
REVISTA DO DETUA, VOL. 3, Nº 3, JANEIRO 2001  
 

 

Resumo - A complexidade e a flexibilidade do sistema de 
escalonamento on-line de mensagens usado num barramento 
CAN, é normalmente limitada pelo baixo desempenho dos 
microcontroladores usados. Uma solução possível para 
ultrapassar esta limitação consiste em transferir as tarefas 
de escalonamento para hardware dedicado. 
Este artigo descreve um coprocessador para escalonamento 

de tráfego e análise de escalonabilidade. O escalonamento 
pode ser programado segundo três diferentes critérios, e o 
número de mensagens a escalonar bem como os parâmetros 
respectivos podem ser alterados dinamicamente. O 
coprocessador é ainda capaz de analisar a escalonabilidade 
de um grupo de mensagens, suportando assim mecanismos 
de admissão controlada. Embora tenha sido desenhado de 
forma a suportar o protocolo FTT-CAN, pode ser adaptado 
também a outros barramentos de campo com escalonamento 
centralizado. Este artigo não apresenta ainda qualquer 
estimativa do desempenho do coprocessador.  
 
 
Abstract - The low-processing power microcontrollers 

typically used within CAN nodes, usually place tight limits 
on the complexity and flexibility of on-line message 
scheduling systems. One solution to break this barrier is to 
transfer the scheduling task to a hardware implementation. 
A preliminary version of a traffic scheduling and 

schedulability analyser coprocessor is proposed in this 
paper. This coprocessor, which will be implemented on a 
low-cost FPGA, can generate message schedules for the node 
CPU, leaving it just with the dispatching task. Adding to this, 
scheduling can be made to follow one of three different 
policies, and the number of messages to be scheduled and 
their respective parameters can be changed dynamically. To 
support on-line admission control of new messages, the 
coprocessor implements a schedulability analyser function. 
The coprocessor was designed to support the FTT-CAN 
protocol, but it can be adapted to any other fieldbus using 
centralized scheduling. 
Since the coprocessor is still in an early design stage, no 

measures of performance are yet available. 

I. INTRODUCTION  

The FTT-CAN (Flexible Time-Triggered communication 
on CAN) protocol presented in [1] and developed further 
in [2], adopted originally a centralized planning technique 
to schedule the synchronous traffic on the CAN network. 

The planning scheduler [3] was proposed as a means to 
trade-off between the purely static and dynamic 
scheduling policies. Specifically it tries to achieve a part 
of the timeliness characteristics of static scheduling, and 
some of the flexibility of dynamic scheduling, without 
having its time overhead. Basically what the planning 
scheduler does is to build static schedules for consecutive 
fixed duration periods of time called the plans. The 
creation of a plan table is overlapped with the dispatching 
of the previous plan. The bus time is usually divided in 
fixed duration time slots called the Elementary Cycles 
(ECs). The EC duration is the basic time unit in which 
message periods are expressed. Plans are always made up 
of an integer multiple of ECs. 
The plan size affects two important properties of the 

scheduling system: its run-time overhead and its response 
time to changes in the message set. Moreover these are 
affected in opposite directions, as the former decreases 
with the plan size while the latter increases [2]. 
The run-time overhead is usually a sensitive issue due to 

the limited processing power generally available in CAN 
network nodes, in particular in the FTT-CAN master node 
where the scheduler executes. In addition, the latter node 
has to execute on-line admission control procedures 
which, usually, require relevant processing power. This 
limitation sets a lower bound on the plan size, beyond 
which scheduling might not be feasible. Now, the problem 
arises when this lower bound is still too high to guarantee 
a satisfactory response time to changes in the message 
parameters. 
In an attempt to decouple the basic scheduler 

requirements from the capabilities of the node CPU, a 
specialized coprocessor dedicated to this task was 
developed. The Planning Scheduler Coprocessor [4], or 
PSCoP as it was named, was implemented in an FPGA 
and supports up to 8 messages. The two internal plan 
tables available in this first version can be configured with 
up to 16 ECs. The coprocessor is accessed by the CPU as 
a peripheral, and is capable of scheduling a plan in less 
than 1% of the time needed to dispatch it [4]. 
In this paper we propose a new scheduling coprocessor 

inspired on the same basic PSCoP architecture, but with a 
whole new functionality, including a schedulability 
analyser. 
The next section starts with a presentation of the 

coprocessor features, and explains the reasons which led 
us to include some of them. Section III, which is the main 
part of this article, gives an overview of the coprocessor 

A Coprocessor for Traffic Scheduling and Schedulability Analysis in FTT-CAN 

Ernesto Martins, José Alberto Fonseca 



 REVISTA DO DETUA, VOL. 3, Nº 3, JANEIRO 2001
  
 

architecture, first by presenting the interface to the 
microcontroller, and then by discussing the internal 
architecture with all its functional blocks and execution 
mechanisms. Finally, section IV describes the present 
status of this development, and concludes the paper. 

II. DEFINING THE COPROCESSOR FEATURES 

The Planning Scheduler Coprocessor represented our 
first effort towards a specialized hardware solution for 
message scheduling in a fieldbus system. An important 
result obtained from this experience concerns the speed 
gap between the coprocessor and the microcontroller, 
which was found to be much higher than what we thought 
at first. This suggests that we can introduce additional 
functionality in the coprocessor (constrained, off course, 
by the FPGA size) and still manage to have a performance 
level compatible with the time constraints imposed by the 
system. 
Also based on the high relative performance of PSCoP, it 

was decided that the new design should work as a 
dynamic scheduler coprocessor instead of working as a 
planning scheduler. The notion of Elementary Cycle (EC) 
was kept, and, instead of building a complete plan table, 
the coprocessor was thought to build just one EC-
schedule at a time. 
Having a single EC-schedule output, guarantees that all 

changes in the message set are accounted for in the next 
EC-schedule, thus ensuring the highest responsiveness. 
However, preventing the coprocessor to build several EC-
schedules in advance as PSCoP is able to, doesn’t allow it 
to anticipate the missing of deadlines as in the planning 
scheduler. To solve this problem we introduced a 
schedulability analysis capability in the coprocessor. 
Therefore, every time the message set is changed, we can 
run the analysis to check if the set is still schedulable. 
Scheduling is resumed only if the analysis indicated a 
schedulable set. 
A response time-based schedulability analysis function 

can be implemented in the coprocessor using the timeline 
method [2]. Since this method consists basically in 
building EC-schedules - exactly what a scheduler 
coprocessor is supposed to do - its design can be made 
almost without any additional complexity. 
In PSCoP, scheduling is ruled by a static priority-based 

policy. Pursuing a goal of maximum flexibility, the new 
coprocessor was defined supporting a few other 
scheduling policies between which operation can be 
changed dynamically. Also, besides the period, phase and 
message duration, there is now explicit support for the 
deadline and priority parameters. All parameters can be 
changed during operation. 
The following list summarizes the coprocessor features: 

• Dynamic scheduler & schedulability analyzer; 
• Three scheduling policies: rate monotonic (RM), 

deadline monotonic (DM), and Priority-based; 
• Support for 32 variables with 8-bit parameter 

resolution; 

• Variables parameters are: phase (Ph), period (P), 
deadline (D), priority (Pr) and message duration 
(C); 

• Scheduling policy, variable set and parameters can 
all be changed dynamically; 

• One, 32-bit, EC-schedule output register. 

III. COPROCESSOR ARCHITECTURE 

Starting from the feature set described in the previous 
section, an architecture was defined. In this section we 
describe such an architecture. Section A presents the CPU 
interface and discusses the coprocessor programmer’s 
model as seen by the node microcontroller. Section B 
describes the architecture at the register-transfer level. 

A. Node CPU Interface 

A.1. Variable’s Parameters Register Slots 

These registers (see figure 1) hold the parameters of each 
variable to be scheduled. There are 32 slots of registers 
for a maximum of 32 variables. Each slot contains 5, 8-bit 
registers, where the parameters of each variable should be 
written to prior to any scheduling or schedulability 
analysis operation. 
The variable’s priority, optionally written to the priority 

register (PriReg), has a range of 0 (highest priority) to 
255. The values written to the phase (PhaReg), period 
(PerReg) and deadline (DeaReg) registers are expressed in 
number of ECs. A register slot has no variable allocated to 
it if its period register is cleared. The values written to the 
message duration register (DurReg) should be expressed 
in a normalized unit given by NECd = (EC Duration / 
255). If a message has a duration of Δt time units, its 

PriReg0

PhaReg0

PerReg0

DeaReg0

DurReg0

PriReg1

PhaReg1

PerReg1

DeaReg1

DurReg1

PriReg31

PhaReg31

PerReg31

DeaReg31

DurReg31

VPT0 VPT1 VPT31

Variable’s Parameters Register Slots (R/W)

. . .

Control / Status Register

7 0 7 0 7 0

SADone
Go . . .NS SP1 SP0

7 0

R/WR/W R/W R/WR

31 0

EC-Schedule Register (R)

 
Figure 1 - Coprocessor programmer’s model. 



REVISTA DO DETUA, VOL. 3, Nº 3, JANEIRO 2001  
 

 

corresponding DurReg register should have the value ⎡Δt / 
NECd⎤ . The deadline value written in the DeaReg 
register is only relevant for schedulability analysis. 

A.2. EC-Schedule Register 

At the end of a scheduler operation this 32-bit register 
contains the schedule for an entire EC. Each variable 
allocated in that EC is specified by a 1, in the bit position 
corresponding to its register slot. Bit number i 
corresponds to the variable assigned to register slot i. This 
is the same coding method used in PSCoP. 

A.3. Control and Status Register 

This 8-bit register is used by the microcontroller to 
control the coprocessor. Only 5 bits are used. 

Go/Done - The microcontroller sets this bit to 
command the coprocessor to generate an EC-
schedule (if SA=0) or perform a schedulability 
analysis (if SA=1). The coprocessor resets this bit 
when done. 

SA - When set, enables the schedulability analysis 
mode in the coprocessor. 

NS - After the coprocessor is instructed to do a 
schedulability analysis, NS becoming 1 means that 
the set is not schedulable. 

SP[0,1] - These two bits specify the scheduling policy 
to be used by the coprocessor, according to the 
assignments in Table 1. 

 
SP1 SP0 Scheduling Policy 

0 0 Priority-based 
0 1 Rate Monotonic 
1 0 Deadline Monotonic 
1 1 not used 

Table 1 - Scheduling policy control bits. 

B. Architecture Overview 

At a high level of description the architecture of the new 
coprocessor doesn’t differ much from the one adopted in 
PSCoP [5]. This is true because, despite dealing now with 
a dynamic scheduler, we can still divide the scheduling 
function in the same two separate activities identified in 
the planning scheduler algorithm. These are, the action of 
placement of transactions in the ECs, and the function of 
keeping track of the instants in time when each variable 
must be produced. In the new coprocessor this work is 
carried out by the EC-Schedule Builder (ECSB) and the 
Variable’s Production Timer (VPT), respectively. 
Figure 2 depicts the coprocessor architecture with one 

ECSB and 32 VPTs connected through an internal bus. 
Each variable to be scheduled is allocated to one VPT unit 
which holds the variable’s period (P), initial phase (Ph), 
deadline (D) and priority (Pr) parameters. VPTs are thus 

the physical image of the variable’s parameters register 
slots of the coprocessor programmer’s model. 
Global timing information received from the ECSB 

allows all VPTs to be synchronised while keeping track of 
the EC-schedule currently being generated. When a VPT 
detects that the scheduling for a particular EC where its 
variable should be produced has started, it signals the 
ECSB requesting the allocation of the associated 
transaction. Based on the transactions’ duration (C) and 
the remaining EC time left, the ECSB unit decides to 
allocate or reject the transaction. If the transaction is 
accepted, further requests for allocation in the same EC 
(from other VPTs) are evaluated, otherwise the current 
EC-schedule is finished and the Go/Done bit in the 
Control/Status register is cleared. 

B.1. The Variable’s Production Timer 

The internal structure of each VPT unit is represented in 
figure 3. The registers PriReg, PerReg and DeaReg of the 
coprocessor programmer’s model (figure 1) are physically 
implemented in a register file inside the VPT.  
Like in PSCoP, there are two presettable decrement 

counters, the Allocation Counter (AC) and the Deadline 
Counter (DC). AC is used to keep track of the variable’s 
release time. DC is used in the schedulability analysis to 
evaluate if the variable can be produced within the 
specified deadline. Unlike PSCoP, nothing is done here to 
detect missed deadlines during normal scheduler 
operation - the user is expected to use the schedulability 
analysis capability in order to guarantee this never 

Coprocessor Internal Bus

. . .ECSB

μC
InterfaceμC Port

VPT0 VPT1 VPT31

 
Figure 2 - Coprocessor architecture. 

ECSB- EC-Schedule Builder. VPT - Variable’s Production Timer. 

PriReg

PerReg

DeaReg

IDReg AC

ACR

DC ASR

AllCU

ArbCU

+

TC_AC TC_DC

SO

VPT Private Bus

Coprocessor Internal Bus

S

 
Figure 3 - Variable’s Production Timer internal structure. 

AC - Allocation Counter; DC - Deadline Counter; ACR - Allocation 
Counter Register; S - State Flag Register; ArbSReg - ASR - Arbitration 
Shift Register; AllCU - Allocation Control Unit; ArbCU - Arbitration 

Control Unit. 



 REVISTA DO DETUA, VOL. 3, Nº 3, JANEIRO 2001
  
 

happens. 
Also, there is no dedicated register for the phase 

parameter. What is mapped in the PhaReg position of the 
register slot is the AC counter, which is thus initially set 
with the phase value as it should be. 
The AC counter is decremented by one every time the 

ECSB starts a new EC-schedule. When AC reaches zero, 
indicating the variable should be produced, the Allocation 
Control Unit (AllCU) requests the variable allocation to 
ECSB. 
Because more than one VPT can request allocation in the 

same EC, a mechanism must exist to decide which request 
to serve first. In the new coprocessor this selection 
mechanism is based on a serial self-selection arbiter 
distributed by all the VPTs. Contention in this kind of 
arbiter is resolved using dynamic priority vectors which 
can be derived from message parameters such as their 
period or priority, making it easy to implement well-
known scheduling policies, and to switch dynamically 
between them as desired. The serial self-selection arbiter 
is implemented by the Arbitration Shift Register 
(ArbSReg) and the Arbitration Control Unit (ArbCU) in 
each VPT, and a common tristate bus contention line. 
The VPT and the ECSB have two operating modes: the 

Scheduler Mode (or S-Mode) and the Analyser Mode (or 
A-Mode), which correspond, respectively, to the 
coprocessor functions of scheduler and schedulability 
analyser. 
In the middle of its normal scheduler operation, the 

coprocessor can be asked to do a schedulability analysis, 
and then to resume scheduling from the point where it was 
interrupted. To do this the VPTs must save their state in 
S-Mode before switching to A-Mode. The state 
information to save, which will be needed on return from 
A-Mode, is the current value in AC and a bit indicating 
whether or not the VPT has a pending request. The 
resources which hold these two pieces of information 
during a schedulability analysis are, respectively, the 
Allocation Counter Register (ACR) and the State Flag 
Register (S) in figure 3. 

B.2. VPT Operating Modes 

Figure 4 depicts the operation flowcharts of the VPT in 
its two modes. 
 
S-Mode - In the S-Mode (Fig.4-a), after all registers have 

been initialized, the VPTs sit idle in state S1S, waiting for 
ECSB to start building the first EC-schedule. When the 
Go/Done bit is set in the Control/Status register, ECSB 
initiates a series of cycles in which it receives the IDs of 
VPTs requesting the allocation of their variables in the 
current EC. With a collection of these IDs, ECSB builds 
the EC-schedule. 
The VPT uses its AC counter as shown, with the phase 

and period parameters, to keep track of the EC where its 
variable should be allocated. When the processing for that 
particular EC-schedule begins, the VPT raises a request. 

Next an arbitration cycle decides which among the VPTs 
requesting allocation, can send its ID to ECSB. For a 
variable to be successfully allocated, its VPT must not 
only win the arbitration, but also it must receive a positive 
acknowledge from ECSB indicating that the variable’s 
transaction fits in the EC (or its remaining time left). The 
sending of this acknowledge as well as the transmission of 
the ID, are both part of the arbitration protocol. 
Many arbitration cycles may be generated as part of each 

EC-schedule processing. If a VPT was not able to allocate 
its variable in the first arbitration cycle, it waits for the 
next while keeping its request active. Eventually the 
current EC may be closed before the VPT is able to 
allocate successfully. In this case the VPT continues 
asserting its request while waiting for the next EC, where 
the variable allocation is tried once more. 
Between the processing of EC-schedules, VPTs are idle 

in either states S1S or S2S. In this condition the variable set 
may be changed by the CPU (the coprocessor idle state is 
indicated by a zero in bit Go/Done in the Control/Status 
register). All parameters of existing variables can be 
changed. In particular, changes in the variable’s period 
are guaranteed to be made without any spurious transient. 
Variables are deleted by clearing the period register which 
deactivates the corresponding VPTs. Adding new 
variables activates other VPTs which, after being 
initialized, sit idle in state S1S. 
 

Registers initialisation
(AC := Ph)

AC := AC - 1

Start
of (new)

EC-schedule

AC = 0
?

Alloc.
succeeded

?

Start
of new

EC-schedule

AC := P

Request allocation

AC := AC - 1

Y

N

N

N

N

Y

Y

Y

S1S

S2S

Signal condition
and halt VPT

AC := AC - 1

1st/new
EC-schedule

AC = 0
?

Alloc.
succeeded

?

Start
of new

EC-schedule

AC := P; DC := D

Request allocation

AC := AC - 1
DC := DC - 1

Y

N

N

N

N

Y

Y

Y

S1A

S2A

DC = 0
?

N

Y

S3A

a) b)

 
Figure 4 - VPT operation. a)- Flowchart in EC-Scheduler mode (S-Mode); 

b)- Flowchart in Schedulability Analysis mode (A-Mode). 



REVISTA DO DETUA, VOL. 3, Nº 3, JANEIRO 2001  
 

 

A-Mode - As can be seen from figure 4-b, the VPT 
flowchart in A-Mode is very similar to the S-Mode 
flowchart. The difference is basically the utilisation of the 
Deadline Counter (DC). 
In testing the schedulability of the message set, what the 

coprocessor does is to check that the response time 
experienced by each message is always below its 
respective deadline value. Theory shows that it is enough 
to do this response time analysis at time zero only [2]. In 
other words, if we guarantee that the first allocation of 
each variable is made within its deadline, then we can 
assure the schedulability of the set. 
To check individual response times we build what is 

known as the timeline. This consists basically in 
constructing the EC-schedules in the normal way, until all 
variables are allocated at least once. If we succeed in 
doing this without any missed deadline, then the set is 
guaranteed to be schedulable. 
To implement this method, the coprocessor needs little 

more than the scheduling functionality. In particular the 
VPT needs just to use the DC counter to monitor the delay 
between the variable’s release and its allocation. If this 
delay exceeds the variable’s deadline, ECSB is signaled. 
 
Transitions between S-Mode and A-Mode - Figure 5 

details how the VPTs switch between the two operating 
modes. Bit SA in the Control/Status register controls these 
transitions. If SA is zero, the coprocessor is in S-Mode. If 
SA is set the coprocessor changes to A-Mode, and all 
VPTs sit idle in S1A. If now the Go/Done bit is set, a 
schedulability analysis is performed. After the analysis is 
completed, some VPTs will be in S1A, some in S2A, and, if 
the set turned out to be non-schedulable, one or more 
VPTs will end in state S3A. If SA is now cleared, the state 
of all VPTs prior to the change to A-Mode will be 
restored, and the coprocessor returns to S-Mode. 
If the set turned out to be non-schedulable we might 

want to change some parameters in the message set and 
run another schedulability analysis. The changes in the 
message set (e.g. changes in the parameters, deletion of 
messages) can also be made with the coprocessor in A-
Mode. 
To do another schedulability analysis all VPTs must, 

however, be first initialised in state S1A with AC=0. One 

way to do this is to toggle the coprocessor to the S-Mode 
and then back to A-Mode using the SA control bit. After 
this operation all VPTs will be in state S1A ready to start 
another schedulability analysis. 

B.3. Arbitration between VPTs 

The self-selection arbitration system serializes the arrival 
of allocation requests to ECSB, based on the criteria 
programmed in bits SP[1,0] of the Control/Status 
Register. 
The arbiter relies on a contention bus line with a 

recessive and a dominant state, through which VPTs with 
pending requests try to send their respective IDs to the 
central ECSB. Each VPT uses a different priority vector 
to contend on this shared bus line. A bit-wise arbitration 
of all vectors from contending VPTs is serially performed 
during the arbitration cycle, resulting in the highest vector 
being transmitted. 
Priority vectors have 13 bits as shown in figure 6. The 

most significant 8 bits are taken from the priority, period 
or deadline register, as dictated by the scheduling policy 
in use. The least significant 5 bits are equal to the VPT 
identifier, which is hardwired in the IDReg register. Using 
the VPT ID as part of the priority vectors guarantees the 
uniqueness of all vectors while eliminating the need for a 
separate transaction to identify the winning VPT. 

B.4. The EC-Schedule Builder 

This module builds EC-schedules in scheduler mode, and 
controls the coprocessor operation in analyser mode. 
Figure 7 shows the ECSB architecture. 
As we saw above, the ECSB builds EC-schedules by 

accepting requests for allocation from the VPTs. The start 
of processing of a new EC-schedule (in scheduler or 
analyser mode) is communicated to all VPTs by a global 
signal, which the VPTs use to decrement their internal 
counters, and know therefore when they should request 
the release of their respective variables. 
If there are requests, ECSB triggers a first arbitration 

cycle, at the end of which it acquires the ID of the highest 
priority VPT. The ID is captured in the register AddLatch, 
and used as an index to the table MDLut. This is a RAM 
look-up table where the DurReg registers, holding the 

5
MSB LSB

8

Priority value
or

Period value
or

Deadline value

VPT ID

 
Figure 6 - Arbitration vector. 

Save AC and VPT state bit;
AC:=1 (initial phase);

S1S

S2S

S1A

S2A

S3A

Restore AC and VPT state bit;

SA := 1

SA := 0
S1S

S2S

S1A

S-Mode A-Mode

 
Figure 5 - Transitions between S-Mode and A-Mode in the VPT operation. 



 REVISTA DO DETUA, VOL. 3, Nº 3, JANEIRO 2001
  
 

duration of each transaction, are physically mapped. The 
transaction duration of the corresponding variable is thus 
retrieved from this table to check if the transaction fits in 
the EC, or its remaining free time (if we are already past 
the first allocation). To check this, ECSB keeps track of 
the total EC time already booked by previous transactions 
in the Acc Register. The new transaction time is thus 
accumulated to the value in this register. Due to the 
normalization of transaction times, if the time just added 
exceeds the time left in the EC, this addition results in an 
overflow condition. 
In case there is no overflow, the variable is allocated in 

the EC. This allocation is recorded in the EC-Schedule 
Register (ECSReg) by the Decoder module using the ID 
in the AddLatch, which sets the bit located in the bit 
position corresponding to the VPT just served. A signal 
sent at the end of the arbitration cycle, tells the VPT that 
the allocation was made, allowing it to withdraw its 
allocation request. In case there are more pending requests 
from other VPTs, the ECSB initiates another arbitration 
cycle. 
This sequence is repeated until ECSB finds an allocation 

request whose transaction exceeds the remaining time in 
the EC. In this case the variable is not allocated, and the 
EC-schedule is closed. No more arbitration cycles are 
generated, which means that pending requests are deferred 
until the next EC-schedule is processed. In scheduler 
mode the Go/Done bit is reset and the coprocessor goes 
idle. 
In analyser mode the ECSB works basically the same 

way, with the exception that it does not stop after 
completing an EC-schedule. In this mode the ECSB 
simulates the construction of successive EC-schedules. It 
stops doing this only if a VPT detects the missing of a 
deadline, or if all VPTs succeed in allocating their 
variables at least once. The former condition is 
communicated to ECSB by the assertion of a bus line. It 

indicates that the set is not schedulable and results in the 
activation of the NS flag in the Control/Status Register. 
The latter condition is detected by ECSB, using the EC-

Schedule Register. In analyser mode this register is not 
cleared between the processing of successive ECs, so that 
the allocation of all variables is detected when all bits 
become set. In this case the set is flagged as schedulable 
by a zero in NS. 
Note that, contrary to the VPT modules, the ECSB does 

not need to save any state information before switching to 
analyser mode. 

IV. PROJECT STATUS AND CONCLUSIONS 

In this paper we described a coprocessor capable of 
traffic scheduling and schedulability analysis. It was 
conceived as an evolution of PSCoP, and as such it is 
particularly adapted to the FTT-CAN protocol. 
At the time of writing the coprocessor is still in the early 

stages of development, with only the VPT unit almost past 
the logic design stage. So, for now, no quantitative 
performance figures are available yet to assess the 
coprocessor’s feasibility. As soon as all design entry is 
complete we expect to obtain an estimate of its 
performance through simulation. Afterwards, a first 
prototype with all the characteristics described, will be 
implemented on a XC4010XL FPGA. Hopefully it will 
include 32 VPTs, depending on the FPGA resources 
required by each. 
For the coprocessor to achieve its goal, it must be able to 

run the schedulability analysis fast enough, typically in a 
fraction of the time it takes to dispatch an EC-schedule. In 
addition, in case the message set is not schedulable, the 
microcontroller must have time to change whatever it is 
needed to make it schedulable. Building the timeline 
implies generating EC-schedules until all variables are 
allocated at least once. If no deadline is violated in this 
process, then the set is said to be schedulable. The time to 
complete the timeline will be dictated by the highest of all 
deadlines, by the number of variables allocated in each 
EC and, of course, by the speed of the design itself. 
While a worst case for the execution time of this analysis 

is now difficult to predict, the high performance room 
obtained for PSCoP, indicates that such a schedulability 
analysis function has all chances to work within the time 
constraints imposed by most applications used with 
fieldbuses. 

REFERENCES 

[1] Almeida, L., Fonseca, J., Fonseca, P.; “A Flexible Time-Triggered 
Communication System Based on the Controller Area Network” 
Proc. FeT '99 - Fieldbus Systems and their Applications Conf., 
Germany, Sept. 1999. 

[2] Almeida, L.; “Flexibility and Timeliness in Fieldbus-Based Real-
Time Systems”, PhD Thesis, University of Aveiro. Portugal, 
November 1999. 

[3] Almeida, L., Pasadas, R., Fonseca, J.; “Using The Planning Scheduler 
to Improve Flexibility in Real-Time Fieldbus Networks” IFAC, 

ECSReg

AddLatch Decoder

ECSB

Control Unit

Coprocessor Internal Bus

.

.

.

DurReg0

DurReg1

DurReg31

Adder

Acc

μC Port I/F Logic

c

MDLut

32

5
ID

μC Port
CSReg

Figure 7 - EC-Schedule Builder architecture and μC Interface. 
MDLut - Message Duration Look-up table; ECSReg - EC-Schedule 

Register; CSReg - Control/Status Register. 



REVISTA DO DETUA, VOL. 3, Nº 3, JANEIRO 2001  
 

 

Control Engineering Practice Vol. 7, Nº 1, pp. 101-108, Janeiro de 
1999. 

[4] Martins E., Neves P., Fonseca J.; “PSCoP – A Planning Scheduler 
Coprocessor”, WIP Proceedings of the IEEE International Workshop 
on Factory Communication Systems, ISEP Porto, September 6-8 
2000, pp.27-30. 

[5] Martins E., Neves P., Fonseca J.; “Architecture of a Fieldbus 
Message Scheduler Coprocessor based on the Planning Paradigm”, 
submitted for publication in Microprocessors and Microsystems.  


