Approximating linear time with finite count clocks

Pedro Fonseca

Abstract — In computer systems, actions are trig-
gered, not only by external events, but also by the
passing of time. In the case of real-time systems,
these actions must be executed under strict time
constraints. Deciding on what actions to take de-
pends on the correct result of operations like com-
paring time instants. These are complicated by the
fact that clock counters have a limited life span. If
care is not taken, their wrap-around may present
problems and limit the operating life of a system.
We present a simple method to circumvent this
problem, based on a counter that has a life span of
twice the larger interval of interest. This method
is easily and efficiently implemented by using the
type cast facilities of languages such as C.

I. TIME AND CLOCKS IN COMPUTER SYSTEMS

Computer systems interact with their environment. In
many cases, the start and stop of computer actions are
triggered, not by any user interaction, but rather by
the passing of time. To execute an action constrained
by time, computer systems must contain a device to
perceive time: an internal clock. This clock is used
by the computer system to take decisions to start and
stop the execution of tasks, in order to respect its time
constraints. We find here two notions of time. On
one side, there is the time that controls the evolution
of events in the computer environment. This time is
external to the computer system and corresponds to
the physical quantity: we call it physical time. On the
other side (“at the same time”, one could say) there
is time as perceived by the computer system. This
is the time that commands the start and stop of the
computer internal actions. We call this clock time.

Physical time is (at least, for all practical purposes...)
a linear time. We can represent it by a straight line
(fig. 1), and events are points in that line. The line
is infinite. In our perception of the Universe, time
has always existed and it will continue to exist. The
notion of an instant (or a time...) after which there
would be no more time makes no sense to our minds.
Every point in the time line is reached once and only
once. Before we have reached that instant, it belongs
to the future; for one instant, it is present; after we
have reached it, it will be past and it will be no longer
reachable (an idea with tremendous implications in our
life and psychology).

Dep. de Electrénica, Universidade de Aveiro,
P3810-193 AVEIRO, Portugal, E-mail: pfQdet.ua.pt,
Tel. +351 234 370984, Fax: 4351 234 381128,

URL: http://sweet.ua.pt/ pf

Past Present Future

Figure 1 - Linear time

We generally consider time to progress from left to
right in a horizontal line. Taking some point to be the
present, the past is on the left side, the future is on
the right (no political consequences should be inferred
from the preceding statement...). We use notions like
happened before or happened after since tender age. We
can assign a time mark to every event, and these can
be used to establish a sequence of events. We define
an ordering of events using only their time marks: the
sequence of events corresponds to the sequence of time
marks.

All clocks in a computer system are based in the same
principle: an oscillator produces periodic events, the
clock ticks, and a counter is incremented at each clock
tick. The value stored in the clock is clock time. Be-
cause it is based on a counter, clock time differs from
physical time in two fundamental aspects. First, clock
time is discrete, whereas physical time is continuous.
In mathematical terms, measuring time with a clock is
an application C, defined by C : R — V, where V is a
discrete set. We represent physical time by the letter
t, and clock time by the letter c. ¢ = C(t) is the clock
value that corresponds to physical time t. For sake of
simplicity, and w.l.o.g., we will consider that physical
time and clock time are measured using the same units
and that clocks are perfect (there is just a quantization
error and no change of scale from physical time to clock
time).

fOSC

Oscillator >

Counter

Clock
value

\/

Figure 2 - Model of physical clock

The second difference is that, whereas physical time
is infinite and unbounded (at least, to our perception),
possible values for clock time are finite and bounded.
In mathematical terms, V is a finite set. We call
M = #V the clock counter modulo. In many cases
Vv =1{0,1,2,...,M — 1}. The count starts at 0 and,

when it reaches M — 1, the clock value returns to the
initial value at the next count, restarting the cycle.
This means that clock time is a circular time (fig. 3):
any point in a circular time is reached repeatedly, over
and over (given enough time for the counter to wrap
around). Unless the oscillator is stopped, this will go
on forever and ever (once again, our notion of never
ending time...). This corresponds to a notion of a time
represented, not by a straight line, but by a circle. A
circular time presents a point of singularity: the clock’s
value increases as time elapses except in the point when
the counter overflows. At this point, a sudden decrease
of size M — 1 occurs.

0
M-1,, 1

Figure 3 - Circular time

Common uses of clocks in a computer system are to
measure the time elapsed between two instants, to de-
termine whether some time instant belongs to the past
or to the future or to know how much time we have left
before a given instant. These can be generally referred
to as comparing time instants.

The fact that V is a finite set (and that, by this reason,
clock time is a circular time) introduces some signifi-
cant differences between clock time and physical time.
First, all computations in clock time are performed in
modulo M. Secondly, whilst in physical time, the or-
der of events can be unambiguously derived from the
instants of their occurrence, the same is no longer true
in clock time. A smaller clock value can correspond
to a later instant. Moreover, given two clock values
¢1 = C(t1) and ¢a = C(t2), even if we know their order
of occurrence, there is an infinite number of possible
values for the difference between them. We want to
measure the amount of physical time elapsed between
two instants, given the respective clock time. Every
value in the set

S={r:z=c—-—a+kMkecZ} (1)

is a possible solution for the time that elapsed from
¢1 to c3. Obviously, only one of them is correct. But,
without further information, we have no means to iden-
tify the correct solution.

II. THE ASSUMPTIONS

The previous section presented some differences be-
tween physical time and clock time and how these
cause some ambiguities in the comparison of clock time
instants. Namely, we have seen that when trying to
compute the time elapsed between two instants, we

find an infinite number of solutions and that, without
some further information, we are unable to identify the
correct solution. In this section, we will present the as-
sumptions that will remove these ambiguities.

In order to do this, we introduce the concept of in-
terval of interest. This means an upper bound on the
difference between two (physical) time instants that we
want to compare, using the corresponding clock time
values.

This is used in the assumption:

Assumption 1: The length of any interval of interest
is smaller than half the modulo of the counter.

This guarantees that our clock will not complete a full
turn during any interval we want to measure. More-
over, it allows us to choose, between the set of possible
solutions, the one that corresponds to the smallest arc
in the circle of time. In numerical terms, it corresponds
to the solution with the smallest absolute value.

Lemma 1: The correct solution for the difference be-

tween two clock time values, amongst all numerically
possible solutions, is the one with the smaller absolute
value.
Any other solution would span over an interval that is
larger that half the counter modulo, thus contradicting
assumption 1. This means also that values of k in
eq. (1) are restricted to the set {—1,0,1}. Note, by
the way, that, although ¢; and ¢y belong to V), the
result does not necessarily belong to V.

III. SIGN CONVENTIONS

Many programming languages, such as C, allow us to
define the value stored in a register (which can be a
counter) as signed or unsigned. This distinction goes
down to the microcode level: most microprocessors
distinguish between signed and unsigned operations in
their instruction set. In a 8-bit register (a char in C
language), the modulo M is M = 28 = 256 and every
value is in the range {0, 1, ...,255}. This is the conven-
tion for unsigned char values. For signed quantities,
the representation is in 2’s-complement. The values
from 805! to FFj, represent negative values: 80 rep-
resents -128, FFy, represent -1. If we consider a clock
counter with 8 bits, an unsigned char counter would
display values from 0 to 255 and then 0 again, and so
on. A signed one would display values from -128 to
127, then -128 again, and so on. But, although the
significance we assign to the stored values is different
in the signed and unsigned case, the actual bit values
in the counter are identical. The difference between
signed and unsigned is a mere convention.

The problems with comparing clock time values oc-
cur when the singularity point lies in the interval be-
tween the two values (i.e., when the interval of interest
contains the singularity point). Where does this sin-
gularity happen? If the counter value is unsigned, it
will happen when the count reaches 255 (in a 8-bit

1 We will use hexadecimal notation to represent the bit pattern
stored in the counter register, and decimal notation to represent
the value as we read it

counter): the next value will be 0. But, to a signed
value counter, the same transition poses no problem.
It corresponds to the counter going from -1 to 0. The
same applies to the counting in the antipodes. A signed
counter will wrap around in the transition from 127 to
-128. For the unsigned counter, this is just going from

127 to 128. All clear, all subtractions work fine. Note
that the singularity points for each value convention
are half the counter modulo apart.

As we have seen before, what’s physically in the
counter is independent of whether a counter is signed
or unsigned. That is just related how we convene to
use the count to represent a value. Second, the same
increment can be awkward in one representation (the
count decreases 255 when it should increment 1) and
totally normal in the other.

So, to avoid the problems caused by counter wrap-
around, we just need to choose the representation that
eliminates the singularity in the count. Having re-
stricted the larger interval to less than half the maxi-
mum count, we know that it can cross the singularity
point for one, and only one, of the value conventions.

IV. THE ALGORITHM

To implement the algorithm, we consider the full
range of the counter divided into four quadrants, 1 to 4
(corresponding to an unsigned count) (fig. 4). The sin-
gularity points are in the frontier of quadrants 4 and
1 (for unsigned counting) and of 2 and 3 (for signed
counting).

Figure 4 - 4 quadrants

Lemma 2: Comparisons between values in the same
quadrant pose no problem.

Lemma 3: Comparisons between values in quadrants
1 and 2 or 3 and 4 pose no problem.

We are left with the problem of comparing values in
quadrants (4,1) and (2,3). It is now obvious that:

Lemma 4: Comparisons between values in quadrant 4
with values in quadrant 1 (or vice-versa) yield correct
values if signed values are used.

Lemma 5: Comparisons between values in quadrant 2
with values in quadrant 3 (or vice-versa) yield correct
values if unsigned values are used.

To implement the algorithm, we arbitrarily choose
a default behaviour (signed or unsigned). The algo-
rithms just needs to check if the values are in the range
that contains the singularity point. If this is the case,
the alternative behaviour is selected. Otherwise, the

computations are performed in the default behaviour.
Figure 5 presents the algorithm. In this case, the de-
fault behaviour is unsigned. The singularity is in the
frontier of the 1st and 4th quadrant; if the values fall
into this range, the signed behaviour is selected.

{Default behaviour is unsigned}.
{y is a signed value}
if 21 € Q1 UQ4 and 22 € Q1 U Q4 then {compute
using signed values}
y = (signed)z; — (signed)z
else {compute using unsigned value}
y = (unsigned)z; — (unsigned)zs
end if

Figure 5 - Algorithm for comparing clock values

An implementation is presented in fig. 6, using a char
type counter as example. The default for char values is
signed. The extension for counter sizes larger than the
char type should be adapted to the target processor,
depending on the word size in the processor, mem-
ory and data bus. Note that, for large sized counters,
like 32-bit wide and more, we do not need to use the
whole counter for comparisons. Starting with the most
significant byte (or word, or ...), a bound-and-branch
approach will significantly reduce the comparison time.

/%

compare(x1,x2)

Calculates the difference between x1 and x2
*/
char compare(char x1,char x2)

{

char y;

/* Test if x1 and x2 are in the upper quadrants */
if((x1> (signed char)0xCO || x1 < 0x40) && \
(x2> (signed char)0xCO || x2 < 0x40)){

/* Calculate using signed values */

y = x1 - x2;
}
else{

/* Default behaviour */

y = (signed) ((unsigned)x1-(unsigned)x2);

return y;

Figure 6 - Example in C code

V. CONCLUSIONS

Comparing time instants is a frequent operation in
real-time systems, which is some times made difficult
by the fact that clock counters have a finite life span.
We have presented a method to perform comparisons
of time instants using clock values that circumvents
these difficulties. The method is based in providing
the system with a clock that has a life span larger that
twice the maximum interval of interest. The algorithm
and an implementation in C language were presented.

