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Resumo - O artigo propõe uma nova metodologia para a 
simulação de redes neuronais de Hopfield apoiada numa 
arquitectura sistólica em anel. A metodologia relaciona-se 
com os métodos de aprendizagem: regra de Hebb e regra 
Delta, mas também com a fase de acesso aos dados. A 
discussão fixa-se nas operações realizadas durante os 
seguintes passos de cada algoritmo e nos dados transferidos 
entre as unidades de cálculo. A eficiência é discutida na base 
dos parâmetros modificados definidos por S.Y. Kung. 
 
Abstract - The paper proposed a new methodology for 

Hopfield neural network simulation based on ring systolic 
array structure. The methodology is related to training 
methods: Hebbian and Delta rules as well as to retrieving 
phase. The discussion is focused on operations which are 
realized during the following steps of each algorithm and the 
data transferred among the calculation units. The efficiency 
is discussed based on the modified set of parameters defined 
by S.Y. Kung. 

I. INTRODUCTION  

The paper is focused on the method of implementation of 
Hopfield neural network algorithms using ring systolic 
arrays – an example of SIMD architecture. The main 
assumption is about partial parallel realisation of learning 
algorithms as well as retrieving phase using the same 
processing structure. The proposed methodology creates 
the theoretical basis for hardware realisation of Hopfield 
neural network and could easily adopted for other 
recurrent nets. The methodology is discussed based on the 
following assumptions: 
• the outcome of algorithms realised true to proposed 

methodology is exactly the same like the outcome of 
classical Hopfield neural network algorithms, 

• the proposed methodology allows to create a 
universal structure both for learning algorithms and 
retrieving phase of Hopfield neural network, 

• the systolic structure is realized using only digital 
elements, input and output data are represented in 
binary code, 

• the number of neurons of Hopfield net is 
unrestricted, a number of processors can be limited. 

II. HOPFIELD NEURAL NETWORK ALGORITHMS 

The binary Hopfield net has a single layer of processing 
elements, which are fully interconnected - each neuron is 
connected to every other unit. Each interconnection has an 
associated weight. We let wji  denote the weight to unit j 
from unit i. In Hopfield network, the weight wij  and wji 
has the same value. Mathematical analysis has shown that 
when this equality is true, the network is able to converge 
[1, 3]. The inputs are assumed to take only two values: 1 
and 0. The network has N nodes containing hard limiting 
nonlinearities. The output of node i is fed back to node j 
via connection weight wij. 

A. Retrieving phase 

During the retrieving algorithm each neuron performs 
the following two steps [2]: 
• computes the coproduct: 
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wpj - weight related to feedback signal, 
vi(k) - feedback signal, 
Θp - bias 
• updates the state: 
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The process is repeated for the next iteration until 
convergence, which occurs when none of the elements 
changes state during any iteration: 

p p p pv k v k y∀ + = =( ) ( )1    (3) 

The initial conditions for the iteration procedure require 
the following equation: 

p p pv x∀ =( )0     (4) 

The converged state of Hopfield net means the net has 
already reached one of attractors [3]. An attractor is a 
point of local minimum of energy (Liapunov) function: 
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B. Hebbian learning algorithm 

The training patterns are presented one by one in a fixed 
time interval. During this interval, each input data is 
communicated to its neighbour N times: 
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The realisation of Hebbian learning algorithm is very 
easy, but the algorithm secures rather low capacity of net: 

Mmax = 0,138 N   (7) 
Mmax - maximum number of training vectors, 
M - number of training vectors 
wpj - weight related to feedback signal, 
vi(k) - feedback signal, 
Θp - bias 

C. Delta-rule learning algorithm 

The weights are calculated in recurrent way including all 
training patterns, according to the following matrix 
equation: 
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η ∈ [0,7, 0,9] - learning rate, 
N  - number of neurons, 
W  - matrix of weights, 
x  - input vector 
The learning rate has the same influence on the training 

process as a learning rate appeared with the multilayer 
networks. The learning process stops when the next 
training step generates the changes of weights which are 
less then the established tolerance ε [1, 11]. 

III. DATA DEPENDENCE GRAPHS FOR HOPFIELD NEURAL 
NETWORK ALGORITHMS 

A Data Dependence Graph is a directed graph that 
specifies the data dependencies of an algorithm. In a Data 
Dependence Graph nodes represent computations and arcs 
specify the data dependencies between computations. For 
regular and recursive algorithms, the Data Dependencies 
Graphs are also regular and can be represented by a grid 
model. Design of a locally linked Data Dependence Graph 
is a critical step in the design of systolic array [3, 9]. 

A. Data Dependence Graph for Hebbian learning 
algorithm 

Each node in Data Dependence Graph for Hebbian 
training algorithm (Fig. 1, Fig. 2) multiplies two of 
corresponding input signals xi and obtains this way (6) the 
weight wij which is stored in local memory unit. The input 
signals xi are passed to the nearest bottom neighbours and 
the neighbours on the right hand. 
 

 
Fig. 1 - Data Dependence Graph and array structure 

for Hebbian learning algorithm 

Fig. 2 - Single node of Data Dependence Graph for Hebbian learning 
algorithm: for i ≠ j – left side, for i = j – right side 

B. Data Dependence Graph for Delta-rule learning 
algorithm 

The Data Dependence Graph for Delta-rule training 
algorithm (Fig. 3, Fig. 5) we can divide into two parts: 
Relation Graph Gr and Value Graph Gw. Each node which 
belongs to Gr multiplies a corresponding input signal xi  
and weight value wij, then it subtracts the multiplication 
result from the input signal xi. Each node in the Gw part of 
the Data Dependence Graph is responsible for three 
operations (Fig. 4). During the first operation the node 
multiplies the corresponding result obtained at the end of 
the calculations related to the Gr part of the Data 
Dependence Graph and the input signal xi. During the 
second operation each node multiplies the obtained values 
and the fraction: learning rate/number of neurons. At the 
end the values of weights are upgraded. This way (8) the 
weights are obtained and next they are stored in local 
memory unit. The product of multiplication is passed to 
the nearest neighbour on the right hand. The input signals 
xi are passed to the nearest bottom neighbours [4, 6]. 

C. Data Dependence Graph for retrieving phase 

Each node in Data Dependence Graph for retrieving 
algorithm (Fig. 6, Fig. 7) multiplies the input signal xi or 
feedback signals vi and corresponding weight wij which is 
stored in local memory unit. The product of multiplication 
is passed to the nearest neighbour on the right hand. The 
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ϕi nodes collect the partial products and calculate the 
global value of coproduct (1). The last nodes on the right 
are the comparators to check if the next iteration is 
necessary (2), (3). The input signals xi or feedback signals 
vi are passed to the nearest bottom neighbours [5, 7]. 

 
Fig. 3 - Data Dependence Graph for Delta-rule learning algorithm 

composed of Relation Graph Gr and Value Graph Gw 

 

Fig. 4 - Single node of Data Dependence Graph for Delta-rule learning 
algorithm: node of Relation Graph Gr – left side, 

node of Value Graph Gw – right side 

 

Fig. 5 - Data Dependence Graph for Delta-rule learning algorithm 

Fig. 6 - Data Dependence Graph for retrieving phase 

 

 
 
 
 

 

 

if (vi <> voldi) 

  then  nit = 1 

  else  nit = 0 

if (nit == 0) 

  then  yi = vi 

 

f: if (ϕi > 0) 
    then vi  = 1 

   else if (ϕi == 0) 
    then vi  = voldi 

                            else vi  = 0 

Fig. 7 - Single node of Data Dependence Graph for retrieving phase 
and description of function realized step by step during the algorithm 

IV. MAPPING DATA DEPENDENCE GRAPHS 
ONTO ARRAY STRUCTURE 

A. Processor assignment via linear projection 

Mathematically, a linear projection is often represented 
by a projection vector d . Because the Data Dependence 
Graph of a locally recursive algorithm is very regular, the 
linear projection maps an n-dimensional Data Dependence 
Graph onto an (n-1) dimensional lattice of points, known 
as processor space [3, 11]. It is common to use a linear 
projection for processor assignment, in which nodes of 
Data Dependence Graph along a straight line are projected 
to an Elementary Processor in the processor array (Fig. 1, 
Fig. 5, Fig. 6). 

B. Schedule assignment via linear scheduling 

A scheduling scheme specifies the sequence of the 
operations in all Elementary Processors. More precisely, a 
schedule function represents a mapping from the n-
dimensional index space of the Data Dependence Graph 
onto a 1-D schedule (time) space. Linear scheduling is 
very common for schedule assignment (Fig. 1, Fig. 5, Fig. 
6). A linear schedule is based on a set of parallel and 
uniformly spaced hyperplanes in the Data Dependence 
Graph [3, 9]. These hyperplanes are called equitemporal 
hyperplanes - all the nodes on the same hyperplane are 
scheduled to be proceed at the same time. A linear 
schedule can also be represented by a schedule vector s , 
which points in the direction normal to the hyperplanes. 
For any computation node indexed by a vector n in the 
Data Dependence Graph, its scheduled processing time is 
sn . 
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C. Mapping policies 

Given a Data Dependence Graph and the projection 
direction d  not all schedule vectors s are valid for the 
Data Dependence Graph. Some may violate the 
precedence relations specified by the dependence arcs. 
For systolic design, the schedule vector s in the projection 
procedure must satisfy the following two conditions [11]: 
• causality condition:  s eT > 0 (9) 
e - represents any of the dependence arcs in the Data 

Dependence Graph 
• positive pipeline period: s dT ≠ 0 (10) 

 
This way the rectangular Data Dependence Graphs are 

converted into linear pipelined systolic arrays. The 
number of elementary processors which are used for array 
construction equals the number of neurons in simulated 
Hopfield neural network. Each elementary processor 
combines all functions described by nodes of Data 
Dependence Graph placed at the same horizontal line. If 
these functions are the same – like in Hebbian learning 
algorithm there is no need to switch the function realised 
by single processor (Fig. 8). If the function changes – we 
can observe such situation within Delta-rule algorithm 
and within retrieving phase the function executed by 
elementary processor is switched in proper moments. 
Switching procedure is driving by clock shape signal, 
which is responsible for all operations realised in 
processors and local communication among the 
neighbouring processors (Fig. 9, Fig. 10) All Data 
Dependence Graphs have exactly the same number of 
horizontal lines – so number of elementary processors of 
systolic structures is also the same for all algorithms 
related to the Hopfield neural network. It means that is 
rather easy to create the universal structure which is able 
to implement all algorithms [4, 7]. This statement is true, 
because the values of weights calculated and stored in 
local memories – shifting registers - of the same 
processors which ought to use them during retrieving 
phase. A problem of necessary precision we ought to 
guarantee for weights storing ought to be discussed. If we 
want to reduce the number of elementary processors we 
can change the classical linear structure into ring structure 
– where each elementary processor is responsible for 
modelling of greater number of neurons. Of course the 
reduction of number of elementary processors ought to be 
done in the way which preserve the same number of 
neurons for single processor. On the hand the capacity of 
local memory which collaborates with single processor 
ought to be able to store weights of set of neurons – these 
neurons which are implemented by single calculation unit. 
The limited number of processors is also the reason of 
reduced efficiency parameters specified for systolic array 
realisation [5, 7]. 
 
 

V. EFFICIENCY OF SYSTOLIC IMPLEMENTATION 
OF HOPFIELD NEURAL NETWORK 

A. Computation time 

This is time interval between starting the first 
computation and finishing the last computation of 
problem. Given a coprime schedule vector s , the 
computation time of a systolic array can be computed as 
[6]: 
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L - is the index set of the nodes in the Data Dependence 
Graph 

In the presented architectures for all algorithms the 
schedule vector is defined as: [ ]s = 1 1, . The indexes of 
nodes are spread on N elements within vertical and 
horizontal axes of space for Hebbian training 
implementation - so taking number of basic operations 
into account we can calculate the computation time as: 
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τ - processing time for elementary processor, 
M - number of training patterns, 
k - number of elementary processors 

For Delta-rule training algorithm we have N elements 
within vertical axis and 2N within horizontal axis of 
space. In fact the Data Dependence Graph for this 
algorithm is combined by two independent structures of 
operations. We can notice this observation at (Fig. 3.) - 
the set of input values is presented two times [5, 6]. The 
computation time for both parts of algorithm isn’t the 
same because the number of basic operations is different, 
number of nodes and the topology of them is the same. 
Computation time for each part we can estimate as: 

M
k

NNTsystol τ⎟
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= 115    (13) 

In addition the Delta-rule learning is gradient-based 
algorithm, so it is necessary to present each training 
pattern many times to obtain the correct value of weights. 
That is the reason why the estimated computation time 
ought to be modified by number of iterations related to 
single training pattern. Based on these remarks we can 
calculate the computation time for learning algorithms: 

βτM
k

NNTsystol ⎟
⎠
⎞

⎜
⎝
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−
= 115    (14) 

β - number of iterations for single training pattern 
The indexes of nodes are spread on N elements within 

vertical axis and N+2 elements for horizontal axis of 
space for retrieving algorithm. Two extra columns of 
nodes are responsible for accumulation of  the products of 
elementary multiplication realised by previous nodes and 
for decision if the next step of calculation is necessary. 
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Fig. 8 - Systolic array constructed based on Data Dependence Graph which realises Hebbian learning algorithm 

 
Fig. 9 - Systolic array constructed based on Data Dependence Graph which realises Delta-rule learning algorithm 
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Fig. 10 - Systolic array constructed based on Data Dependence Graph which realises retrieving algorithm 

 
The computation time - modified by number of iterations 

related to single training pattern - we can describe using 
the following equation [6]: 

βτ⎟
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⎛ +
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k
NNTsystol

   (15) 

B. Pipelining period 

This is the time interval between two successive 
computations in a processor. As previously discussed, if 
both d  and s  are irreducible, then the pipelining period 
equals: 

α = s dT    (16) 
The pipelining period is the same for all Hopfield neural 

network algorithms and we can calculate it as: α = 1. It 
means the time interval between two successive 
computations in an elementary processor is as short as 
possible [4, 8]. 

C. Block period 

This is time interval between the initiation of two 
successive blocks of operations [3]. If we assume the 
necessary calculations for single training pattern as a 
single successive block, the block period equals 
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computation time for single pattern and pipelining period. 
This remark is true for learning algorithms as well as for 
retrieving procedure. Based on these observations and 
values previously calculated the block period equals [5]: 
• for Hebbian learning algorithm: 
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−
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NNTblock

   (17) 
• for Delta-rule learning algorithm: 

βτ⎟
⎠
⎞

⎜
⎝
⎛ +

−
= 115

k
NNTblock
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• for retrieving algorithm: 
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D. Speed-up an Utilization rate 

Lets define the speed-up factor as the ratio between the 
sequential computation time Tseq and the array 
computation time Tsystol and the utilization rate as the ratio 
between the speed-up factor and the number of processors 
[3]. 

systol

seq

T
T

upspeed =−     (20) 

k
upspeedratenutilizatio −

=    (21) 

Sequential computation time for Hopfield neural network 
algorithms – taking number of neurons, number of 
weights and number of basic operations into account – 
equals [6]: 
• for Hebbian learning: 

MNTseq τ23=     (22) 
• for Delta-rule learning: 

βτMNTseq
25=     (23) 

• for retrieving algorithm: 
( ) βτ22 += NNTseq    (24) 

Based on values of array computation time calculated 
before we can evaluate the speed-up and utilization rate 
parameters for all algorithms related to the Hopfield 
network: 
• for Hebbian learning: 

kN
Nkupspeed
+−

=−
1    (25) 
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• for Delta-rule learning: 
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• for retrieving algorithm: 
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k - number of elementary processors, 
N - number of neurons 

VI. CONCLUSIONS 

Summarizing, the paper proposed a new methodology 
for Hopfield neural network simulation based on systolic 
array structure. The methodology is related to training 
methods: Hebbian learning and Delta-rule learning as well 
as to retrieving phase. The discussion is focused on 
operations which are realized during the following steps 
of each algorithm and the data which are transferred 
among the calculation units. It is clear which operations 
can be done in parallel way and when the sequence is 
necessary. The results of discussion show that it is 
possible to create the universal structure to implement all 
algorithms related to Hopfield neural network. This way 
there are no barriers to tune the Hopfield net to 
completely new tasks. The proposed methodology can be 
used as a basis for VLSI structures which implement 
Hopfield net or as a basis for set of general purpose 
processors – as transputers or DSP processors - which can 
be used for Hopfield neural network implementation. 

If we resumed the efficiency parameters as a function 
of a number of elementary processors we must say the 
comparison of the same criteria for two methods of 
learning is the most interesting part, because the 
conclusion related to this discussion can be used as the 
main aspect for decision which learning procedure 
choose. 

Computation Time - if we assume single presentation 
of each training vector - is less then two times longer for 
Delta-Rule learning. Of course such assumption is true for 
Hebbian learning but isn’t in general true for Delta-Rule. 
Each next presentation of training set makes the 
Computation Time longer and the dependence is directly 
proportional. 

Pipelining period is - as we discussed before - as short 
as possible for all presented algorithms, so this 
implementation criterion can’t be useful for any decision 
related to the systolic array prepared for Hopfield 
network. 

The changes of Block Period look very simple to the 
changes of Computation Time. It isn’t strange because 
Computation Time is a product of a set of Block Periods. 
The general difference is that Block Period doesn’t 
depend neither on the number of training vectors or on the 
number of iterations related to the single training vector. 
Such observation is true because the partial calculation - 
responsible for Block Period time is taken as a part of 
single training vector processing. 
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Table 1. Efficiency parameters for ring systolic structure related to Hopfield neural network algorithms 
when number of elementary processors equals number of neurons 

 Learning Retrieving 
 Hebbian rule Delta-rule phase 

Computation time 
Tsystol  (min) ( ) MN τ123 −  ( ) βτ MN 125 −  ( ) βτ122 +N  

Block period 
Tblock  (min) ( )τ123 −N  ( ) βτ125 −N  ( )τ122 +N  

Speed-up 
(max) 

N
N

2

2 1−
 

N
N

2

2 1−
 

( )N N
N
+
+
2

2 1
 

Utilization rate 
(min) 

N
N2 1−

 
N

N2 1−
 

N
N
+
+
2

2 1
 

 
Table 2. Efficiency parameters for ring systolic structure related to Hopfield neural network algorithms 

when number of elementary processors equals one 

 Learning Retrieving 
 Hebbian rule Delta-rule phase 

Computation time 
Tsystol  (max) MN τ23  βτMN 25  ( )τβ22 +NN  

Block period 
Tblock  (max) τ23N  τβ25N  ( )τ22 +NN  

Speed-up 
(min) 

1 1 1 

Utilization rate 
(min) 

1 1 1 

 
 τ - processing time for elementary processor,    M - number of training patterns,  
 β - number of iterations for single training pattern,    N - number of neurons, 

 
So Block Period is much responsible criterion than the 

Computation Time discussed before. It is very interesting 
we can observe exactly the same Speed-Up and Processor 
Utilization Rate both for Hebbian and Delta-Rule learning 
procedures. The necessary time-period for calculation of 
Delta-Rule procedure is longer than time-period related to 
Hebbian learning - but elementary processors’ using is the 
same. This observation seems to be very important for 
systolic array project. 
At the end proposed methodology can be also useful for 

parallel programme realisation of Hopfield neural network 
and can be easily adopted for other recurrent neural nets. 
This work has been supported by Wroclaw University 

of Technology grant No. 342926. 
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