
REVISTA DO DETUA, VOL. 3, Nº 2, OUTUBRO 2000

The TRIPÉ III robot: a Colombus’ egg idea

João Carlos Capucho, José António Parente

Abstract - This paper presents a brief description of the

TRIPE III robot which won the 2000 edition of the Micro-
Rato Contest. It is a reactive robot that combines several
interesting features. In particular, it has a high level of H/W
integration resulting in a low chip count (μC, motor drives
and voltage regulator), it is capable of achieving a speed 70%
higher than most similar robots and it efficiently combines
beacon-following, obstacle avoidance and wall-following
behaviours allowing it to profit from its speed.

Resumot – Este artigo apresenta uma breve descrição do

robot TRIPÉ III, vencedor da edição 2000 do Concurso
Micro-Rato. É um robot reactivo que combina várias
características interessantes. Em particular, apresenta um
elevado nível de integração do H/W que resulta num número
muito reduzido de componentes (μC, motor drives e
regulador de tensão), é capaz de atingir velocidades cerca de
70% superiores às atingidas por robots congéneres e
combina de forma eficiente os comportamentos de busca de
farol, evitar obstáculos e seguimento de paredes permitindo-
lhe tirar vantagem da velocidade mais elevada.

I. INTRODUCTION

The Micro-Rato Contest organized at the University of
Aveiro has just came through its fifth edition. The main
technical challenge associated to the contest is to develop
complete autonomous agents that can find their way
within a closed maze, in the shortest time, from a starting
point to a goal area without any human intervention. The
robots compete 3 at a time and thus, each of them has to
cope with static obstacles (maze) as well as dynamic
obstacles (other robots). Any contact with the obstacles
results in an extra penalty time. The maze is limited to a
square area of 5 by 5 meters and the goal is highlighted by
an omnidirectional infra-red beacon. The timer for each
robot stops counting when the robot enters the goal area,
stops and lights up a small LED. These are, briefly, the
main contest rules. In the following sections we will
describe the TRIPE III robots and we will discuss the
main options taken in its development.

II. TRIPE III’S DESIGN: PROBLEMS AND SOLUTIONS

This was our third participation. In the previous two, 98
and 99, we gained experience and took the robot to a

point where the main limitation was the robot speed. It
was too slow... However, when we tried to increase the
robot speed we had to face several new problems.
Firstly, the motors: after trying several different motors

we found out that cheap ones, like those we can find in
inexpensive toys, are not suitable when we want to have
fast control on rotation speed and direction inversions.
They are particularly noisy (electrical noise!) and it is
difficult to find appropriate gears to decrease their speed
and increase their torque. The effect is that they react
slowlier to the variations in the control voltage, in other
words, the robot inertia has a bigger impact on the motion
of the robot. From an electrical point of view, this means
larger peaks of high current consumption during direction
invertions.
On the other hand, the hacked servomotors provided by

the organization of the contest have an embedded gear
box with a very large reduction ratio. This allows us to get
a reasonably high torque out of very low-power motors.
The consequence is that the rotation speed is also very
much reduced (that is why our previous robots were slow
as were all the others anyway!). Thus, the desired solution
would be to find a better balance between torque and
speed, somewhere between both types of motors referred
above. The difficulty is how to do it without changing the
gear set.
Well, after all the solution was not difficult at all (a

columbus’ egg idea!), bigger wheels! If we consider the
robot as a whole, instead of considering the motors
separately, then we must take into account the wheels
effect in the balance driving force / speed. By changing
the diameter of the wheels we can adjust with fine
resolution the right balance we want. Thus, we started
with the high torque hacked servomotors and we
increased the wheels diameter up to the point where we
could have a sufficiently higher speed and yet a sufficient
driving force to facilitate the speed control (i.e. fast
variations in the wheels speed). The result was an increase
of about 70% in the robot top speed when compared to the
previous versions.
Solved the low speed problem another one came up. This

time it had to do with the analog to digital converter
(ADC) and the infra-red (IR) light sensors. The hardware
provided by the organization to control the robots is based
on the Intel 80C188 processor and on the old ADC0809.
This ADC is mainly used to convert the analog outputs of
hacked digital IR detectors. These are based on the well

 REVISTA DO DETUA, VOL. 3, Nº 2, OUTUBRO 2000

known Sharp GP1U58 used in TV sets and VCRs in the
IR remote control receiver unit. The robot uses 3 of them
to detect obstacles and 2 other (actually with a different
demodulation frequency, GP1U583) to detect the beacon.
The obstacle detection is active in the sense that the robot
emits IR light, using IR LEDs, and looks at the reflection
received by the detectors. The analog hack that is carried
out on these detectors allows to have a gross measure of
the distance a given obstacle is from the robot. The output
voltage increases proportionally to the intensity of the
modulated IR light (around 40KHz) received by the
detector. On the other hand, the voltage is inversely
proportional to the distance between the robot and the
obstacle. The relationship between voltage variation and
obstacle distance is aproximately quadratic.
Now, the problem of using the old ADC0809 is that it

requires a certain power from the detectors whenever it
takes a sample. Since the detectors have a very limited
drive capability, their output voltages vary when several
samples are taken consecutively in a short interval. So, the
ADC returns nearly correct values only if the sampling
rate is relatively low (less than 50 samples/s). Otherwise,
the detectors saturate. However, even if we take few
samples per second, the total variation of the measured
value is smaller and the reaction time is longer than the
ones we expected to obtain.
Since our robot was already moving faster, we wanted to

increase the sampling rate of the obstacle detectors. The
idea was to travel the same distance between two
consecutive samples and thus, to maintain the robot
obstacle awareness. As we have just explained, increasing
the sampling rate of those hacked detectors was not
possible with that ADC. Thus we tried to find in the
market an ADC that could improve our acquisition
system. However, after a few searches, we came up with
the idea of using a complete new controlling system based
on a microcontroller with not only an integrated ADC but
also the required memory, timers and digital ports.
We chose one AVR (AT90S series) from Atmel

Company. This series is based on a high performance
RISC architecture in which almost every instruction is
carried out in a single clock cycle. These microcontrollers
have very low power consumption, as low as a few
miliamperes. We decided to rebuild all the control unit
based on the AVR AT90S8535 (fig. 1), a small wonder of
the modern technology. It is the most complete of it series
with a very impressive set of characteristics in a single
chip that we will present next.

III. TRIPE III’S HARDWARE

Like many microcontrollers the AT90S8535 operates
with a Harvard architecture, opposed to Von Neuman’s.
Harvard machines have two separate areas of memory,
one for the machine instructions and another for the data,
while the Von Neuman architecture has only one area for
both data and instructions. Both architectures have a set of
special memory locations call registers, which hold

temporary data inside the processor. Most of the program
instructions operate on data kept in such internal registers.

AT90S8535 – 8PC

- 32 general use registers of 8 bits
- 8 Kbytes of flash memory, the equivalent to

approximately 4000 instructions
- 512 Bytes of ram
- 512 Bytes of eeprom
- Serial interface for in system programming
- 8-channel, 10-bit ADC
- Programmable UART
- Two 8-bit Timer/Counters with Separate

Prescaler and Compare Mode
- One 16-bit Timer/Counter with Separate

Prescaler, Compare and Capture Modes, and dual
8-, 9-, or 10-bit PWM

Figure 1. Layout and main characteristics of the AT90S8535 μC

In this case, the microcontroller has 32 general purpose
registers which is very unusual in the microcontrollers
realm and highly valuable for the programmers. The
assembly programmer gains allot because any of the 32
registers can be used with almost any instruction, it means
that most of the significant operations can be performed
between registers. For those interested in using the C
programming language, there are several compilers
available. However, there is an open software compiler,
from GNU, that takes advantage of the 32 registers to the
maximum, optimizing some instructions in surprising
way.
As we said before, since the controller has a Harvard

architecture there is an instruction area separated from a
data area. On the AVR, the first one is FLASH memory
while the second is SRAM (Static Random Access
Memory). The major advantage of using FLASH memory
is that the data is not lost when power is removed or fails
while the SRAM is a lot faster when writing but loses its
contents if power fails. Well, the FLASH memory does
not hold the data indefinitely with power down. But it is

REVISTA DO DETUA, VOL. 3, Nº 2, OUTUBRO 2000

guaranteed to hold it for about 40 years, which we think is
enough!!!
More importantly, the total available instruction memory

is 8 Kbytes used in 16 bit chunks, or words, which means
that each instruction is 2 bytes long. Therefore we have
space for about 4000 instructions. Well you could say that
in today’s gigabytes world 4000 instructions is nothing
but when you are programming simple reactive robots you
will see that it is enough for many applications.
The data memory is smaller, 512 bytes. Once again it

looks short but it proved to be more than enough to hold
all the variables and stack that we needed.
The 512 bytes of EEPROM (Electrically Erasable

Programmable Read Only Memory) are quite different
from the rest of the data memory. It works like the
FLASH memory but endures a lot more rewrites, about
1000 for the FLASH against 100000 for the EEPROM.
Besides, it can be rewritten while the system is running
via the I/O ports. This is very handy when, at run-time, we
want to save some dynamic parameters and keep them
even after power down.
The access to the I/O ports as well as to the peripheral

units (ADC, UART, EEPROM, Timers, Interrupt
controller…), is very easy and very well documented.
Besides, all peripheral units have the possibility to work
with interrupts which can be time-saving.
The communication with the outside world can be

carried out serially by two standard means, the UART
(Universal Asynchronous Receiver and Transmitter) and
the SPI (Serial Peripheral Interface) which allows high-
speed synchronous data transfer. In particular, the
controller can be programmed in-circuit by downloading
the program via the SPI port.
In what concerns the ADC (the initial cause to build a

new robot controller) it has 8 multiplexed input channels
with sample and hold amplifier. This ensures that the
voltage at each ADC input is held at a constant level
during conversion. It can work in free run at 200 kHz with
10 bits resolution, resulting in 15000 samples per second.
However, if the 10 bits are not needed, you can increase
the clock to 1 MHz and with 8 bits resolution achieve
77000 samples per second!
In our case, we used a sampling rate of 600 samples per

second and per channel without any negative effect on the
IR detectors. Remember that with the ADC0809 at 50
samples per second the sensors did not work, they
completely saturated.
The AT90S8535 also provides three general purpose

Timer/Counters, two 8-bit T/Cs and one 16-bit T/C, which
are important to generate the square waves required to
modulate the IR LEDs (T/C0) and to control the motors
using a PWM scheme (T/C1). In the first case, the
Timer/Counter 0 was programmed as an overflow counter
to generate the required 40KHz for the IR LEDs
modulation. In the second case, the Timer/Counter 1
supports two output compare functions which were used
to generate two independent PWM signals and thus
control both motors independently.

The control of each motor via PWM, pulse width
modulation (fig. 2), has two main advantages over other
forms of linear control: it allows a very simple interface to
the control logic, no analog signals are used; and it is
highly efficient in terms of dissipated power. Notice that
the switching transistor that is normally used in series
with each motor is always either in saturation, when
switched on, or cut off. In both situations the power
dissipated in the switching transistor is minimal since
when it is switched on it has a near zero voltage and when
it is cut off it passes no current.

Figure 2. PWM control of motor speed

Finally, the effective motors drive was carried out by
means of an integrated dual H-bridge, the L293, which
allowed an independent bidirectional control of each
motor. The circuit has the capability to drive the two
motors and does not require a heat sink.
Figure 3 shows the layout of the robot control system

where the low chip count is clear. Notice that the overall
control system has just 3 integrated circuits, the
microcontroller, the motor drive and the voltage regulator.
This aspect makes the system very easy to assemble,
decreases the probability of hardware failure and
facilitates any required fixing.

Figure 3. Layout of the robot control system

The dimensions of the PCB are 7x5cm. Since it is highly
compact its placement in the robot is also facilitated.
Moreover, it contributes to decrease the robot weight.

 REVISTA DO DETUA, VOL. 3, Nº 2, OUTUBRO 2000

IV. SOFTWARE

And what about the software, the brain of the beast? We
think that, the less complex the robots are, the better they
work, so we tried to reduce the software complexity to the
minimum possible. It has two main behaviors which
alternate in priority, follow the beacon and avoid
obstacles while following walls. The first one (fig. 4)
simply turns the robot to the beacon and moves towards it.
The second one (fig. 5) makes the robot go around walls
without touching them, whenever one appears on its way
to the beacon.

Figure 4 . Beacon following behaviour

Figure 5. Wall following behaviour

The combination of these two basic behaviours is carried
out in the following way: if the way to the beacon is clear,
follow the beacon, if a wall (or an obstacle in general) is
found in the way, go around until the way to the beacon is
clear again (fig. 6).

V. CONCLUSION

In this paper we described the TRIPE III robot. It is a
good example that it is possible to build small, simple
inexpensive robots which can, nevertheless, perform well
in many situations. In fact, it won the Micro-Rato Contest
this year.

The robot’s most interesting features are the optimization
of the driving force / speed, which resulted in an increase
of 70% on the robot speed just by using larger wheels,
and the compactness and integration of the control system
with a total chip count of 3. This latter aspect facilitated
the placement of the control system in the robot structure
and contributed to reduce the robot weight. Particularly
the weight reduction also contributed to maintain a good
controlability of the robot movements even with a higher
speed.
The software structure was also very simple, based on 2

main behaviours, beacon following and obstacle
avoidance with wall following.
Finally, in this paper we hope to have shown that by

digging a little, instead of directly using the parts supplied
by the organization, one can find very interesting and
different solutions to existing problems and come up with
a different robot that can even perform better as was the
case.

Figure 6. Combining both behaviors

VI. ACKNOWLEDGEMENTS

We would like to thank Luis Almeida by his patience in
the reviewing of this paper that allowed to improve the
quality of the writing as well as the structure of the
contents and consequently, the paper clarity.

