
REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

Abstract - The main motivation for this work was the
production of speech synthesis with near natural quality
using a modular application with a user-friendly interface.
One of the most promising methods is the use of articulatory
synthesis, which is a technique based on direct modeling of
the human speech production process.
A modular application will allow the integration of several

models, improved and new, in a user-friendly interface,
increasing the quality achieved. The main area of application
of this work is the study and synthesis of European
Portuguese.

Resumo – A principal motivação para este trabalho foi a

obtenção de síntese de voz de qualidade próxima do natural
através de uma aplicação modular e de fácil utilização. Um
dos caminhos mais promissores para atingir esse objectivo é
através do uso de síntese articulatória, técnica que é baseada
na modelação directa do processo de produção humano.
A modularidade da aplicação, disponibilizando uma

interface de fácil acesso e utilização, irá permitir a
adaptação e criação de novos modelos de forma a
aperfeiçoar a qualidade conseguida até aqui. O trabalho está
vocacionado para o estudo e síntese do Português Europeu.

I. INTRODUCTION

Artificial speech has been mankind’s dream for
centuries. For a long time man has been trying to produce
speech synthetically, but his search has not ceased yet and
the results are far from perfect.
Scientific curiosity about speech and its aspects

motivated an increase of research in this field. There is a
need for artificial speech synthesis systems that can be
used by human-machine interfaces. Although distinct,
these two aspects are complementary and converge.
The availability of systems with speech interface will

promote the social and cultural development of people
with special needs, and will increase welfare of the others.
European Portuguese synthesis will preserve our cultural

identity and will promote future research. Being nasality
an area with many unanswered questions and being the
Portuguese language cited usually in Phonetic literature
[1] by its profusion of nasal phonemes we consider this
area of great interest. It is also known that nasality of
Portuguese nasal vowels differs from other languages, like
the French, due to existence of nasality contours [2].
Motivated by the need to produce better synthetic speech

for our language and human curiosity, an articulatory

synthesizer is in development, since 1995, at our
department/institute. As a result of previous work, the
need for a Windows version, an adequate user interface,
and better internal programming structure was noted. The
use of Microsoft Windows will increase its diffusion and
accessibility. The new version of the synthesizer,
presented in this paper, is modular to facilitate the
addition of new modules and functionalities, and
improves of existing models.
Although developed in Microsoft Windows1 its design

allows it to migrate to other platforms. Classes were
written using the standard C and C++ programming
languages. The user interface is friendly and modular. For
that we merged OpenGL2 with the Windows environment.
The purpose of the user-friendly interface in development
covers the use on articulatory synthesis studies as well as
in other scientific fields like Phonetics.

II. SYNTHESIS

There are several ways to synthesize speech. Among
others we have Formant Synthesis, which models directly
frequency response; and Concatenation Synthesis, that
uses pre-recorded natural signal samples. Articulatory
synthesis is based on the human speech production
physiological model, being the most potentially satisfying
method to produce high-quality synthetic speech.

A. Articulatory Synthesis

An articulatory synthesizer produces synthetic speech
using physical, anatomic and physiological features
modulating the human vocal tract. Features like larynx
position, jaw opening, lips opening and protrusion, velum
and tongue position, enable to create a close model and
thus modulate the human vocal tract. The Articulatory
Synthesizer can be split into the physiological anatomic
model, and sound propagation model (acoustic model).
The sound is produced when the acoustic model is
excited. Depending on the excitation signal different
sounds can be produced. Utterance depends not only on
the anatomic and acoustic models but also on the
excitation signal. Some features of this signal are inherent
to the speaker and can vary in time.
Articulatory synthesis is explained in some detail in [3].

1 Windows is a trade mark of Microsoft Corporation
2 OpenGL is a registered mark of Silicon Graphics Inc

An Object Oriented Articulatory Synthesizer for Windows

Luís Nuno Silva, António Teixeira, Francisco Vaz

 REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

III. PROGRAMMING TECHNIQUES

To implement the synthesizer, object oriented
programming was used. Several abstract classes,
parameter transfer protocol rules, and data structures were
designed. To separate synthesizer models from their
controls and viewers, the Model-View-Controller (MVC)
concept was adopted.
During development, some principles were adopted. For

instance, each articulatory model must have its own
controller, or set of controllers, and its viewers. It is
important that the controller knows the potential of the
model, i.e., how to deal with it. It is also important that the
model can be drawn [4].

A. Base Classes

The main abstract classes were designated base classes.
Using abstract classes helps modularization and runtime
configuration of the synthesizer, making possible
substitution of models. These classes define only the
criteria and methods used. Derived classes specify the
models making their implementations. These classes are
responsible for the several kinds of models that can be
implemented. After a careful analysis of the various sub-
models of an articulatory synthesizer, three base classes
for models were obtained: Anatomic Model, Source, and
Acoustic Model. From application of the Model-View-
Controller concept two other base classes were
considered: Controller and Viewer.
In our implementation these base classes are virtual

classes. Examples of base classes and implementations are
presented on figure 1.

Controller Anatomic
Model Viewer

Sagital Contour

1 Tube 3 Tubes

Area AreasSliders

MMIRC Nasal

data

Figure 1 – Examples of base classes (Anatomic Model, Controller and

Viewer) and derived classes.

Figure 2 shows how the main synthesis base classes
work with each other. Acoustic Model gets area function
information from the Anatomic Model, and a sample of
the excitation from the Source Model to produce a speech
sample. By continued repetition of this cycle, controlled
by a Controller, a speech waveform is obtained.

Controller

Source Acoustic
Model

Anatomic
Model

Excitation

Areas, Lengths
and Sinus

Figure 2 – Synthesis base classes

B. Controllers, Viewers and Models

As mentioned before, the Model-View-Controller
concept was applied. Our main concern was to try to
develop general controllers and viewers. In this way,
when adding a new model the effort needed to also
develop a controller and a viewer can be, in some cases,
avoided.
This will raise the question: “What is the use of general

controllers and viewers?”. Sometimes it is not important
the user interface of a model but the synthesis algorithm.
Therefore there must be a way of using an anatomic
model within any synthesis method. It is not simple to
gather all models on a controller; thus, some controllers
must be updated after a model addition. Usually general
viewers show only the common features of all models.
For example, all articulatory models produce areas and
lengths, and these features can be presented in several
ways.
There’s still another question: “How does general

controllers work?”. General controllers don’t know the
model, they only know the synthesis process, but they can
question the model about its needs. For example, each
articulatory model has a different set of parameters,
articulatory parameters, and each parameter has its own
range. The model should have the ability of giving this
information when the controller asks it.

B. 1. User Interface

Another important matter is the user interface. The user
interface can be a specification of a controller class. This
allows the existence of several kinds of interfaces, each
one with different kinds of viewers. This special
controller has the ability of control other controllers and
viewers. A user action must be reflected on the
application, i.e., the user is above any kind of control and
it is him that controls the synthesizer.

C. Data Transfer Protocols

Some classes must be able to communicate. Data transfer
rules are an important subject in this design, it is
important to define rules that can be generalized.

REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

On figure 3 examples of two parameter transfer rules are
shown. First, it is shown how areas and lengths are
defined and grouped for anatomic data transfer between
models. The first position on the structure, n1, indicates
the number of elemental tubes of the first section. Now, it
is known that the next n1 elements have the values,
ordered by tube, of some property of tubes belonging to
that section. If the value stored on the n+1-th position
(i.e., n2) is negative the structure stops there. If not there
is another section with n2 tubes, and so on, until a
negative number is found. This kind of structure allows an
unlimited number of tubes and sections.

T1 -1

Sinus 1

S1 RS1 LS1 CS1 Ti

Sinus i

Si RSi LSi CSi Tn

Sinus n

Sn RSn LSn CSn

n1 n2 n3 -1

n1 n2 n3

Figure 3 – Examples of parameter transfer rules. On top, how areas and
lengths are defined and grouped for transfer of anatomic data between
models; at the bottom, how information regarding sinus is transferred.

The second structure, used for transfer of information
regarding sinus, has the same stopping rule, but in this
case is known that each sinus is defined by five features:
section and tube where it connects to, and RLC resonant
circuit values.

Figure 4 – Sagittal contour for 3 vowels represented using the MMIRC

articulatory model.

IV. MODELS ALREADY IMPLEMENTED

In this section, derived classes representing the models
implemented, re-implemented or adapted from the

previous version of SAP (from the Portuguese
Sintetizador Articulatório para o Português, in English
Articulatory Synthesizer for Portuguese), running in
Linux, are presented.

B. Anatomic Model

We have implemented a sagittal two-dimensional
articulatory model for the vocal tract and a comprehensive
easily configurable nasal tract model (Figure 5).

AnaMod

Compute()
getAs()
getLs()
getSinus()
setParameters()
getVelumAperture()
areaChanged()
getParsInfo()

SagitalMod

ArticulMod
Area
L

Compute()
getAs()
getLs()
setParameters()
getVelumAperture()
areaChanged()
getParsInfo()
DrawingInfo()

AreaMod

NasalMod
Area
L

Com pute()
getAs()
getLs()
getSinus()
s etParameters()

Figure 5 – Anatomic model class diagram. The ArticlMod class,

implementing MMIRC sagittal vocal tract model, is a specialization of
the SagitalMod general class. NasalMod class, developed for nasal tract

modeling, derives from AreaMod generic class. At the root of this
hierarchy is the virtual class AnaMod (Anatomic Model).

B.1. Vocal Tract Model

The anatomic model used assumes midsagittal plane
symmetry. The output is an estimate of the vocal tract
cross-sectional area [5], figure 4. Our model is an
evolution [6, 7, 3] of the MMIRC (Mind Machine
Interaction Research Center) model, which is a modified
version of the Mermelstein model. It uses a non-regular
grid to estimate section’s areas and lengths. This process
is described on figure 6.

Sagital
Articulatory

Model
Grid Conversion

2D/3D
Area function

(Ai,Li)
Articultatory
parameters

Figure 6 – Estimation of the cross-sectional area function from

articulatory parameters.

The following class methods were implemented:

 REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

• setParameters – inputs of the model, in this case is
a pointer to a structure with articulatory
parameters;

• Compute – start the computation of the cross-
sectional area function (figure 6);

• getAs and getLs – outputs of the model, pointers to
structures with the areas and lengths of the split
sections of the oral tract (figure 3);

• getVelumAperture – returns velum aperture (used
when coupled with a nasal model);

• areaChanged – Boolean, indicate input changes;
• getParsInfo – returns its parameters information;
• DrawinfInfo – returns its own information in order

to be drawn by a special viewer.

The last method (DrawingInfo) is not general, returns

model dependent data. Only a special viewer class can use
it properly.
This model doesn’t implements sinus cavities so the

implementation of getSinus method returns a NULL
pointer.

B.2. Nasal Tract Model

The Nasal tract can be considered as a side branch of
vocal tract. The velopharyngeal port controls the coupling
between these two tracts [5].
The normal human noses have two nostrils, so in the

model there should appear two channels to model the
nose. If we consider that those channels are symmetrical
(quasi-symmetrical profile) we can model it as single tract
(1 tube). Otherwise modeling must be split in three:
common tract, right and left nostril (3 tubes).
The implemented model, based on the proposal of

Marilyn Chen (1997) [8], uses information from Dang and
Honda’s (1994) MRI measurements [9], assumes
symmetry of nasal tract and includes Maxillary Sinus
(figure 7).

0.5 cm2

2 3.9 1.5 2.9 3.4 1

0.8 2 2.4 1.4

(cm)

NostrilsVelum

Maxillary Sinus

Figure 7 – Nasal model (Chen 1997) [8].

Due to its static nature, the configuration stays the same
after definition. This is not exactly true because the
coupling section depends on oral tract velum aperture, i.e.,
the first tube of the nasal tract should have the same size
of the velum aperture. The coupling smoothness depends
on the number of tubes used. Therefore the definition of
the Nasal model is made on a file (see Annex A).
Different nasal tract models can be easily defined by only
changing the configuration file.

The following class methods were implemented:
• setParameters – inputs of the model, is a pointer to

a structure with the velum aperture of the oral
model, previously computed;

• Compute – computes the area of the non-fixed
tubes, coupling between Nasal and Oral tract;

• getSinus – output of the model, pointer to a
structure with sinuses values (figure 3).

C. Acoustic Model

The acoustic model is responsible for speech wave
generation. The output of main synthesis base classes is a
sound wave.
The impulse response is given by the Inverse Fourier

Transform (IFFT) of the acoustic transfer function of a
given vocal tract configuration. We used the fast
implementation of the FFT developed by M. Frigo and S.
Johnson (1999) [11]. The convolution of the impulse
response with the glottal excitation signal will produce the
sound. A frequency domain analysis and time domain
synthesis method – usually designated as the hybrid
method [10] – is used.
Before any kind of computation, the acoustic model must

know the configuration of anatomic models (vocal and
nasal). Pointers to oral and nasal tract anatomic models
must be passed to objects of this class, to make possible
retrieving areas, lengths, and sinus data.
In a general oral and nasal tract configuration, speech

radiation can occur at several points, like lips and nostrils.
Making the model more flexible, facilities for selecting
which of this radiation points are taken in account in the
synthesis process were implemented. As an example,
speech radiated only at the nostrils can be obtained by
appropriate choice of configuration parameters.
All these features can be set and accessed using seven

methods only:
• setParameters – allow radiant sections contribution

for synthesis definition;
• setArticMod – Anatomic model pointer, allow

Anatomic model’s areas, lengths and sinus access;
• setNasalMod – same as previous, regarding the

Nasal model;
• getTrackLoad – returns vocal tract load, needed by

the exciter;
• FirstConfig – reset the model and compute the first

static configuration (compute the impulse response
only);

• NextConfig – model reconfiguration, reset the
model and computes a new impulse response;

• NextSample – sound sample production by the
convolution of the impulse response with samples
of the glottal excitation signal.

C.1. Impulse Response Computation

The frequency response calculation is implemented by a
protected method, Synthesize, of the acoustic model class.

REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

This method is complex; the first time it is used it will
build the tract model structure that will only be changed
when there are any changes on the anatomic models.

To build the tract model structure, i.e., the tubes

structure, it is necessary to know the number of sections
and tubes of each model. This information can be
obtained from the transfer data rules used by anatomic
models. In subsequent stages the model must check the
tube structure, changing it if needed, and compute again
the transmission matrix ABCD [3] of each tube. This task
is performed by the acoustic model class’s method Tract.
Tract method defines both vocal and nasal tract data

structure. Information obtained from the anatomic models
is stored in a structure (figure 8) capable of dealing with
multiple and variable number of sections and radiating
points. It is similar to both kinds of tract: vocal and nasal.

NSº Pointer

NSº

[ABCD]
T1

[ABCD]
T1

[ABCD]
T2

[ABCD]
T2

[ABCD]
Tm

[ABCD]
Tk

NTS1º

NTSnº

NTSnº PointerA Zi ZcOclusionB C D

NTS1º PointerA Zi ZcOclusionB C D

Figure 8 – Acoustic Model Data Structure.

The structure header is a TractSize variable that contains
the tract’s number of sections and a pointer to a
SectionDef array. Each element of this array is a structure
that contains the number of tubes of that section, the
transmission matrix ABCD, section occlusion flag, input
and load impedance and a pointer to a CTube array.

C.1. Tube model class (CTube)

CTube class creates and manages elemental tube model.
From tube’s area and length it is possible to compute its
ABCD matrix. If the area is too small the occlusion flag is
activated. Each tube can be associated with a sinus; its
impedance will reflect this association. Each tube has a
load, which can be another tube or the radiant impedance.
The ABCD matrix and impedance are a function of
frequency; so all class returned values are frequency
dependent.
CTube’s methods are:

• set – input parameters, can be tube’s area and
length or a coupled sinus parameter;

• get – returns the computed ABCD matrix;
• compute – computes ABCD matrix based on input

parameters;
• Zrad – computes and retrieves radiant impedance,

supposing that is a radiant tube;
• Zoc – computes and retrieves load impedance,

supposing it is an occlusion contiguous tube;

• hasSinus – Boolean, verifies the existence of
coupled sinus;

• Zsinus – computes and retrieves load impedance of
the coupled sinus.

Methods like get, compute, Zrad, Zoc, and Zsinus return
computation results for a single frequency, referred as an
input parameter.

D. Source

To obtain glottal excitation, ug(t), it is necessary to model
several subsystems involved: lungs, subglottal cavities
(under the vocal chords), the glottis and supraglottal tract
(cavities above vocal chords). The scheme on figure 9
represents all these subsystems.
The role of the lungs is the production a quasi-constant

pressure source, represented on the model, figure 10, by a
pulmonary pressure source pp in series with the resistance
Rp.

SUBGLOTTAL

Lungs Trachea Glottis Tract

SUPRAGLOTTAL
Figure 9 – Subsystems involved on glottal excitation calculation.

To represent the subglottal region, trachea included, we
use the approach of Ananthapadmanabha and Fant (1982),
i.e., we use three RLC resonant circuits [12].
Prado’s approach, using a direct parameterization of the

two mass model for glottal areas, was the choice to model
vocal chords [13].
Systems above glottis, the tract, can be modeled by an

input impedance ze(t) – or the pressure psupra(t) obtained
from ze(t) and glottal flow convolution – or cascading
RLC circuits. The input impedance, obtained from
Acoustic model, allowing a better modeling of frequency
depending losses, was chosen. More details about this
glottal source model can be found in [3] and [7].

Rp

Rsg3

Rg LgLsg3

Csg3

Rsg2

Lsg2

Csg2

Rsg1

Lsg1

Csg1

pp

ug(t)

Ze(t)
psg1 psg2 psg3

psub psupra

pintra

+

-

Lungs Trachea Glottis Tract

Figure 10 – Electrical analogue for glottal excitation calculation.
Adapted from [3] and [7].

Class Exec01, implementing the described glottal source,
is a specialization of the Exciter base class (figure 11). It
can be configured as interactive or non-interactive. Non-
interactive considers a null vocal tract load.
This source model is controlled by two kinds of

parameters: time variant and time invariant. The first ones
are used to control speech utterance and naturalness (see

 REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

Annex B). Time invariant (see Annex C) are set using a
configuration file (see Annex D).

Exciter

Initialize()
setParameters()
getSample()
getUg()
setInteractiveOff()
setInteractiveOn()
setTrackLoad()
getParsInfo()

Exc01

Initialize()
setParameters()
getSample()
getUg()
setInteractiveOff()
setInteractiveOn()
setTrackLoad()
getParsInfo()

Figure 11 – Exciter model class diagram. Methods of base abstract class

and methods implemented in the derived class Exc01 are shown.

Class methods implemented are:
• Initialize – set and reset model, time invariant

parameters;
• setParameters – inputs of the model, is a pointer to

a structure with the time invariant parameters and
samples in a period;

• setTrackLoad – set vocal tract load into the model;
• setInteractiveOn and setInteractiveOff – enables or

disables the interaction with vocal tract;
• getSample – returns glottal flow derivate of a

given time instant;
• getUg – returns glottal flow sample;
• getParsInfo – return its parameters information.

V. CONTROLLERS

Controller base class allows the existence of several
controls to perform the same or different tasks. The user
can choose the best controller that suites the application.
The user interface can also be considered as a controller,
or the main controller.
As an example, an articulatory model controller class

diagram can be seen on figure 12. The controller knows
the model (pointed by m_pModel) and can control a set of
viewers (m_pViewer).
On the base class we have the abstract methods:

• Initialize – set the sample rate and the number of
samples used in signal processing and
mathematical operations;

• Compute – starts the process, i.e., starts the control
procedure;

• setParamsMod – Parameter model pointer, allow a
coherent parameter transfer;

• setArticMod – Anatomic model pointer, allow the
use/control of the Anatomic model;

• setNasalMod – same as previous, regarding the
Nasal model;

• setExcMod – Exciter model pointer, allow the
use/control of the Exciter model;

• setAcusMod – same as previous, regarding the
Acoustic model;

• setSound – Sound model pointer, allow the
use/control of the Sound model;

• setViewer – same as previous, regarding the
Viewer model;

• addViewer and delViewer – allows the addition an
removal of extra viewers;

• setControl – allows the existence of an alternative
control model.

Controller

Initialize()
Compute()
setParamsMod()
setArticMod()
setNasalMod()
setExcMod()
setAcusMod()
setSound()
setViewer()
addViewer()
delViewer()
setControl()

Ctrl01
m_pModel
m_pViewer

setArticMod()
setViewer()
delViewer()

Figure 12 – Controller model class diagram.

VI. TIME VARYING PARAMETERS MANAGEMENT

In general, parameters for source and anatomic models
vary over time. In many situations each parameter varies
independently of the others.
To support and manage time varying parameters and

make possible independent control of each parameter, a
special class, named Parameters, was created. This class
reads and stores parameters data from and to files; inserts,
adds and removes Targets3 (value of a parameter at a
specific time); makes data interpolation and automatically
configures itself depending on the models used.
In its implementation, this class, to make possible

obtaining a parameter value at a specific time using
parameter name directly, uses a map (class from the
Standard Library [14]) object, for all parameters, indexed
on parameter name.
On class constructer there is a reference of the anatomic

and source models. It is then asked to those models for the
name, file storage and range (maximum and minimum) of
the parameters they use. Anatomic and source models
have a method to return that information, getParsInfo.
This way, parameters will automatically be configured
according to the model used. When needed there is a

3 A class with this name was developed to deal with time-value pairs.

REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

method, getInfo, that returns a list with all the information
regarding the parameters used.
Storage is not made on an individual file, but in several

located on a folder. All operations are folder based; the
model defines the name of the files. The save and load
methods are used to store and get parameters data from a
folder, they both have the folder name as argument.
Addition of targets is made by the setValue method,

which has the name of the parameter and its value on a
given time instant as argument. Removal of targets can be
made in two ways: value removal (eraseValue) or removal
of all defined targets (eraseAll). First one needs parameter
name and the time instant as input, the other only needs
the parameter name.
To obtain a value for any time instant linear interpolation

is used. getValues method returns a value for a given time
instant.

VII. VIEWERS

Several viewers were implemented, specially for
anatomic models. OpenGL was particularly useful in
viewer implementation.
The two-dimensional sagittal representation of the

MMIRC anatomic model, an example of a model
dependent viewer, can be seen at the left top corner of
figure 16, in the next section.
An example of a general viewer implemented was the

area function viewer for anatomic models. This viewer,
showing cross-sectional area as function of position, can
be used with any anatomic model capable of producing
the so-called area function as output, which is usually the
case.

VIII. APPLICATION

To use the developed models, an application capable of
synthesize speech segments from parameter sequences
was created. These sequences can be defined, changed
(edited) or used to produce synthetic speech. The
synthesis status is presented step by step on a graphical
interface and, finally the resulting sound is played.

A. Modeling

More classes were needed to set up the application. The
synthesizer models were already developed, so we need to
define some control and viewer classes. To control two
classes were implemented: MainControl class, strongly
connected to the user interface; and CtrlPitchSync, that
controls the synthesis process.
Also two kinds of user interface were implemented. One

is a viewer that shows only synthesis information; the
other, using dialog boxes, is an interface with the
controllers.

Main Controller

Acoustic
Model

SoundAnatomic
Model Source

Anatomic
Model

Controller
Exciter

Controller

Pitch Synchronous Controller

Figure 13 – Application model, showing Main Controller, Pitch

Synchronous Controller and main objects responsible by modeling
anatomic configuration (Anatomic Model), sound generation (Source),
sound propagation and radiation (Acoustic Model), and sound handling

(Sound). Main Controller creates all the other objects, action
represented by unfilled arrows. The Anatomic Model Controller part of
the Pitch Synchronous Controller controls directly the Anatomic Model,
Exciter Controller controls Source, Acoustic Model, Sound and also the

Anatomic Model Controller.

A.1. Main Controller

When the application starts up it creates a controller, the
main controller. It has the ability of creating all the
synthesizer structure, i.e., it creates all the objects within
the synthesis process or that will be used by the synthesis
process. Only it has the power of creating and destroying
objects; however, other classes can ask to do it.
After being created objects need to be initialized before

being used. This initialization shouldn’t be shared with
alternative controllers (synthesis process controllers). The
initialization is sometimes made using files that can be
changed through the user interface, however there is
always a default initialization.
Figure 13 shows the application synthesis process

classes, with the exception of Parameters class. The filled
arrows represent the control flow; the others represent the
creation and initialization process.
After creating and initializing everything needed, the

main controller can ask the alternative controller to start
the synthesis process.

A.2. Alternative Controller – Pitch Synchronous

Pitch Synchronous is an alternative controller that will
control the synthesis process. Synthesis process can be
either static (time invariant system parameters) or
dynamic. The Pitch Synchronous is a dynamic synthesis
process, where there are no changes on the anatomic
model during a period of glottal excitation signal, T0.

 REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

This period is in general non-regular, depending on the
time variation of the fundamental frequency (F0) and
Jitter:
 () 1-

000 T
100
Jitter0.5 0.5,-U21FF =⎟

⎠
⎞

⎜
⎝
⎛ ⋅⋅+=

where U(-0.5, 0.5) returns a uniform random number on
the range [-0.5, 0.5). The resulting pitch period is rounded
to the nearest sample rate multiple, in order to simplify the
operations and maintain the synchrony. The number of
samples in a period is given by the ratio between the
sample and fundamental frequencies.
Then, for each sample, the glottal excitation value is

computed that will operate in the acoustic model to
produce a sound sample (figure 14) and this sample will
be sent to the Sound model buffer.

Acoustic
Model

Input
Impedance

Source

H(jw)

IFFT

Convolution

Areas
Lengths

Source
Parameters

Synthetic
Speech

Excitation

Figure 14 – Information flow for each excitation period. Area function
(Areas and Lengths) from the Anatomic Models is used by the Acoustic

Model to obtain H(jw), at several frequencies, needed to impulse
response calculation, by application of an IFFT; also based in the area

function Acoustic Model calculates tract Input Impedance used by
Source Model to calculate a sample of the glottal excitation wave; finally
speech is obtained by convolution. In Pitch Synchronous mode, source

parameters are considered fixed during a pitch period, and H(jw) is
calculated only at the beginning of a period.

Initially synthesis time is zero and it is increased by the
consecutive excitation periods. In each period it is asked
to Parameter model to evaluate the parameters for that
synthesis time. All values will be re-computed based on
the new parameters values [15], repeating the process
until a predefined – user configurable – simulation time is
reached.

A.3. Sequences Definition

Before starting the synthesis process, the user must
define a sequence. This definition can be completely new
or use stored values (load) (figure 15).
After sequence definition, there is a tree control that

shows all the parameters that will be used. That tree
control has two main branches, the edit and views. While
we can edit only one parameter, it is possible to view
(colored graphical view) five parameter sequences
simultaneously.
In addition to the graphical representation, the parameter

under edition is also shown on a table. If the values of the

table are selected by clicking the mouse it is possible to
update or remove them. By default the edit area adds
values to the original set, however, if there is a previous
value for the same time instant it will ask the user to
confirm the update.

Figure 15 – Sequence Editor. Main area show, in different colors,

variation over time of selected articulators; left bottom zone can be used
by the user to configure what parameters are displayed and editable;

bottom center zone helps in target edition and removal; right bottom zone
contains buttons to load and save parameter sequences.

On future versions the button Add Config will allow
sequence concatenation/merging, making possible the
addition of stored sequences to the current editor
sequence.
The save button will save precious time to the user on

the next time he wants to use the same sequence.

B. User interface

The aim of the user interface is to describe all synthesis
process and show some of the signals. Beyond the
relevance of these signals for research, the signals can be
very helpful for teaching.
Simultaneously representation of articulatory and

acoustic information can be very useful for research.
In articulatory and acoustic phonetics teaching it would

be very interesting for students to see the articulators
effects on the areas, excitation and spectrogram. On
speech therapy area function information and the
spectrogram can be a precious help to those that cannot
listen.
The interface has two parts (figure 16).
Articulators can be represented in a form of a sagittal

contour of the vocal tract, the most common way of
speech articulators representation. Using this
representation, the time evolution of vocal tract can be
presented as successive shapes in different time instants.
Due to the synthesis process slowness, only the last four
representations of the sagittal contour are presented. A
time colormap is presented below the contour, with white
representing the last contour.

REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

Figure 16 – Visualization of the synthesis process in the developed

articulatory synthesizer, SAPWindows.

Below sagittal contour representation we can find the
time space evolution of three articulators: lips, velum and
hyoid. This representation also obeys to a colormap,
presented below. Each color represents a time slot, in the
end it will jump to the first color of the colormap. With
this representation it is possible to track these articulators
evolution.
On the second part representations of speech and glottal

excitation (flow through vocal chords) signals can be
found. First represents the Fourier Transform of the
excitation signal during one period. Second represents
time evolution of the source signal, ug(t). Third one
represents the speech signal.
An important representation of a signal is its power

spectrum through time. It is a representation of the
frequencies energy, represented by a colormap, along time
and is usually known as spectrogram.
Having the cross sectional areas of all synthesis process

it is possible to have its variation over time using a
representation similar to the spectrogram. Because this
kind of display visualizes vocal tract cross sectional areas
is called an areogram, by analogy with the spectrogram
where the spectra are displayed as a function of time [16].

IX. CONCLUSIONS

The main result of this work is a modular articulatory
synthesizer architecture, using oriented object, a new
approach on the field. This will make new model addition
and handling easier, enabling better quality to future
synthesizers. The effort of European Portuguese synthesis
is a credit for our social-cultural development.
Although no user tests were done this application was

shown to potential users, in linguistics, and they think
that, even in its present incomplete state, it is useful in
phonetics teaching. It also can be very useful to teach
Portuguese as a foreign language.
This is an important step, but the development of this

synthesizer is an unfinished task and more work should be

done to create new models and improve the already
implemented.

ACKNOWLEDGMENTS

This work was supported, in part, by project
PRAXIS/P/PLP/11222/1998, Síntese Articulatória do
Português. Authors thank: Beatriz Sousa Santos for her
collaboration in the visualization part of the articulatory
synthesizer GUI; developers of the FFTW for making this
library available; MMIRC, University of Florida, for all
the information needed for models’ implementation;
Lurdes Moutinho from Languages and Cultures
Department, University of Aveiro, her remarks regarding
SAPWindows applicability in Phonetics teaching;
António Branco his contribution to articulatory model
implementation and first steps toward a modular object-
oriented implementation; the several Windows
programmers that have contributed to solve the many
problems encountered.

ANNEXES

A. Nasal model definition file
% These lines are used to comment this file
% Each line should have up to 198 characters
%
% #1 #2 #3 #4, where:
% #1, is the number of tubes on the common ↵
section of Nasal Tract;
% #2, is the number of tubes on the right ↵
section of Nasal Tract;
% #3, is the number of tubes on the left ↵
section of Nasal Tract;
% #4, is the number of sinus
6 0 0 1
% Number of the first fixed tube on the ↵
common section of the Nasal Tract
2
% Data:
% Ls As
2.0 0.8
3.9 2.0
1.5 2.4
-1 1.1 3.42e-3 29.7e-6 % (-1) sinus ↵
definition. After (-1) we have Rs, Ls and ↵
Cs values
2.9 2.4
3.4 1.4
1.0 0.5
%% (%%) End of data. All information ↵
written after this sign will be ignored.

B. Time dependent excitation model parameters

 REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

Parameter Description Typical value Unit setParameters

pp Pulmonary pressure 10000 dyne/cm2 lungs

F0 Fundamental frequency (Pitch) 100-200 Hz F0

OQ Open Quotient 60 % of T0 open

SQ Speed Quotient 2 speed

Ag0 Minimum glottal area value 0 cm2 ag0

Agmax Maximum glottal area value 0.3 cm2 agmax

area1 Glottal section area value - cm2 area

A2-A1 0.03 cm slope

Jitter F0 random variation 2 % jitter

Shimmer Agmax random variation 5 % shimmer

Asp Aspiration asp

C. Time independent excitation model parameters

Parameter Description Typical value Unit

Rp Pulmonary resistance 8 Ω cgs

Φ Ag1 and Ag2 phase difference 45 Degree

d1 m1 thickness 0.25 cm

d2 m2 thickness 0.05 cm

lg Glottis length 1.4 cm

k1 1.37

k2 0.3

ρ Air density 1.14 × 10-3 g/cm3

μ Air viscosity 1.86 × 10-4 dyne⋅s/cm2

D. Source model configuration file
Definition of Interactive Source
(c) Antonio Teixeira, 1998
dg [Koizumi oct 1987 ,pg 1185] in cm
0.3
d1
0.25
d2
0.05
lg [Koizumi oct 1987 ,pg 1185]
1.4
miu dyn.s/cm2
0.000186
rho g/cm3
0.00114
k1 e k2
1.37
0.3
Lungs Resistance (cgs Ohm)
8
subglottal(from Ishizaka et al, JASA, 1976)
Freq (Hz), Bw (Hz), Indutance (mH)
615.0 246.0 3.8
1355.0 155.0 0.72
2110.0 140.0 0.27
phase diference between Ag1 and Ag2
45
Two mass parametrical model [Prado 91]
1= Titze area model
2= Two mass parametrical model [Prado 91]
2
use Lglotal in calculations
1
don't use Derivative of Lglotal
0
don't use Viscosity of Glottis
1

REFERENCES

[1] J. Laver, “Principles of Phonetics”, Cambridge University Press,

1994
[2] R. L. Trigo, “The inherent structure of nasal segments”, In M. K.

Huffman and R. A. Krakow, Eds, “Nasals, Nasalization, and the
Velum”, pp. 369-400, Academic Press Inc, 1993

[3] A. Teixeira, L. N. Silva and F. Vaz, Síntese Articulatória: Uma
Introdução, Revista do Departamento de Electrónica e
Telecomunicações, (neste número), 2002 .

[4] Dave Collins, “Designing Object-Oriented User Interfaces”,
Benjamin/Cummings Publishing Company, Inc, 1995

[5] Donald G. Childers, “Speech Processing and Synthesis
Toolboxes”, John Wiley & Sons, 2000

[6] A. Branco, “Representação Visual do Modelo Articulatório para
o estudo da Produção da Fala”, Tese de Mestrado, Universidade
de Aveiro, 1997

[7] António Teixeira, “Síntese Articulatória das Vogais Nasais do
Português Europeu”, Tese de Doutoramento, Universidade de
Aveiro, 2000.

[8] Marylin Y. Chen, Acoustic correlates of english and french
nasalized vowels, Journal of the Acoustical Society of America,
JASA, vol. 102(4), pp 2360-2370, 1997

[9] J. Dang and K. Honda, MRI measurements and acoustic of the
nasal and paranasal cavities, Journal of the Acoustical Society of
America, JASA, vol. 94(3 Pt.2), pp 1765. September 1994.

[10] M. M. Sondhi and J. Schroeter, A Hybrid Time-Frequency
Domain Articulatory Speech Synthesizer, IEEE Trans. Acoustics,
Speech and Signal Processing. ASSP, vol. 35(7), pp 955-967, July
1987.

[11] Matteo Frigo e Steven G. Johnson, “FFTW User’s Manual”,
Massachussetts Institute of Technology, 1999.

 URL: http://www.fftw.org/ (March 2001)
[12] T. V. Ananthapadmanabha and G. Fant, Calculation of true glottal

flow and its components, Speech Communication, vol. 1, pp 167-
187, 1982

[13] Pedro P. L. Prado, “A Target-Based Articulatory Synthesizer”,
PhD Thesis, University of Florida, 1991

[14] J. Weidl, The Standard template Library Tutorial, Information
Systems Institute, Distributed Systems Department, Technical
university Vienna, 1996.

[15] Luís Nuno Silva, “Desenvolvimento de um Sintetizador
Articulatório”, Dissertação de Mestrado, Universidade de Aveiro,
2001

[16] Sorin Dusan, “Statistical Estimation of Articulatory Trajectories
from the Speech Signal Using Dynamical and Phonological
Constraints”, PhD Thesis, Dept. of Electrical and Computer
Engineering, University of Waterloo, Waterloo, Canada, 2000

 URL: http://crg7.uwaterloo.ca/~sdusan/publications.html (May
2000)

