
REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

Resumo - O artigo propõe uma nova metodologia para a
simulação de redes neuronais de Hopfield apoiada numa
arquitectura sistólica em anel. A metodologia relaciona-se
com os métodos de aprendizagem: regra de Hebb e regra
Delta, mas também com a fase de acesso aos dados. A
discussão fixa-se nas operações realizadas durante os
seguintes passos de cada algoritmo e nos dados transferidos
entre as unidades de cálculo. A eficiência é discutida na base
dos parâmetros modificados definidos por S.Y. Kung.

Abstract - The paper proposed a new methodology for

Hopfield neural network simulation based on ring systolic
array structure. The methodology is related to training
methods: Hebbian and Delta rules as well as to retrieving
phase. The discussion is focused on operations which are
realized during the following steps of each algorithm and the
data transferred among the calculation units. The efficiency
is discussed based on the modified set of parameters defined
by S.Y. Kung.

I. INTRODUCTION

The paper is focused on the method of implementation of
Hopfield neural network algorithms using ring systolic
arrays – an example of SIMD architecture. The main
assumption is about partial parallel realisation of learning
algorithms as well as retrieving phase using the same
processing structure. The proposed methodology creates
the theoretical basis for hardware realisation of Hopfield
neural network and could easily adopted for other
recurrent nets. The methodology is discussed based on the
following assumptions:
• the outcome of algorithms realised true to proposed

methodology is exactly the same like the outcome of
classical Hopfield neural network algorithms,

• the proposed methodology allows to create a
universal structure both for learning algorithms and
retrieving phase of Hopfield neural network,

• the systolic structure is realized using only digital
elements, input and output data are represented in
binary code,

• the number of neurons of Hopfield net is
unrestricted, a number of processors can be limited.

II. HOPFIELD NEURAL NETWORK ALGORITHMS

The binary Hopfield net has a single layer of processing
elements, which are fully interconnected - each neuron is
connected to every other unit. Each interconnection has an
associated weight. We let wji denote the weight to unit j
from unit i. In Hopfield network, the weight wij and wji
has the same value. Mathematical analysis has shown that
when this equality is true, the network is able to converge
[1, 3]. The inputs are assumed to take only two values: 1
and 0. The network has N nodes containing hard limiting
nonlinearities. The output of node i is fed back to node j
via connection weight wij.

A. Retrieving phase

During the retrieving algorithm each neuron performs
the following two steps [2]:
• computes the coproduct:

p pj
j

N

j pk w v kϕ θ() ()+ ∑= −
=

1
1

 (1)

wpj - weight related to feedback signal,
vi(k) - feedback signal,
Θp - bias
• updates the state:

⎪
⎪
⎩

⎪⎪
⎨

⎧

<

=

>

=

+
+
+

+
0)1(0
0)1()(
0)1(1

)1(
k
kkv
k

kv
p

pp

p

p

for

for

for

ϕ
ϕ
ϕ (2)

The process is repeated for the next iteration until
convergence, which occurs when none of the elements
changes state during any iteration:

p p p pv k v k y∀ + = =() ()1 (3)

The initial conditions for the iteration procedure require
the following equation:

p p pv x∀ =()0 (4)

The converged state of Hopfield net means the net has
already reached one of attractors [3]. An attractor is a
point of local minimum of energy (Liapunov) function:

E x w x x xij i
j

N

i

N

j i
i

N

i() = − +
== =
∑∑ ∑1

2 11 1
θ (5)

Systolic-Based Hardware Realisation of Hopfield Neural Network

Jacek Mazurkiewicz*, Wojciech Zamojski*

Institute of Engineering Cybernetics, Wroclaw University of Technology

REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

B. Hebbian learning algorithm

The training patterns are presented one by one in a fixed
time interval. During this interval, each input data is
communicated to its neighbour N times:

⎪
⎩

⎪
⎨

⎧

=

≠
=

∑
=

ji
jixxw

for

for
N

M

m

m

j

m

i
ij

0
1

)()(1 (6)

The realisation of Hebbian learning algorithm is very
easy, but the algorithm secures rather low capacity of net:

Mmax = 0,138 N (7)
Mmax - maximum number of training vectors,
M - number of training vectors
wpj - weight related to feedback signal,
vi(k) - feedback signal,
Θp - bias

C. Delta-rule learning algorithm

The weights are calculated in recurrent way including all
training patterns, according to the following matrix
equation:

[][]Tiii xWxx
N

WW)()()(−+=
η (8)

η ∈ [0,7, 0,9] - learning rate,
N - number of neurons,
W - matrix of weights,
x - input vector
The learning rate has the same influence on the training

process as a learning rate appeared with the multilayer
networks. The learning process stops when the next
training step generates the changes of weights which are
less then the established tolerance ε [1, 11].

III. DATA DEPENDENCE GRAPHS FOR HOPFIELD NEURAL
NETWORK ALGORITHMS

A Data Dependence Graph is a directed graph that
specifies the data dependencies of an algorithm. In a Data
Dependence Graph nodes represent computations and arcs
specify the data dependencies between computations. For
regular and recursive algorithms, the Data Dependencies
Graphs are also regular and can be represented by a grid
model. Design of a locally linked Data Dependence Graph
is a critical step in the design of systolic array [3, 9].

A. Data Dependence Graph for Hebbian learning
algorithm

Each node in Data Dependence Graph for Hebbian
training algorithm (Fig. 1, Fig. 2) multiplies two of
corresponding input signals xi and obtains this way (6) the
weight wij which is stored in local memory unit. The input
signals xi are passed to the nearest bottom neighbours and
the neighbours on the right hand.

Fig. 1 - Data Dependence Graph and array structure

for Hebbian learning algorithm

Fig. 2 - Single node of Data Dependence Graph for Hebbian learning
algorithm: for i ≠ j – left side, for i = j – right side

B. Data Dependence Graph for Delta-rule learning
algorithm

The Data Dependence Graph for Delta-rule training
algorithm (Fig. 3, Fig. 5) we can divide into two parts:
Relation Graph Gr and Value Graph Gw. Each node which
belongs to Gr multiplies a corresponding input signal xi
and weight value wij, then it subtracts the multiplication
result from the input signal xi. Each node in the Gw part of
the Data Dependence Graph is responsible for three
operations (Fig. 4). During the first operation the node
multiplies the corresponding result obtained at the end of
the calculations related to the Gr part of the Data
Dependence Graph and the input signal xi. During the
second operation each node multiplies the obtained values
and the fraction: learning rate/number of neurons. At the
end the values of weights are upgraded. This way (8) the
weights are obtained and next they are stored in local
memory unit. The product of multiplication is passed to
the nearest neighbour on the right hand. The input signals
xi are passed to the nearest bottom neighbours [4, 6].

C. Data Dependence Graph for retrieving phase

Each node in Data Dependence Graph for retrieving
algorithm (Fig. 6, Fig. 7) multiplies the input signal xi or
feedback signals vi and corresponding weight wij which is
stored in local memory unit. The product of multiplication
is passed to the nearest neighbour on the right hand. The

REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

ϕi nodes collect the partial products and calculate the
global value of coproduct (1). The last nodes on the right
are the comparators to check if the next iteration is
necessary (2), (3). The input signals xi or feedback signals
vi are passed to the nearest bottom neighbours [5, 7].

Fig. 3 - Data Dependence Graph for Delta-rule learning algorithm

composed of Relation Graph Gr and Value Graph Gw

Fig. 4 - Single node of Data Dependence Graph for Delta-rule learning
algorithm: node of Relation Graph Gr – left side,

node of Value Graph Gw – right side

Fig. 5 - Data Dependence Graph for Delta-rule learning algorithm

Fig. 6 - Data Dependence Graph for retrieving phase

if (vi <> voldi)

 then nit = 1

 else nit = 0

if (nit == 0)

 then yi = vi

f: if (ϕi > 0)
 then vi = 1

 else if (ϕi == 0)
 then vi = voldi

 else vi = 0

Fig. 7 - Single node of Data Dependence Graph for retrieving phase
and description of function realized step by step during the algorithm

IV. MAPPING DATA DEPENDENCE GRAPHS
ONTO ARRAY STRUCTURE

A. Processor assignment via linear projection

Mathematically, a linear projection is often represented
by a projection vector d . Because the Data Dependence
Graph of a locally recursive algorithm is very regular, the
linear projection maps an n-dimensional Data Dependence
Graph onto an (n-1) dimensional lattice of points, known
as processor space [3, 11]. It is common to use a linear
projection for processor assignment, in which nodes of
Data Dependence Graph along a straight line are projected
to an Elementary Processor in the processor array (Fig. 1,
Fig. 5, Fig. 6).

B. Schedule assignment via linear scheduling

A scheduling scheme specifies the sequence of the
operations in all Elementary Processors. More precisely, a
schedule function represents a mapping from the n-
dimensional index space of the Data Dependence Graph
onto a 1-D schedule (time) space. Linear scheduling is
very common for schedule assignment (Fig. 1, Fig. 5, Fig.
6). A linear schedule is based on a set of parallel and
uniformly spaced hyperplanes in the Data Dependence
Graph [3, 9]. These hyperplanes are called equitemporal
hyperplanes - all the nodes on the same hyperplane are
scheduled to be proceed at the same time. A linear
schedule can also be represented by a schedule vector s ,
which points in the direction normal to the hyperplanes.
For any computation node indexed by a vector n in the
Data Dependence Graph, its scheduled processing time is
sn .

REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

C. Mapping policies

Given a Data Dependence Graph and the projection
direction d not all schedule vectors s are valid for the
Data Dependence Graph. Some may violate the
precedence relations specified by the dependence arcs.
For systolic design, the schedule vector s in the projection
procedure must satisfy the following two conditions [11]:
• causality condition: s eT > 0 (9)
e - represents any of the dependence arcs in the Data

Dependence Graph
• positive pipeline period: s dT ≠ 0 (10)

This way the rectangular Data Dependence Graphs are

converted into linear pipelined systolic arrays. The
number of elementary processors which are used for array
construction equals the number of neurons in simulated
Hopfield neural network. Each elementary processor
combines all functions described by nodes of Data
Dependence Graph placed at the same horizontal line. If
these functions are the same – like in Hebbian learning
algorithm there is no need to switch the function realised
by single processor (Fig. 8). If the function changes – we
can observe such situation within Delta-rule algorithm
and within retrieving phase the function executed by
elementary processor is switched in proper moments.
Switching procedure is driving by clock shape signal,
which is responsible for all operations realised in
processors and local communication among the
neighbouring processors (Fig. 9, Fig. 10) All Data
Dependence Graphs have exactly the same number of
horizontal lines – so number of elementary processors of
systolic structures is also the same for all algorithms
related to the Hopfield neural network. It means that is
rather easy to create the universal structure which is able
to implement all algorithms [4, 7]. This statement is true,
because the values of weights calculated and stored in
local memories – shifting registers - of the same
processors which ought to use them during retrieving
phase. A problem of necessary precision we ought to
guarantee for weights storing ought to be discussed. If we
want to reduce the number of elementary processors we
can change the classical linear structure into ring structure
– where each elementary processor is responsible for
modelling of greater number of neurons. Of course the
reduction of number of elementary processors ought to be
done in the way which preserve the same number of
neurons for single processor. On the hand the capacity of
local memory which collaborates with single processor
ought to be able to store weights of set of neurons – these
neurons which are implemented by single calculation unit.
The limited number of processors is also the reason of
reduced efficiency parameters specified for systolic array
realisation [5, 7].

V. EFFICIENCY OF SYSTOLIC IMPLEMENTATION
OF HOPFIELD NEURAL NETWORK

A. Computation time

This is time interval between starting the first
computation and finishing the last computation of
problem. Given a coprime schedule vector s , the
computation time of a systolic array can be computed as
[6]:

(){ } 1max
,

+−=
∈

qpsT T

Lqp
 (11)

L - is the index set of the nodes in the Data Dependence
Graph

In the presented architectures for all algorithms the
schedule vector is defined as: []s = 1 1, . The indexes of
nodes are spread on N elements within vertical and
horizontal axes of space for Hebbian training
implementation - so taking number of basic operations
into account we can calculate the computation time as:

M
k

NNTsystol τ⎟
⎠
⎞

⎜
⎝
⎛ +

−
= 113 (12)

τ - processing time for elementary processor,
M - number of training patterns,
k - number of elementary processors

For Delta-rule training algorithm we have N elements
within vertical axis and 2N within horizontal axis of
space. In fact the Data Dependence Graph for this
algorithm is combined by two independent structures of
operations. We can notice this observation at (Fig. 3.) -
the set of input values is presented two times [5, 6]. The
computation time for both parts of algorithm isn’t the
same because the number of basic operations is different,
number of nodes and the topology of them is the same.
Computation time for each part we can estimate as:

M
k

NNTsystol τ⎟
⎠
⎞

⎜
⎝
⎛ +

−
= 115 (13)

In addition the Delta-rule learning is gradient-based
algorithm, so it is necessary to present each training
pattern many times to obtain the correct value of weights.
That is the reason why the estimated computation time
ought to be modified by number of iterations related to
single training pattern. Based on these remarks we can
calculate the computation time for learning algorithms:

βτM
k

NNTsystol ⎟
⎠
⎞

⎜
⎝
⎛ +

−
= 115 (14)

β - number of iterations for single training pattern
The indexes of nodes are spread on N elements within

vertical axis and N+2 elements for horizontal axis of
space for retrieving algorithm. Two extra columns of
nodes are responsible for accumulation of the products of
elementary multiplication realised by previous nodes and
for decision if the next step of calculation is necessary.

REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

Fig. 8 - Systolic array constructed based on Data Dependence Graph which realises Hebbian learning algorithm

Fig. 9 - Systolic array constructed based on Data Dependence Graph which realises Delta-rule learning algorithm

REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

Fig. 10 - Systolic array constructed based on Data Dependence Graph which realises retrieving algorithm

The computation time - modified by number of iterations

related to single training pattern - we can describe using
the following equation [6]:

βτ⎟
⎠
⎞

⎜
⎝
⎛ +

+
= 112

k
NNTsystol

 (15)

B. Pipelining period

This is the time interval between two successive
computations in a processor. As previously discussed, if
both d and s are irreducible, then the pipelining period
equals:

α = s dT (16)
The pipelining period is the same for all Hopfield neural

network algorithms and we can calculate it as: α = 1. It
means the time interval between two successive
computations in an elementary processor is as short as
possible [4, 8].

C. Block period

This is time interval between the initiation of two
successive blocks of operations [3]. If we assume the
necessary calculations for single training pattern as a
single successive block, the block period equals

REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

computation time for single pattern and pipelining period.
This remark is true for learning algorithms as well as for
retrieving procedure. Based on these observations and
values previously calculated the block period equals [5]:
• for Hebbian learning algorithm:

τ⎟
⎠
⎞

⎜
⎝
⎛ +

−
= 113

k
NNTblock

 (17)
• for Delta-rule learning algorithm:

βτ⎟
⎠
⎞

⎜
⎝
⎛ +

−
= 115

k
NNTblock

 (18)
• for retrieving algorithm:

τ⎟
⎠
⎞

⎜
⎝
⎛ +

+
= 112

k
NNTblock

 (19)

D. Speed-up an Utilization rate

Lets define the speed-up factor as the ratio between the
sequential computation time Tseq and the array
computation time Tsystol and the utilization rate as the ratio
between the speed-up factor and the number of processors
[3].

systol

seq

T
T

upspeed =− (20)

k
upspeedratenutilizatio −

= (21)

Sequential computation time for Hopfield neural network
algorithms – taking number of neurons, number of
weights and number of basic operations into account –
equals [6]:
• for Hebbian learning:

MNTseq τ23= (22)
• for Delta-rule learning:

βτMNTseq
25= (23)

• for retrieving algorithm:
() βτ22 += NNTseq (24)

Based on values of array computation time calculated
before we can evaluate the speed-up and utilization rate
parameters for all algorithms related to the Hopfield
network:
• for Hebbian learning:

kN
Nkupspeed
+−

=−
1 (25)

kN
Nratenutilizatio
+−

=
1 (26)

• for Delta-rule learning:

kN
Nkupspeed
+−

=−
1 (27)

kN
Nratenutilizatio
+−

=
1 (28)

• for retrieving algorithm:
()

kN
kNupspeed

++
+

=−
1
2

 (29)

kN
Nratenutilizatio

++
+

=
1

2
 (30)

k - number of elementary processors,
N - number of neurons

VI. CONCLUSIONS

Summarizing, the paper proposed a new methodology
for Hopfield neural network simulation based on systolic
array structure. The methodology is related to training
methods: Hebbian learning and Delta-rule learning as well
as to retrieving phase. The discussion is focused on
operations which are realized during the following steps
of each algorithm and the data which are transferred
among the calculation units. It is clear which operations
can be done in parallel way and when the sequence is
necessary. The results of discussion show that it is
possible to create the universal structure to implement all
algorithms related to Hopfield neural network. This way
there are no barriers to tune the Hopfield net to
completely new tasks. The proposed methodology can be
used as a basis for VLSI structures which implement
Hopfield net or as a basis for set of general purpose
processors – as transputers or DSP processors - which can
be used for Hopfield neural network implementation.

If we resumed the efficiency parameters as a function
of a number of elementary processors we must say the
comparison of the same criteria for two methods of
learning is the most interesting part, because the
conclusion related to this discussion can be used as the
main aspect for decision which learning procedure
choose.

Computation Time - if we assume single presentation
of each training vector - is less then two times longer for
Delta-Rule learning. Of course such assumption is true for
Hebbian learning but isn’t in general true for Delta-Rule.
Each next presentation of training set makes the
Computation Time longer and the dependence is directly
proportional.

Pipelining period is - as we discussed before - as short
as possible for all presented algorithms, so this
implementation criterion can’t be useful for any decision
related to the systolic array prepared for Hopfield
network.

The changes of Block Period look very simple to the
changes of Computation Time. It isn’t strange because
Computation Time is a product of a set of Block Periods.
The general difference is that Block Period doesn’t
depend neither on the number of training vectors or on the
number of iterations related to the single training vector.
Such observation is true because the partial calculation -
responsible for Block Period time is taken as a part of
single training vector processing.

REVISTA DO DETUA, VOL.3, Nº 5, JANEIRO 2002

Table 1. Efficiency parameters for ring systolic structure related to Hopfield neural network algorithms
when number of elementary processors equals number of neurons

 Learning Retrieving
 Hebbian rule Delta-rule phase

Computation time
Tsystol (min) () MN τ123 − () βτ MN 125 − () βτ122 +N

Block period
Tblock (min) ()τ123 −N () βτ125 −N ()τ122 +N

Speed-up
(max)

N
N

2

2 1−

N
N

2

2 1−

()N N
N
+
+
2

2 1

Utilization rate
(min)

N
N2 1−

N

N2 1−

N
N
+
+
2

2 1

Table 2. Efficiency parameters for ring systolic structure related to Hopfield neural network algorithms

when number of elementary processors equals one

 Learning Retrieving
 Hebbian rule Delta-rule phase

Computation time
Tsystol (max) MN τ23 βτMN 25 ()τβ22 +NN

Block period
Tblock (max) τ23N τβ25N ()τ22 +NN

Speed-up
(min)

1 1 1

Utilization rate
(min)

1 1 1

 τ - processing time for elementary processor, M - number of training patterns,
 β - number of iterations for single training pattern, N - number of neurons,

So Block Period is much responsible criterion than the

Computation Time discussed before. It is very interesting
we can observe exactly the same Speed-Up and Processor
Utilization Rate both for Hebbian and Delta-Rule learning
procedures. The necessary time-period for calculation of
Delta-Rule procedure is longer than time-period related to
Hebbian learning - but elementary processors’ using is the
same. This observation seems to be very important for
systolic array project.
At the end proposed methodology can be also useful for

parallel programme realisation of Hopfield neural network
and can be easily adopted for other recurrent neural nets.
This work has been supported by Wroclaw University

of Technology grant No. 342926.

References

[1] K. V. Asari, C. Eswaran, “Systolic array implementation of
artificial neural networks”, Indian Institute of Technology, Madras
1992

[2] A. Ferrari, Y. H. Ng, “A parallel architecture for neural networks”,
Parallel Computing’91, Elsevier Science Publishers B. V. 1992,
pp.: 283 – 290

[3] S. Y. Kung, “Digital neural networks”, PTR Prentice Hall 1993

[4] J. Mazurkiewicz, “A processor pipeline architecture for Hopfield
neural network”, II SCANN’98 Slovak Conference on Artificial
Neural Networks, Smolenice, Trnava, Slovakia 1998, pp.: 158 –
163

[5] J. Mazurkiewicz, “Efficiency of systolic array - constructed with
limited number of elementary processors - for Hopfield neural
network implementation”, VI International MENDEL 2000
Conference on Soft Computing, Brno, Czech Republic 2000,
pp.: 325 – 330

[6] J. Mazurkiewicz, “Efficiency of systolic implementation of
Hopfield neural networks”, V Conference Neural Networks and
Soft Computing, Zakopane, Poland 2000, pp.: 748 – 753

[7] J. Mazurkiewicz, “SIMD-type Simulator for Recurrent Neural
Nets”, 35th Spring International MOSIS’01 Conference Modelling
and Simulation of Systems, Ostrava, Czech Republic 2001, vol. 1,
pp.: 173 - 180

[8] J. Mazurkiewicz, “Systolic-based Simulator for Hopfield Neural
Net”, XXIIIrd International Autumn Colloquium ASIS 2001
Advanced Simulation of Systems, Ostrava, Czech Republic 2001,
pp.: 223 - 228

[9] N. Petkov, “Systolic parallel processing”, North-Holland 1993
[10] S. G. Shiva, “Pipelined and parallel computer architectures”,

Harper Collins Publishers 1996
[11] D. Zhang, “Parallel VLSI neural system design“, Springer-Verlag

1999

