cnt-failures-rx failures in receive transactions

The global transaction counters are implemented as OTcl
class variables of the source and sink agents and can be
accessed by their corresponding class procedures. The class
variable concept has the advantage to be independent from
the actual number of nodes in the simulation.

IV. LT/IP ROUTER FRAMEWORK

In order to investigate the influence of an IP channel be-
tween two LT/IP routers, the LonWorks nodes (using the
broadcast paradigm) have to be connected to the IP net-
work (using routing) over the LT/IP router. A typical sce-
nario contains a sending node that communicates to local
receivers as well as remote receivers. A remote receiver is
considered a receiver behind the IP channel. A simple setup
is depicted in Figure 2, consisting of two local and one
remote receivers, denoted by superscripts � and �, respec-
tively. The routers are referred to as sending router, when
it is connected to the sending node’s network, or receiving
router, when connected to the remote receiving node’s net-
work.

lR

lR
Rr

��
��
��

��
��
��

���
���
���

���
���
���IP link

S

sending router receiving router

Figure 2 - Simple LT/IP router scenario.

The LT/IP devices comprise a fieldbus node to communi-
cate to LonWorks nodes and an ordinary ns-2 node (drawn
hatched in Figure 2) to connect to an IP link. To the fieldbus
node, a simple agent is attached that forwards all packets to
an LT/IP agent, which is attached to the IP node. The LT/IP
agents come in two flavors, depending on whether they are
connected to the sending router (Agent/LTIP/Send) or the
receiving router (Agent/LTIP/Recv). This method has the
advantage to re-use the existing node classes in the router
and, thus, get the full support of ns-2 IP simulation. The
core LT/IP functionality is encapsulated in the LT/IP agents,
which act as agents for the LT/IP protocol defined in [7].
Finally, the sending and receiving LT/IP agents have to be
logically connected to establish ns-2 IP communication be-
tween them.
The routers are connected by an ns-2 duplex-link object,

which can be configured with a certain transmission delay,
can include an error module for simulating packet losses,
and a special delay module for simulating delay jitter. The
loss error module can be configured for either a certain bit-
error rate or a packet loss rate. The delay module has a
random variable attached, which varies the extra delay for
each packet transmitted over the link. The random variable
can be chosen from a number of probability distributions,
including constant value, uniform distribution, and expo-
nential distribution.
Using a constant value, the simulation can on purpose pro-

duce certain delay jitter situations, which cause a protocol
failure in the corresponding transaction spaces, if the LT/IP
routers include no provisions to detect stale packets. The
application pattern on the sending node can also be con-
structed such to produce TID wrap-arounds, and make the
sending node use the very same TID for a certain destina-
tion as for the last transaction to this node. These two cases,
the stale packet and the TID wrap-around, are the two crit-
ical effects that have to be overcome by LT/IP routers.
To further investigate the effects of different LT/IP router

implementations, the LT/IP agents are subclassed for the
different approaches. There exists a plain LT/IP agent that
just forwards packets, a subclass that sequences the pack-
ets and drops out-of-order packets and a subclass that drops
packets due to their time-stamp. Other algorithms to de-
tect stale LT/IP packets can be researched by creating a
new subclass and attaching the resulting agents to the LT/IP
router framework.
The effectiveness of each approach is summarized by

statistic counters in the routers, one for dropped by se-
quencing, number of stale requests, number of stale con-
firmations, total number of requests, and total number of
confirmations. Together with the statistic counters for the
nodes, it can be seen, how many error situations occurred
and how many of them were detected or led to protocol fail-
ures in the nodes.

V. CURRENT WORK USING EIA-709.1/NS

Using the basic simulation framework for LonWorks nodes
and LT/IP routers, a more detailed investigation on the fol-
lowing items can be made,

� New algorithms to detect stale LT/IP packets in LT/IP
routers,

� a large-scale traffic simulation with a configurable
number of nodes,

� and a model for LonWorks bus arbitration (predictive
�-persistent CSMA).

The basic LT/IP agents use a straight forward way to de-
tect stale LT/IP packets: they drop out-of-sequence packets
and packets whose time-stamp is too far in the past. The
time-stamping method is easy to implement in the simula-
tion, because simulation time is always available. In the
Internet, no global time base is generally available. Nodes
have to use protocols such as NTP [12] to synchronize their
clocks. This can only be done to a certain accuracy. Cur-
rent work is focused on the development of other algorithms
to detect stale LT/IP packets, without the need to use ac-
curate clock synchronization and time servers. With the
EIA-709.1/ns ability to induce packet losses and delay jit-
ter, the different algorithms will be compared performance-
wise and resource-wise.
Any of the available LT/IP agents can be tested in a simple

scenario, which is constructed to produce very well known
error situations. The performance, memory usage and test
coverage, however, can only be approached using a large
simulation setup with an arbitrary number of nodes. A
generic model for such a setup is shown in Figure 3.
This model contains � communication relations � �, each

consisting of one sending node ��, �� local receivers ��
����

(� � �

 ��) and �� remote receivers ��
����

(�� � �

 ��).
Furthermore, the sending nodes follow application patterns
�� to generate the traffic. The key task here is to find a set
of parameters�, ��, �� (� �

 �) along with some typical
critical application patterns�� to verify the functionality of
the LT/IP routers. Critical application patterns in this re-
spect are applications that will cause misleading TID wrap-
arounds for certain destinations. A typical example for this
is the periodic polling of values from 15 destination nodes

...

Rr

Rr

2,1

2,k2

...

Rr

Rr

n,1

n,kn

...
...

R1,1
r

Rr
1,k1

Rn

R2

R1

...

S

R l

R l

...
2,1

2,j

2

2

S

R l

R l

...

n,1

n,jn

n

1S

R l
1,1

R l
1,j1

...

Figure 3 - Generic LT/IP router scenario.

in a round-robin fashion.
Finally, simulation of the local LonWorks segments can be

improved by using the ns-2 network node. This is a special
node that simulates a shared medium access and uses con-
figurable modules for media contention resolution and link
layer queuing. By implementing the predictive �-persistent
CSMA algorithm for the contention resolution module, the
shared media access on typical LonWorks channels can be
simulated. This is useful to approximate the maximum
transaction rate through LT/IP routers on a realistic chan-
nel, which is limited by the bit-rate, packet size and the
channel arbitration time.

VI. CONCLUSION

A simulation framework for fieldbus and more specifically
EIA-709.1 networks to IP network connectivity was pre-
sented. Such a framework is fundamental for developing
fieldbus to IP routers optimized in functionality, perfor-
mance, and cost. In parallel to this effort a PowerPC based
hardware platform is under development in order to verify
the simulation results under real-time and real-world con-
ditions. Networking in industrial and building automation
as well as residential areas is highly cost sensitive and the
hardware resources available need to line up almost per-
fectly with the minimum application requirements in order
to reach the market expectation. Even higher integration
such as System-On-Chip (SOC) designs will be required
for further cost reduction and to satisfy the complexity of
fieldbus to IP connectivity.
Further research areas will include IP connectivity for

other fieldbus protocols such as CEBus (EIA600), EIB, P-
NET, and Profibus, as well as defining criteria for the ideal
fieldbus protocol that directly supports IP connectivity over
WANs. Industry and universities are working close together
to create standards and to improve existing solutions.

REFERENCES

[1] Motorola, LonWorks Technology Device Data, 1997, Rev 4.

[2] Electronic Industry Alliance, Control Network Specification, March

1998, EIA STANDARD EIA-709.1.

[3] D. Dietrich, D. Loy, and H.-J. Schweinzer, LON-Technologie:

Verteilte Systeme in der Anwendung, Hüthig Verlag, Heidelberg,

1997.

[4] Martin Knitzak, Martin Kunes, Martin Manninger, and Thilo Sauter,

“Applying Internet Management Standards to Fieldbus Systems”, in

Proc. of the IEEE International Workshop on Factory Communica-

tion Systems, Piscataway, 1997, pp. 309–315.

[5] OPC Foundation, OPC Data Access Custom Interface

Specification 2.0, July 1999, http://www.opcfoundation.org/

opc spec document.htm.

[6] Stefan Soucek and Hans-Jörg Schweinzer, “Considerations on

a LonWorks/IP Gateway Implementation”, in Proc. of FeT’99,

Magdeburg, Germany, September 1999, pp. 291–298.

[7] Ed Koch, Lontalk IP Channels, LonMark Routers Task Group, 1999,

Request for Comments. Version 1.

[8] Stefan Soucek and Dietmar Loy, “Control Network Data over IP: An

Architectural Overview”, Fachzeitschrift it+ti Informationstechnik

und Technische Informatik, vol. 42, no. 4, 2000, Oldenbourg Verlag

München.

[9] K. Fall and K. Varadhan, ns Notes and Documentation, April 1998,

http://www-mash.cs.berkeley.edu/ns/ nsDoc.ps.gz.

[10] David Wetherall and Christopher C. Lindblad, “Extending Tcl for

Dynamic Object-Oriented Programming”, in Proc. of the Tcl/Tk

Workshop 95, Toronto, Ontario, July 1995.

[11] Marc Greis, RSVP/ns: An Implementation of RSVP for the

Network Simulator ns-2, University of Bonn, http://www-

student.informatik.uni-bonn.de/�greis/rsvpns/rsvpns.ps.gz.

[12] D. Mills, Network Time Protocol (Version 3) specification, imple-

mentation and analysis, University of Delaware, March 1992, RFC-

1305.

