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Abstract - The main motivation for this work was the 
production of speech synthesis with near natural quality 
using a modular application with a user-friendly interface. 
One of the most promising methods is the use of articulatory 
synthesis, which is a technique based on direct modeling of 
the human speech production process. 
A modular application will allow the integration of several 

models, improved and new, in a user-friendly interface, 
increasing the quality achieved. The main area of application 
of this work is the study and synthesis of European 
Portuguese. 
 
Resumo – A principal motivação para este trabalho foi a 

obtenção de síntese de voz de qualidade próxima do natural 
através de uma aplicação modular e de fácil utilização. Um 
dos caminhos mais promissores para atingir esse objectivo é 
através do uso de síntese articulatória, técnica que é baseada 
na modelação directa do processo de produção humano. 
A modularidade da aplicação, disponibilizando uma 

interface de fácil acesso e utilização,  irá permitir a 
adaptação e criação de novos modelos de forma a 
aperfeiçoar a qualidade conseguida até aqui. O trabalho está 
vocacionado para o estudo e síntese do Português Europeu. 

I. INTRODUCTION  

Artificial speech has been mankind’s dream for 
centuries. For a long time man has been trying to produce 
speech synthetically, but his search has not ceased yet and 
the results are far from perfect.  
Scientific curiosity about speech and its aspects 

motivated an increase of research in this field. There is a 
need for artificial speech synthesis systems that can be 
used by human-machine interfaces. Although distinct, 
these two aspects are complementary and converge. 
The availability of systems with speech interface will 

promote the social and cultural development of people 
with special needs, and will increase welfare of the others. 
European Portuguese synthesis will preserve our cultural 

identity and will promote future research. Being nasality 
an area with many unanswered questions and being the 
Portuguese language cited usually in Phonetic literature 
[1] by its profusion of nasal phonemes we consider this 
area of great interest. It is also known that nasality of 
Portuguese nasal vowels differs from other languages, like 
the French, due to existence of nasality contours [2]. 
Motivated by the need to produce better synthetic speech 

for our language and human curiosity, an articulatory 

synthesizer is in development, since 1995, at our 
department/institute. As a result of previous work, the 
need for a Windows version, an adequate user interface, 
and better internal programming structure was noted. The 
use of Microsoft Windows will increase its diffusion and 
accessibility. The new version of the synthesizer, 
presented in this paper, is modular to facilitate the 
addition of new modules and functionalities, and 
improves of existing models.  
Although developed in Microsoft Windows1 its design 

allows it to migrate to other platforms. Classes were 
written using the standard C and C++ programming 
languages. The user interface is friendly and modular. For 
that we merged OpenGL2 with the Windows environment. 
The purpose of the user-friendly interface in development 
covers the use on articulatory synthesis studies as well as 
in other scientific fields like Phonetics. 

II. SYNTHESIS 

There are several ways to synthesize speech. Among 
others we have Formant Synthesis, which models directly 
frequency response; and Concatenation Synthesis, that 
uses pre-recorded natural signal samples. Articulatory 
synthesis is based on the human speech production 
physiological model, being the most potentially satisfying 
method to produce high-quality synthetic speech. 

A. Articulatory Synthesis 

An articulatory synthesizer produces synthetic speech 
using physical, anatomic and physiological features 
modulating the human vocal tract. Features like larynx 
position, jaw opening, lips opening and protrusion, velum 
and tongue position, enable to create a close model and 
thus modulate the human vocal tract. The Articulatory 
Synthesizer can be split into the physiological anatomic 
model, and sound propagation model (acoustic model). 
The sound is produced when the acoustic model is 
excited. Depending on the excitation signal different 
sounds can be produced. Utterance depends not only on 
the anatomic and acoustic models but also on the 
excitation signal. Some features of this signal are inherent 
to the speaker and can vary in time. 
Articulatory synthesis is explained in some detail in [3]. 
                                                           
1 Windows is a trade mark of Microsoft Corporation 
2 OpenGL is a registered mark of Silicon Graphics Inc 
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III. PROGRAMMING TECHNIQUES 

To implement the synthesizer, object oriented 
programming was used. Several abstract classes, 
parameter transfer protocol rules, and data structures were 
designed. To separate synthesizer models from their 
controls and viewers, the Model-View-Controller (MVC) 
concept was adopted. 
During development, some principles were adopted. For 

instance, each articulatory model must have its own 
controller, or set of controllers, and its viewers. It is 
important that the controller knows the potential of the 
model, i.e., how to deal with it. It is also important that the 
model can be drawn [4]. 

A. Base Classes  

The main abstract classes were designated base classes. 
Using abstract classes helps modularization and runtime 
configuration of the synthesizer, making possible 
substitution of models. These classes define only the 
criteria and methods used. Derived classes specify the 
models making their implementations. These classes are 
responsible for the several kinds of models that can be 
implemented. After a careful analysis of the various sub-
models of an articulatory synthesizer, three base classes 
for models were obtained: Anatomic Model, Source, and 
Acoustic Model. From application of the Model-View-
Controller concept two other base classes were 
considered: Controller and Viewer.  
In our implementation these base classes are virtual 

classes. Examples of base classes and implementations are 
presented on figure 1. 

Controller Anatomic
Model Viewer

Sagital Contour

1 Tube 3 Tubes

Area AreasSliders

MMIRC Nasal

data

 
Figure 1 – Examples of base classes (Anatomic Model, Controller and 

Viewer) and  derived classes. 

Figure 2 shows how the main synthesis base classes 
work with each other. Acoustic Model gets area function 
information from the Anatomic Model, and a sample of 
the excitation from the Source Model to produce a speech 
sample. By continued repetition of this cycle, controlled 
by a Controller, a speech waveform is obtained. 

Controller

Source Acoustic
Model

Anatomic
Model

Excitation

Areas, Lengths
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Figure 2 – Synthesis base classes 

B. Controllers, Viewers and Models  

As mentioned before, the Model-View-Controller 
concept was applied. Our main concern was to try to 
develop general controllers and viewers. In this way, 
when adding a new model the effort needed to also 
develop a controller and a viewer can be, in some cases, 
avoided. 
This will raise the question: “What is the use of general 

controllers and viewers?”. Sometimes it is not important 
the user interface of a model but the synthesis algorithm. 
Therefore there must be a way of using an anatomic 
model within any synthesis method. It is not simple to 
gather all models on a controller; thus, some controllers 
must be updated after a model addition. Usually general 
viewers show only the common features of all models. 
For example, all articulatory models produce areas and 
lengths, and these features can be presented in several 
ways. 
There’s still another question: “How does general 

controllers work?”. General controllers don’t know the 
model, they only know the synthesis process, but they can 
question the model about its needs. For example, each 
articulatory model has a different set of parameters, 
articulatory parameters, and each parameter has its own 
range. The model should have the ability of giving this 
information when the controller asks it. 

B. 1. User Interface 

Another important matter is the user interface. The user 
interface can be a specification of a controller class. This 
allows the existence of several kinds of interfaces, each 
one with different kinds of viewers. This special 
controller has the ability of control other controllers and 
viewers. A user action must be reflected on the 
application, i.e., the user is above any kind of control and 
it is him that controls the synthesizer. 

C. Data Transfer Protocols 

Some classes must be able to communicate. Data transfer 
rules are an important subject in this design, it is 
important to define rules that can be generalized.  
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On figure 3 examples of two parameter transfer rules are 
shown. First, it is shown how areas and lengths are 
defined and grouped for anatomic data transfer between 
models. The first position on the structure, n1, indicates 
the number of elemental tubes of the first section. Now, it 
is known that the next n1 elements have the values, 
ordered by tube, of some property of tubes belonging to 
that section. If the value stored on the n+1-th position 
(i.e., n2) is negative the structure stops there. If not there 
is another section with n2 tubes, and so on, until a 
negative number is found. This kind of structure allows an 
unlimited number of tubes and sections. 
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S1 RS1 LS1 CS1 Ti

Sinus i

Si RSi LSi CSi Tn

Sinus n
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n1 n2 n3 -1
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Figure 3 – Examples of parameter transfer rules. On top, how areas and 
lengths are defined and grouped for transfer of anatomic data between 
models; at the bottom, how information regarding sinus is transferred.  

The second structure, used for transfer of information 
regarding sinus, has the same stopping rule, but in this 
case is known that each sinus is defined by five features: 
section and tube where it connects to, and RLC resonant 
circuit values. 

 
Figure 4 – Sagittal contour for 3 vowels represented using the MMIRC 

articulatory model. 

IV. MODELS ALREADY IMPLEMENTED 

In this section, derived classes representing the models 
implemented, re-implemented or adapted from the 

previous version of SAP (from the Portuguese 
Sintetizador Articulatório para o Português, in English 
Articulatory Synthesizer for Portuguese), running in 
Linux, are presented.  

B. Anatomic Model 

We have implemented a sagittal two-dimensional 
articulatory model for the vocal tract and a comprehensive 
easily configurable nasal tract model (Figure 5). 
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Figure 5 – Anatomic model class diagram. The ArticlMod class, 

implementing MMIRC sagittal vocal tract model, is a specialization of 
the SagitalMod general class. NasalMod class, developed for nasal tract 

modeling, derives from AreaMod generic class. At the root of this 
hierarchy is the virtual class AnaMod (Anatomic Model). 

B.1. Vocal Tract Model 

The anatomic model used assumes midsagittal plane 
symmetry. The output is an estimate of the vocal tract 
cross-sectional area [5], figure 4. Our model is an 
evolution [6, 7, 3] of the MMIRC (Mind Machine 
Interaction Research Center) model, which is a modified 
version of the Mermelstein model. It uses a non-regular 
grid to estimate section’s areas and lengths. This process 
is described on figure 6. 

Sagital
Articulatory

Model
Grid Conversion

2D/3D
Area function

(Ai,Li)
Articultatory
parameters

 
Figure 6 – Estimation of the cross-sectional area function from 

articulatory parameters. 

The following class methods were implemented: 
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• setParameters – inputs of the model, in this case is 
a pointer to a structure with articulatory 
parameters; 

• Compute – start the computation of the cross-
sectional area function (figure 6); 

• getAs and getLs – outputs of the model, pointers to 
structures with the areas and lengths of the split 
sections of the oral tract (figure 3); 

• getVelumAperture – returns velum aperture (used 
when coupled with a nasal model); 

• areaChanged – Boolean, indicate input changes; 
• getParsInfo – returns its parameters information; 
• DrawinfInfo – returns its own information in order 

to be drawn by a special viewer. 
 
The last method (DrawingInfo) is not general, returns 

model dependent data. Only a special viewer class can use 
it properly.  
This model doesn’t implements sinus cavities so the 

implementation of getSinus method returns a NULL 
pointer. 

B.2. Nasal Tract Model 

The Nasal tract can be considered as a side branch of 
vocal tract. The velopharyngeal port controls the coupling 
between these two tracts [5]. 
The normal human noses have two nostrils, so in the 

model there should appear two channels to model the 
nose. If we consider that those channels are symmetrical 
(quasi-symmetrical profile) we can model it as single tract 
(1 tube). Otherwise modeling must be split in three: 
common tract, right and left nostril (3 tubes). 
The implemented model, based on the proposal of 

Marilyn Chen (1997) [8], uses information from Dang and 
Honda’s (1994) MRI measurements [9], assumes 
symmetry of nasal tract and includes Maxillary Sinus 
(figure 7). 
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NostrilsVelum

Maxillary Sinus

 
Figure 7 – Nasal model (Chen 1997) [8]. 

Due to its static nature, the configuration stays the same 
after definition. This is not exactly true because the 
coupling section depends on oral tract velum aperture, i.e., 
the first tube of the nasal tract should have the same size 
of the velum aperture. The coupling smoothness depends 
on the number of tubes used. Therefore the definition of 
the Nasal model is made on a file (see Annex A). 
Different nasal tract models can be easily defined by only 
changing the configuration file. 

The following class methods were implemented: 
• setParameters – inputs of the model, is a pointer to 

a structure with the velum aperture of the oral 
model, previously computed; 

• Compute – computes the area of the non-fixed 
tubes, coupling between Nasal and Oral tract; 

• getSinus – output of the model, pointer to a 
structure with sinuses values (figure 3). 

C. Acoustic Model 

The acoustic model is responsible for speech wave 
generation. The output of main synthesis base classes is a 
sound wave. 
The impulse response is given by the Inverse Fourier 

Transform (IFFT) of the acoustic transfer function of a 
given vocal tract configuration. We used the fast 
implementation of the FFT developed by M. Frigo and S. 
Johnson (1999) [11]. The convolution of the impulse 
response with the glottal excitation signal will produce the 
sound. A frequency domain analysis and time domain 
synthesis method – usually designated as the hybrid 
method [10] – is used. 
Before any kind of computation, the acoustic model must 

know the configuration of anatomic models (vocal and 
nasal). Pointers to oral and nasal tract anatomic models 
must be passed to objects of this class, to make possible 
retrieving areas, lengths, and sinus data. 
In a general oral and nasal tract configuration, speech 

radiation can occur at several points, like lips and nostrils. 
Making the model more flexible, facilities for selecting 
which of this radiation points are taken in account in the 
synthesis process were implemented. As an example, 
speech radiated only at the nostrils can be obtained by 
appropriate choice of configuration parameters. 
All these features can be set and accessed using seven 

methods only: 
• setParameters – allow radiant sections contribution 

for synthesis definition; 
• setArticMod – Anatomic model pointer, allow 

Anatomic model’s areas, lengths and sinus access; 
• setNasalMod – same as previous, regarding the 

Nasal model; 
• getTrackLoad – returns vocal tract load, needed by 

the exciter; 
• FirstConfig – reset the model and compute the first 

static configuration (compute the impulse response 
only); 

• NextConfig – model reconfiguration, reset the 
model and computes a new impulse response; 

• NextSample – sound sample production by the 
convolution of the impulse response with samples 
of the glottal excitation signal. 

C.1. Impulse Response Computation 

The frequency response calculation is implemented by a 
protected method, Synthesize, of the acoustic model class. 
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This method is complex; the first time it is used it will 
build the tract model structure that will only be changed 
when there are any changes on the anatomic models. 
 
To build the tract model structure, i.e., the tubes 

structure, it is necessary to know the number of sections 
and tubes of each model. This information can be 
obtained from the transfer data rules used by anatomic 
models. In subsequent stages the model must check the 
tube structure, changing it if needed, and compute again 
the transmission matrix ABCD [3] of each tube. This task 
is performed by the acoustic model class’s method Tract. 
Tract method defines both vocal and nasal tract data 

structure. Information obtained from the anatomic models 
is stored in a structure (figure 8) capable of dealing with 
multiple and variable number of sections and radiating 
points. It is similar to both kinds of tract: vocal and nasal.  
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Figure 8 – Acoustic Model Data Structure. 

The structure header is a TractSize variable that contains 
the tract’s number of sections and a pointer to a 
SectionDef array. Each element of this array is a structure 
that contains the number of tubes of that section, the 
transmission matrix ABCD, section occlusion flag, input 
and load impedance and a pointer to a CTube array. 

C.1. Tube model class (CTube) 

CTube class creates and manages elemental tube model. 
From tube’s area and length it is possible to compute its 
ABCD matrix. If the area is too small the occlusion flag is 
activated. Each tube can be associated with a sinus; its 
impedance will reflect this association. Each tube has a 
load, which can be another tube or the radiant impedance. 
The ABCD matrix and impedance are a function of 
frequency; so all class returned values are frequency 
dependent. 
CTube’s methods are: 

• set – input parameters, can be tube’s area and 
length or a coupled sinus parameter; 

• get – returns the computed ABCD matrix; 
• compute – computes ABCD matrix based on input 

parameters; 
• Zrad – computes and retrieves radiant impedance, 

supposing that is a radiant tube; 
• Zoc – computes and retrieves load impedance, 

supposing it is an occlusion contiguous tube; 

• hasSinus – Boolean, verifies the existence of 
coupled sinus; 

• Zsinus – computes and retrieves load impedance of 
the coupled sinus. 

Methods like get, compute, Zrad, Zoc, and Zsinus return 
computation results for a single frequency, referred as an 
input parameter. 

D. Source 

To obtain glottal excitation, ug(t), it is necessary to model 
several subsystems involved: lungs, subglottal cavities 
(under the vocal chords), the glottis and supraglottal tract 
(cavities above vocal chords). The scheme on figure 9 
represents all these subsystems. 
The role of the lungs is the production a quasi-constant 

pressure source, represented on the model, figure 10, by a 
pulmonary pressure source pp in series with the resistance 
Rp. 

SUBGLOTTAL

Lungs Trachea Glottis Tract

SUPRAGLOTTAL  
Figure 9 – Subsystems involved on  glottal excitation calculation. 

To represent the subglottal region, trachea included, we 
use the approach of Ananthapadmanabha and Fant (1982), 
i.e., we use three RLC resonant circuits [12].  
Prado’s approach, using a direct parameterization of the 

two mass model for glottal areas,  was the choice to model 
vocal chords [13].  
Systems above glottis, the tract, can be modeled by an 

input impedance ze(t) – or the pressure psupra(t) obtained 
from ze(t) and glottal flow convolution – or cascading 
RLC circuits. The input impedance, obtained from 
Acoustic model, allowing a better modeling of frequency 
depending losses, was chosen. More details about this 
glottal source model can be found in [3] and [7]. 
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Figure 10 – Electrical analogue for glottal excitation calculation. 
Adapted from   [3] and [7]. 

Class Exec01, implementing the described glottal source, 
is a specialization of the Exciter base class (figure 11). It 
can be configured as interactive or non-interactive. Non-
interactive considers a null vocal tract load. 
This source model is controlled by two kinds of 

parameters: time variant and time invariant. The first ones 
are used to control speech utterance and naturalness (see 
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Annex B). Time invariant (see Annex C) are set using a 
configuration file (see Annex D). 

Exciter

Initialize()
setParameters()
getSample()
getUg()
setInteractiveOff()
setInteractiveOn()
setTrackLoad()
getParsInfo()

Exc01

Initialize()
setParameters()
getSample()
getUg()
setInteractiveOff()
setInteractiveOn()
setTrackLoad()
getParsInfo()

 
Figure 11 – Exciter model class diagram. Methods of base abstract class 

and methods implemented  in the derived class Exc01 are shown. 

Class methods implemented are: 
• Initialize – set and reset model, time invariant 

parameters; 
• setParameters – inputs of the model, is a pointer to 

a structure with the time invariant parameters and 
samples in a period; 

• setTrackLoad – set vocal tract load into the model; 
• setInteractiveOn and setInteractiveOff – enables or 

disables the interaction with vocal tract; 
• getSample – returns glottal flow derivate of a 

given time instant; 
• getUg – returns glottal flow sample; 
• getParsInfo – return its parameters information. 

V. CONTROLLERS 

Controller base class allows the existence of several 
controls to perform the same or different tasks. The user 
can choose the best controller that suites the application. 
The user interface can also be considered as a controller, 
or the main controller.  
As an example, an articulatory model controller class 

diagram can be seen on figure 12. The controller knows 
the model (pointed by m_pModel) and can control a set of 
viewers (m_pViewer).  
On the base class we have the abstract methods: 

• Initialize – set the sample rate and the number of 
samples used in signal processing and 
mathematical operations; 

• Compute – starts the process, i.e., starts the control 
procedure; 

• setParamsMod – Parameter model pointer, allow a 
coherent parameter transfer; 

• setArticMod – Anatomic model pointer, allow the 
use/control of the Anatomic model; 

• setNasalMod – same as previous, regarding the 
Nasal model; 

• setExcMod – Exciter model pointer, allow the 
use/control of the Exciter model; 

• setAcusMod – same as previous, regarding the 
Acoustic model; 

• setSound – Sound model pointer, allow the 
use/control of the Sound model; 

• setViewer – same as previous, regarding the 
Viewer model; 

• addViewer and delViewer – allows the addition an 
removal of extra viewers; 

• setControl – allows the existence of an alternative 
control model. 

Controller

Initialize()
Compute()
setParamsMod()
setArticMod()
setNasalMod()
setExcMod()
setAcusMod()
setSound()
setViewer()
addViewer()
delViewer()
setControl()

Ctrl01
m_pModel
m_pViewer

setArticMod()
setViewer()
delViewer()

 
Figure 12 – Controller model class diagram. 

VI. TIME VARYING PARAMETERS MANAGEMENT 

In general, parameters for source and anatomic models 
vary over time. In many situations each parameter varies 
independently of the others. 
To support and manage time varying parameters and 

make possible independent control of each parameter, a 
special class, named Parameters, was created. This class 
reads and stores parameters data from and to files; inserts, 
adds and removes Targets3 (value of a parameter at a 
specific time); makes data interpolation and automatically 
configures itself depending on the models used. 
In its implementation, this class, to make possible 

obtaining a parameter value at a specific time using 
parameter name directly, uses a map (class from the 
Standard Library [14]) object, for all parameters, indexed 
on parameter name. 
On class constructer there is a reference of the anatomic 

and source models. It is then asked to those models for the 
name, file storage and range (maximum and minimum) of 
the parameters they use. Anatomic and source models 
have a method to return that information, getParsInfo. 
This way, parameters will automatically be configured 
according to the model used. When needed there is a 

                                                           
3 A class with this name was developed to deal with time-value pairs. 
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method, getInfo, that returns a list with all the information 
regarding the parameters used. 
Storage is not made on an individual file, but in several 

located on a folder. All operations are folder based; the 
model defines the name of the files. The save and load 
methods are used to store and get parameters data from a 
folder, they both have the folder name as argument. 
Addition of targets is made by the setValue method, 

which has the name of the parameter and its value on a 
given time instant as argument. Removal of targets can be 
made in two ways: value removal (eraseValue) or removal 
of all defined targets (eraseAll). First one needs parameter 
name and the time instant as input, the other only needs 
the parameter name. 
To obtain a value for any time instant linear interpolation 

is used. getValues method returns a value for a given time 
instant. 

VII. VIEWERS 

Several viewers were implemented, specially for 
anatomic models. OpenGL was particularly useful in 
viewer implementation. 
The two-dimensional sagittal representation of the 

MMIRC anatomic model, an example of a model 
dependent viewer, can be seen at the left top corner of 
figure 16, in the next section. 
An example of a general viewer implemented was the 

area function viewer for anatomic models. This viewer, 
showing cross-sectional area as function of position, can 
be used with any anatomic model capable of producing 
the so-called area function as output, which is usually the 
case. 

VIII. APPLICATION 

To use the developed models, an application capable of 
synthesize speech segments from parameter sequences 
was created. These sequences can be defined, changed 
(edited) or used to produce synthetic speech. The 
synthesis status is presented step by step on a graphical 
interface and, finally the resulting sound is played. 

A. Modeling 

More classes were needed to set up the application. The 
synthesizer models were already developed, so we need to 
define some control and viewer classes. To control two 
classes were implemented: MainControl class, strongly 
connected to the user interface; and CtrlPitchSync, that 
controls the synthesis process. 
Also two kinds of user interface were implemented. One 

is a viewer that shows only synthesis information; the 
other, using dialog boxes, is an interface with the 
controllers. 

Main Controller

Acoustic
Model

SoundAnatomic
Model Source

Anatomic
Model

Controller
Exciter

Controller

Pitch Synchronous Controller

 
Figure 13 – Application model, showing Main Controller, Pitch 

Synchronous Controller and main objects responsible by modeling 
anatomic configuration (Anatomic Model), sound generation (Source), 
sound propagation and radiation (Acoustic Model), and sound handling 

(Sound). Main Controller creates all the other  objects, action  
represented by unfilled arrows. The Anatomic Model Controller part of 
the Pitch Synchronous Controller controls directly the Anatomic Model, 
Exciter Controller controls Source, Acoustic Model, Sound and also the 

Anatomic Model Controller. 

A.1. Main Controller 

When the application starts up it creates a controller, the 
main controller. It has the ability of creating all the 
synthesizer structure, i.e., it creates all the objects within 
the synthesis process or that will be used by the synthesis 
process. Only it has the power of creating and destroying 
objects; however, other classes can ask to do it. 
After being created objects need to be initialized before 

being used. This initialization shouldn’t be shared with 
alternative controllers (synthesis process controllers). The 
initialization is sometimes made using files that can be 
changed through the user interface, however there is 
always a default initialization. 
Figure 13 shows the application synthesis process 

classes, with the exception of Parameters class. The filled 
arrows represent the control flow; the others represent the 
creation and initialization process. 
After creating and initializing everything needed, the 

main controller can ask the alternative controller to start 
the synthesis process. 

A.2. Alternative Controller – Pitch Synchronous 

Pitch Synchronous is an alternative controller that will 
control the synthesis process. Synthesis process can be 
either static (time invariant system parameters) or 
dynamic. The Pitch Synchronous is a dynamic synthesis 
process, where there are no changes on the anatomic 
model during a period of glottal excitation signal, T0. 
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This period is in general non-regular, depending on the 
time variation of the fundamental frequency (F0) and 
Jitter: 
  ( ) 1-

000 T
100
Jitter0.5 0.5,-U21FF =⎟

⎠
⎞

⎜
⎝
⎛ ⋅⋅+=  

where U(-0.5, 0.5) returns a uniform random number on 
the range [-0.5, 0.5). The resulting pitch period is rounded 
to the nearest sample rate multiple, in order to simplify the 
operations and maintain the synchrony. The number of 
samples in a period is given by the ratio between the 
sample and fundamental frequencies. 
Then, for each sample, the glottal excitation value is 

computed that will operate in the acoustic model to 
produce a sound sample (figure 14) and this sample will 
be sent to the Sound model buffer. 
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Figure 14 – Information flow for each excitation period. Area function 
(Areas and Lengths) from the Anatomic Models is used by the Acoustic 

Model to obtain H(jw), at several frequencies, needed  to impulse 
response calculation, by application of an IFFT; also based in the area 

function Acoustic Model calculates tract Input Impedance used by 
Source Model to calculate a sample of the glottal excitation wave; finally 
speech is obtained by convolution. In Pitch Synchronous mode, source 

parameters are considered fixed during a pitch period, and H(jw) is 
calculated only at the beginning of a period. 

Initially synthesis time is zero and it is increased by the 
consecutive excitation periods. In each period it is asked 
to Parameter model to evaluate the parameters for that 
synthesis time. All values will be re-computed based on 
the new parameters values [15], repeating the process 
until a predefined – user configurable – simulation time is 
reached. 

A.3. Sequences Definition 

Before starting the synthesis process, the user must 
define a sequence. This definition can  be completely new 
or use stored values (load)  (figure 15). 
After sequence definition, there is a tree control that 

shows all the parameters that will be used. That tree 
control has two main branches, the edit and views. While 
we can edit only one parameter, it is possible to view 
(colored graphical view) five parameter sequences 
simultaneously. 
In addition to the graphical representation, the parameter 

under edition is also shown on a table. If the values of the 

table are selected by clicking the mouse it is possible to 
update or remove them. By default the edit area adds 
values to the original set, however, if there is a previous 
value for the same time instant it will ask the user to 
confirm the update. 

 
Figure 15 – Sequence Editor.  Main area show, in different colors, 

variation over time of selected articulators; left bottom zone can be used 
by the user to configure what parameters are displayed and editable; 

bottom center zone helps in target edition and removal; right bottom zone 
contains buttons to load and save parameter sequences. 

On future versions the button Add Config will allow 
sequence concatenation/merging, making possible the 
addition of stored sequences to the current editor 
sequence. 
The save button will save precious time to the user on 

the next time he wants to use the same sequence. 

B. User interface 

The aim of the user interface is to describe all synthesis 
process and show some of the signals. Beyond the 
relevance of these signals for research, the signals can be 
very helpful for teaching. 
Simultaneously representation of articulatory and 

acoustic information can be very useful for research. 
In articulatory and acoustic phonetics teaching it would 

be very interesting for students to see the articulators 
effects on the areas, excitation and spectrogram. On 
speech therapy area function information and the 
spectrogram can be a precious help to those that cannot 
listen.  
The interface has two parts (figure 16). 
Articulators can be represented in a form of a sagittal 

contour of the vocal tract, the most common way of 
speech articulators representation. Using this 
representation, the time evolution of vocal tract can be 
presented as successive shapes in different time instants. 
Due to the synthesis process slowness, only the last four 
representations of the sagittal contour are presented. A 
time colormap is presented below the contour, with white 
representing the last contour. 
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Figure 16 – Visualization of the synthesis process in the developed 

articulatory synthesizer, SAPWindows. 

Below sagittal contour representation we can find the 
time space evolution of three articulators: lips, velum and 
hyoid. This representation also obeys to a colormap, 
presented below. Each color represents a time slot, in the 
end it will jump to the first color of the colormap. With 
this representation it is possible to track these articulators 
evolution. 
On the second part representations of speech and glottal 

excitation (flow through vocal chords) signals can be 
found. First represents the Fourier Transform of the 
excitation signal during one period. Second represents 
time evolution of the source signal, ug(t). Third one 
represents the speech signal. 
An important representation of a signal is its power 

spectrum through time. It is a representation of the 
frequencies energy, represented by a colormap, along time 
and is usually known as spectrogram. 
Having the cross sectional areas of all synthesis process 

it is possible to have its variation over time  using a  
representation similar to the spectrogram.  Because this 
kind of display  visualizes vocal tract cross sectional areas 
is called an areogram, by analogy with the spectrogram 
where the spectra are displayed as a function of time [16].   

IX. CONCLUSIONS 

The main result of this work is a modular articulatory 
synthesizer architecture, using oriented object, a new 
approach on the field. This will make new model addition 
and handling easier, enabling better quality to future 
synthesizers. The effort of European Portuguese synthesis 
is a credit for our social-cultural development. 
Although no user tests were done this application was 

shown to potential users, in linguistics, and they think 
that, even in its present incomplete state, it is useful in 
phonetics teaching. It also can be very useful to teach 
Portuguese as a foreign language.  
This is an important step, but the development of this 

synthesizer is an unfinished task and more work should be 

done to create new models and improve the already 
implemented. 
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ANNEXES 

A. Nasal model definition file 
% These lines are used to comment this file 
% Each line should have up to 198 characters 
% 
% #1 #2 #3 #4, where: 
% #1, is the number of tubes on the common ↵ 
section of Nasal Tract; 
% #2, is the number of tubes on the right ↵ 
section of Nasal Tract; 
% #3, is the number of tubes on the left ↵ 
section of Nasal Tract; 
% #4, is the number of sinus 
6 0 0 1 
% Number of the first fixed tube on the ↵ 
common section of the Nasal Tract 
2 
% Data: 
% Ls As 
2.0 0.8 
3.9 2.0 
1.5 2.4 
-1 1.1 3.42e-3 29.7e-6  % (-1) sinus ↵ 
definition. After (-1) we have Rs, Ls and ↵ 
Cs values 
2.9 2.4 
3.4 1.4 
1.0 0.5 
%% (%%) End of data. All information ↵ 
written after this sign will be ignored. 

 

B. Time dependent excitation model parameters 
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Parameter Description Typical value Unit setParameters 

pp Pulmonary pressure 10000 dyne/cm2 lungs 

F0 Fundamental frequency (Pitch) 100-200 Hz F0 

OQ Open Quotient 60 % of T0 open 

SQ Speed Quotient 2  speed 

Ag0 Minimum glottal area value 0 cm2 ag0 

Agmax Maximum glottal area value 0.3 cm2 agmax 

area1 Glottal section area value - cm2 area 

A2-A1  0.03 cm slope 

Jitter F0 random variation 2 % jitter 

Shimmer Agmax random variation 5 % shimmer 

Asp Aspiration   asp 

C. Time independent excitation model parameters 

Parameter Description Typical value Unit 

Rp Pulmonary resistance 8 Ω cgs 

Φ Ag1 and Ag2 phase difference 45 Degree 

d1 m1 thickness 0.25 cm 

d2 m2 thickness 0.05 cm 

lg Glottis length 1.4 cm 

k1  1.37  

k2  0.3  

ρ Air density 1.14 × 10-3 g/cm3 

μ Air viscosity 1.86 × 10-4 dyne⋅s/cm2 

D. Source model configuration file 
# Definition of Interactive Source 
#  (c) Antonio Teixeira, 1998 
# dg [Koizumi oct 1987 ,pg 1185] in cm 
0.3 
# d1 
0.25 
# d2  
0.05 
# lg [Koizumi oct 1987 ,pg 1185] 
1.4 
# miu dyn.s/cm2 
0.000186 
# rho g/cm3 
0.00114 
# k1 e k2 
1.37 
0.3 
# Lungs Resistance (cgs Ohm) 
8 
# subglottal(from Ishizaka et al, JASA, 1976) 
# Freq (Hz), Bw (Hz), Indutance (mH) 
615.0  246.0 3.8 
1355.0 155.0 0.72 
2110.0 140.0 0.27 
# phase diference between Ag1 and Ag2 
45 
# Two mass parametrical model [Prado 91] 
# 1= Titze area model 
# 2= Two mass parametrical model [Prado 91] 
2 
# use Lglotal in calculations 
1 
# don't use Derivative of Lglotal 
0 
# don't use Viscosity of Glottis 
1 
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