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Abstract – Pulmonary contours in chest CT images are 

closed curves that may, in some cases, exhibit multiple 
concave and convex irregularities. In this paper we assess the 
quality of pulmonary contours obtained by several fully 
automated methods. A comparison among these contours 
and corresponding manually drawn reference contours was 
performed and several figures of merit were assigned to each 
one of the automated contours extraction algorithms. 
Likeness between a computed contour and reference contour 
was measured through the Pratt figure of merit, similarity 
index, mean error and fraction of errors greater than 5 
pixels. For each of these figures we present an exploratory 
statistical analysis and discuss its sensibility to the 
longitudinal location of the CT slice. 

I. INTRODUCTION  

Contour extraction often occurs as a pre-processing step 
of a more global image analysis task. It happens to be the 
case of computer aided analysis of pulmonary X-ray 
tomograms [1] where many analysis algorithms start by 
correctly identifying each one of the pulmonary regions. 
Most of the methods for pulmonary segmentation rely on 

intensity discrimination within the Hounsfield scale [2, 3]. 
This task can be complicated by the presence of spurious 
structures within the same scale range and/or by visual 
merging of the pulmonary regions themselves. In previous 
works [4, 5] the authors presented several methods 
designed to cope with these difficulties leading to lung 
contours with a variable degree of similarity to those 
provided by several radiologists. 
In this paper we present several methods to 

quantitatively assess the similarity between the contours 
produced fully automatically as described in [4, 5] and 
those manually produced over the same set of images by 
human experts. Besides localized error distribution 
images, in order to achieve meaningful comparisons [6], 
each contour detection technique will be assigned several 
global figures of merit [7, 8]. Some aspects related with 
the sensitivity of each of the figures of merit will be 
discussed. 

II. REVIEW OF COMPARED CONTOUR EXTRACTION 
METHODS 

In previous works we developed three fully automated 
methods that perform pulmonary contours extraction. 
The first two methods, which are from here on called 

Fast Method and Lung’s Split Method, were based on 
judicious intensity discrimination [9] followed by several 
levels of morphologic processing [10]. The latter, besides 
intensity discrimination, performs a Radon Transform 
[11] based region identification by estimating the lung’s 
center of mass. The algorithm is still able to split the 
pulmonary area when, eventually, the left and right lung 
appear as a unique visually merged region. 
For the sake of comparison with a classical approach 

[12], a third method base on the active contour concept 
[13, 14] was also developed. As usually, this iterative 
approach is controlled by a energy minimization process 
that leads each contour point to an equilibrium state in 
terms of internal and external forces [4, 5]. 

III. METHODS  

The relative performance of the contour extraction 
algorithms [15] was assessed by a twofold methodology 
based both on the localized distribution of absolute error 
(measured in pixels) and on global figures of merit. The 
reference contours were digitized thinned versions of 
hand drawn curves made my several radiologists. 

A. Reference contours 

To obtain the reference contours for the selected images 
we have asked expert radiologists to draw the contours on 
transparent sheets superimposed on hardcopies of the 
images. These hand drawn contours were scanned and 
subjected to some processing in order to identify the 
contours of the right and left lungs. 
To register the reference curves as the right and left 

contours, the image Radon transforms for 0 and 90 
degrees were calculated and from the maximum values of 
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these two transforms we obtain an estimate of the centre 
of each lung. Applying a morphologic filling [16] starting 
from the centre of one lung and a second filling starting 
from any point external to the lungs, we obtain an image 
containing the filled area of the other lung. The contour of 
the lung is then easily obtained. Erosion was applied to 
obtain a thinner version of each of the reference contours  

B. Figures of merit  

In order to compare two contours using the distances 
between them, the following steps are necessary: 
1 - find pairs of corresponding points (one from each 

contour);  
2 -  determine distances between these points; 
3 -  finally compute a global figure that characterizes 

the similarity of the contours. 

 
Figure 1 – Example of lung contours A and B.  

Let A and B (figure 1) be two similar closed lines 
corresponding to the contour of a lung: 

Contour A = {set of n points} 
 Contour B = {set of m points} 

each point belonging to an image.  
Let areas C, D and E be:  

C = area enclosed by contour A 
D = area enclosed by contour B 

E = C XOR D 
F is defined as a closed line existing inside area E in 

zones where contour A is not equal to B, coincident with 
these contours otherwise (figure 2).  

 
Figure 2 – Line F (black) inside area E (grey) and a zone where F≡A≡B. 

Lines perpendicular1 to contour F are obtained for each 
point of this contour. The interception of each of these 
lines with contours A and B defines a pair of 
corresponding points on both contours (figure 3). This 
completes step 1. 

 
Figure 3 – Lines perpendicular to F are used to determine corresponding 

points (P, Q) on contours A and B. 

Step 2 corresponds to the computation of Euclidean 
distances (in our case) between all the corresponding 
points. 
Finally (as step 3), several figures of merit were used to 

assess the similarity between contours A and B: 
- Pratt figure of merit, 
- mean distance,  
- percentage of distances > 5 pixels. 
- similarity index 

The Pratt figure of merit [17] is defined as:  
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where N is the number of distances used, di is the distance 
between two corresponding points and α is a parameter 
related to the size of the contours. The value of α = 1/9 
was chosen so that, if all the distances are equal to 3 
pixels, FPratt will have the value 0.5. 
The mean distance is used to obtain a global average 

view of the distance between contours. 
The percentage of distances greater than 5 pixels (which 

corresponds to an error of 2% in images of 256×256) 
allows assessing the incidence of significant errors. 
Finally, the Pratt figure of merit also corresponds to a 
measure of the global behaviour of distances between 
contours, however it is a relative measure that varies in 
the interval [0,1].  
Another possible way of comparing two contours 

consists in using the binary images defined by these 
contours and calculate their similarity.  
Two binary images are defined having the pixels interior 

to areas C and D set to “1” and all the others set to “0”. If 
these images have n pixels, two n dimensional vectors H  
and I  are defined having as components the values of 
the pixels (1 or 0). 

                                                           
1Perpendicular lines are computed as orthogonal to the 

tangents to each point of F using neighbourhoods of 20 
contour points. The size of this neighbourhood is a 
parameter that is related to the sensitivity to local 
characteristics of line F and had to be adjusted. 
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These binary images may be regarded as elements of a 
Hilbert vector space where, using the usual definitions of 
norm and inner product, one can obtain a morphological 
similarity measure based on the parameter: 
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θ measures the similarity between the two contours. This 
value will vary from a value of 0 degrees, for coincident 
contours, to 90 degrees for completely different contours. 

C. Visualization of differences between contours  

Figures of merit provide information on the global 
behaviour of the differences between contours, however 
local information can be important in some conditions. 
When we compare a contour with a reference to gain 
insight on how to improve a detection method, analysing 
the values of all distances can be a valuable help. Thus we 
have developed a visualization technique that allows the 
analysis of all the distances in a simple but effective way 
(as shown in figure 4). The “XOR area” obtained from the 
two contours and the corresponding F line (described in 
III.B) convey an approximate idea of the zones where the 
two contours are more different and the amount of 
difference. This visual representation is complemented 
with a bar chart, for each lung, displaying the sequence of 
all the computed differences. The capital letters on both 
the visual representation and the bar chart provide 
context. 
Additionally, a histogram showing the number of 

differences with a certain value is presented (as shown in 
figure 5). 
 
 

 
Figure 4 – Visualization of location of differences between contours 

including the F lines. 

 
Figure 5 – Bar chart and histogram of the difference values for left and 

right lungs correspondi4ng to figure 4. 

IV. RESULTS AND DISCUSSION 

 To compare the three pulmonary contours extraction 
techniques that we have developed [4, 5], it is necessary 
to quantify the accuracy of the contours obtained with 
these methods from chest CT images. To perform this 
quantification we have used the methods described 
previously.  
The results presented in this section were obtained using 

a set of 32 CT images selected from two different patients 
with images from all regions of the lungs and as different 
as possible.  

A. Comparison of the contour detection methods based on 
data visualization – worst cases 

We present two examples as worst cases in lung contour 
comparison. 
The first case, shown in figures 1, 2, 4 and 5, 

corresponds to a situation where the contours A and B are 
similar, but having a region where the difference is 
considerable (due to the presence of relevant vascular 
structures) displayed in figure 2 as a large grey stain. 
From figure 5 we can conclude that almost all errors are 
below 5 pixels with the exception of a small region near 
point D and between points G and H.  
The histogram of figure 5 confirms that our contour 

detection method produces generally good results; we can 
see that almost all errors are below 5 pixels. 
Another worst case is shown in figures 6 through 9. It 

corresponds to the result of the active contour method, 
applied to an image in the basal region, where the right 
lung has a very thin area not recognised as belonging to 
the lung. 
The contour comparison technique handles this problem 

calculating the distances near point I, as shown in figure 
8. 
In the left histogram of figure 9 it is shown that the errors 

concerning the left lung are less or equal than 6 pixels, 
however most errors are in the range 3 to 5 pixels. For the 
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right lung, the results are identical with an exception near 
point I, where the error reaches 40 pixels. 
These examples show that this contour comparison 

technique allows comparing similar contours, even when 
the two contours have significant differences in some 
regions. 

 
Figure 6 – Another example of lung contours A and B 

 
Figure 7 – Line F (black) inside area E (grey). 

 
Figure 8 – Visualization of the location and magnitude of differences 

between contours including the F lines. 

 
Figure 9 – Bar chart and Histogram chart of the difference values for left 

and right lungs of figure 8. 

B. Similarity index  

The box-and-whiskers plot [18] of figure 10 seems to 
indicate that there is no significant difference among the 
three methods regarding the similarity index computed by 
equation (2), however the snake’s method exhibits the 
larger range values, especially in the basal region of the 
lungs (figure 11). This is due to the difficulty in adapting 
the snake to a line that has multiple irregularities.  
 

 
Figure 10 – Box and whisker plot for similarity index. 
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Figure 11 – Similarity index along the pulmonary longitudinal axis 
(where apex region = 0% and basal region = 100%). 

A value between 15 and 20 degrees for the similarity 
index seems to be a good result, having in mind the used 
scale (0 degrees = excellent; 90 degrees = very bad).  

C. Pratt’s figure of merit 

Figure 12 shows the results obtained using the Pratt’s 
figure of merit on the selected image set; the second 
method seems more consistent than the others. 
 

 
 

Fig. 12 - Box and whisker plot for Pratt’s figure of merit. 
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Fi
g. 13 – Pratt’s figure of merit, along the pulmonary longitudinal axis 

(where apex region = 0% and basal region = 100%). 

This figure of merit also reveals worse performances of 
all the methods in slices closer to basal regions. For slices 
in the middle pulmonary region, the Pratt figure of merit 
may show some inconsistency. In fact, all our contour 
extraction algorithms are rather sensitive to border 
irregularities that often appear in this region as a 
consequent of the presence of relevant vascular structures.  

D. Mean error 

Again the lung’s split method is more consistent than the 
others, having a smaller dispersion in the mean errors 
(figure 14); this is consistent with the results obtained for 
this method when evaluated by both other figures of 
merit.  
 

 
Fig 14 – Box and whisker plot for mean error. 
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Fig 15 - Mean error (distance) along the pulmonary longitudinal axis 

(where apex region = 0% and basal region = 100%). 

In the apex region, the values of the mean errors are 
lower than the average, since that the contours of the 
lungs are nearly circular. 
In the basal region, the errors are higher than the 

average, due to the concave and convex curvatures.  
In the middle region once again the lack of contour 

smoothness and greater inter-patient variability induces a 
non-negligible inconsistency, as already concluded by 
analysing figure 13. 

E. Percentage of points with error > 2% (5 pixels) 

Using this figure of merit, the snakes’ method gets the 
worst result as seen by the large dispersion in figure 16. 
Figure 17 shows that the percentage of points with error 

higher than 2% of CT image size (5 pixels) is lower than 
0.06%, which emphasises the effectiveness of the three 
contour detection methods. 
 

 
Fig 16 – Box and whisker plot for percentage of points with error 

(distance) greater than 2% (5 pixels). 
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Fig. 17 - Percentage of points with error (distance) greater than 2% (5 
pixels), along the pulmonary longitudinal axis (where apex region = 0% 

and basal region = 100%). 

An overall analysis allows us to conclude that the lung’s 
split method achieves the best results when compared 
with the other two methods. 

V - CONCLUSIONS  

We have quantitatively assessed the relative performance 
of three contour detection techniques previously 
developed for the extraction of lung contours. 
The differences between the computed contours and the 

reference contours were evaluated by global quantifiers 
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such as the Pratt figure of merit, the similarity index, the 
mean error and percentage of points with error higher than 
5 pixels. 
These quantifiers were applied to all the contours 

obtained on 32 CT images and an overall analysis points 
to a global consistency among the results obtained with all 
these figures of merit. 
The exploratory data analysis performed suggests that 

the lung separation technique is the best method for the 
task of lung contour extraction. However, in order to fully 
prove this claim, further statistical analysis using contours 
obtained on a larger image set is necessary. 
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