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Abstract - This paper describes an approach to the design of 

a population of cooperative robots based on concepts 
borrowed from Systems Theory and Artificial Intelligence 
The research has been developed under the SocRob project, 
jointly carried out by the Intelligent Control and Artificial 
Intelligence Laboratories at ISR/IST. The acronym of the 
project stands both for "Society of Robots" and "Soccer 
Robots", the case study where we are testing our population 
of four robots. Designing soccer robots is a very challenging 
problem, where the robots must act not only to shoot a ball 
towards the goal, but also to detect and avoid static (walls, 
stopped robots) and dynamic (moving robots) obstacles. 
Furthermore, they must cooperate to defeat an opposing 
team. Our current research in soccer robotics includes image 
processing for object segmentation, recognition and 
tracking, navigation and behavior-based architectures for 
real time task execution of cooperating robot teams. 
Cooperative learning, behavior modeling and distributed 
planning are topics we have been investigating and plan to 
apply to soccer robots and other case studies, such as search 
and rescue robots.  
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I. INTRODUCTION  

Cooperative Robotics is a modern research field, with 
applications to areas such as building surveillance, 
transportation of large objects, air and underwater 
pollution monitoring, forest fire detection, transportation 
systems, or rescue after large-scale disasters. In short, a 
population of cooperative robots behaves like a 
``distributed'' robot to accomplish tasks that would be 
difficult, if not impossible, for a single robot. Many 
lessons important for this domain can be learned from the 
Multi-Agent Systems field of Artificial Intelligence (AI) 
concerning relevant topics for Cooperative Robotics, such 
as distributed continual planning[5], task allocation[7], 
communication languages or coordination mechanisms[4]. 
Robotic soccer is a very challenging problem, where the 
robots must cooperate not only to push and/or kick an 
object (a ball) towards a target region (the goal), but also 
to detect and avoid static (walls, stopped robots) and 
dynamic (moving robots) obstacles while moving 
towards, moving with or following the ball. Furthermore, 
they must cooperate to defeat an opposing team. All these 
are features common to many other cooperative robotics 

problems. This paper surveys the several research 
problems addressed by the SocRob project, building on 
AI concepts a Systems Theory standpoint. In Section II  
we describe our view of the general problem involving 
multiple robots that act as a team, cooperating and 
coordinating their actions to attain the team goal. Needless 
to say, single-robot ``traditional'' research problems are 
covered, both from the sub-system and the integration 
standpoints. Natural extensions to cooperative multi-robot 
teams are also detailed. The problems addressed so far 
and the solutions we obtained for them are described in 
Section III. Open problems of interest for the project and 
clues on how we intend to approach their solution are 
discussed in Section IV. We end the paper drawing some 
conclusions in Section V. 

II. A GENERAL MULTI-ROBOT COOPERATION AND 
COORDINATION PROBLEM 

Many researchers around the world are designing mobile 
robots capable to display increasing autonomy and 
machine intelligence properties. Most groups concentrate 
in specific subsystems of a robot, such as the planner, the 
navigator, or the sensor fusion. What usually is missing in 
their design is a systematic way to glue together all these 
subsystems in a consistent fashion. Such a methodology, 
should one be available, would help engineering the 
mobile robots of the future. 
Perhaps the key factor of success for a robot lies on its 
capability to perceive correctly its surrounding 
environment, and to build environment models adequate 
for the task the robot is in charge of, from the information 
provided by its sensors. Different sensors (e.g., vision, 
laser, sonar, encoders) can provide alternative or 
complementary information about the same object, or 
information about different objects. Sensor fusion is the 
usual designation for methods of different types to handle 
the data from the several sensors available and provide 
improved information about the environment (e.g., about 
its geometry, color, shape, relevance). 
When a team composed of several cooperating robots is 
concerned, the sensors are spread over the different 
robots, with the important advantage that the robots can 
move (thus moving its sensors) to actively improve the 
cooperative perception of the environment by the team. 

 



  
 

The information about the environment so obtained can be 
made available and regularly updated by different means 
(e.g., memory sharing, message passing, wireless 
communications) to all the team robots, so as to be used 
by the other sub-systems.  
Once the information about the world is available, one 
may think of using it to make the team behave 
autonomously and machine-wise intelligently. Three main 
questions arise for the team: 

Where and which apriori knowledge about the 
environment, team, tasks and goals, and perceptual 
information gathered from sensors, should be kept, 
updated and maintained? This involves the issue of 
distributed knowledge representation adequate to 
consistently handle different and even opposite views 
of the world. 

What must be done to achieve a given goal, given the 
constraints on time, available resources and distinct 
skills of the team robots? The answer to this should 
provide a team plan. 

How is the actual implementation of a plan handled, 
ensuring the consistency of individual and team (sub)-
goals and the coordinated execution of the plan? 

 
So far, a bottom-up approach to the implementation of a 
cooperative multi-robot team has been followed in the 
SocRob project, starting from the development of single 
robot sub-systems (e.g., perception, navigation) and 
moving towards relational behaviors, comprehending 
more than one robot.  
However, a key point is a top-down approach to system 
design. The design phase establishes the specifications for 
the system:  

qualitative specifications - concerning formal logical 
task design so as to avoid deadlocks, livelocks, 
unbounded resource usage and/or sharing non-
sharable resources, and to choose the primitive tasks 
that will span the desired task space; 

quantitative properties - concerning performance 
features, such as accuracy (e.g., the spatial and 
temporal resolution, as well as the tolerance interval 
around the goal, at each abstraction level), reliability 
and/or  minimization of task execution time given a 
maximum allowed cost.  

 
To support this top-down design and bottom-up 
implementation philosophy, suitable functional and 
software architectures, respectively, must be conceived 
prior to the development of all the sub-systems. 

A. Single-Robot Research Problems 

Most of the problems tackled so far within the SocRob 
project concern the sub-systems of the individual robots 
composing a team. From our standpoint, relevant topics 
are: 
 

Functional and Software Architectures: Modern 
robots should be designed based on a top-down design 
from specifications to ensure desired performance 
levels (both qualitative and quantitative). Therefore, 
the designers should start by specifying a functional 
architecture which will guide the design of the robot 
sub-systems in an integrated fashion, i.e., each sub-
system is not necessarily designed to optimize its 
performance but rather aiming at optimizing the 
overall system performance. Another important issue 
is to determine, given the desired task space (i.e., the 
set of tasks that will have to be carried out by the robot 
in a particular application), the minimal set of 
primitive tasks that will span that task space. 
Moreover, the final implementation should be 
supported on a suitable software architecture designed 
to allow real-time multi-processing, data sharing and 
mutually exclusive allocation of shared resources 
among the robot sub-systems. 

Single-Robot Task Planning: Given the primitive task 
set referred in the previous item, the robot must be 
able, given the current and past world states (including 
its own internal state), to compose primitive tasks so 
as to come up with a plan that carries out a given 
desired task. There may be more than one plan that 
accomplishes a task, but the planning system should 
be able to determine the one that achieves the best 
performance, based on the available information and 
prediction horizon. 

Single-Robot Task Coordination: Plans must be such 
that they allow continuous handling of the 
environment uncertainties and unexpected events. 
Once a plan is determined, task coordination deals 
with its execution. Plan execution must, at least, take 
into account the detection of events, smooth 
transitions between primitive tasks, synchronization of 
primitive tasks executed concurrently, mutual 
exclusion when two or more tasks attempt to access 
shared resources, iterative estimation of primitive task 
performance, learning how to improve a plan over 
time by choosing more convenient algorithms among 
those available for each primitive task, and so on. 

Navigation: The navigation system is an important sub-
system of a mobile robot. In many applications one 
important feature of the navigation system concerns 
the ability of the robot to self-localize, i.e., to 
autonomously determine its position and orientation 
(posture). Using posture estimates, the robot can move 
towards a desired posture, i.e., by following a pre-
planned virtual path or by stabilizing its posture 
smoothly[1]. If the robot is part of a cooperative multi-
robot team, it can also exchange the posture 
information with its teammates so that appropriate 
relational and organizational behaviors may be 
established.  In robotic soccer, these are crucial issues. 
If a robot knows its posture, it can move towards a 
desired posture (e.g., facing the goal with the ball in 
between). It can also know its teammate postures and 



 
 

prepare a pass, or evaluate the game state from the 
team locations. Most approaches to Navigation 
determine with high accuracy the posture of the robot 
with respect to a given coordinate frame. However, 
this approach is typically resource-consuming, 
requiring the robot to spend a significant percentage of 
its processing time with the navigation sub-system 
disregarding other important sub-systems, such as 
perception or planning, to name but a few. 
Furthermore, high accuracy is not always required for 
navigation purposes. One may be just interested to 
move closer to an object, rotate to see a given 
landmark, or move to another region. In those cases, 
another approach to navigation, known as topological 
(or relative) navigation, is advisable. 

Object Recognition and Tracking: The ability to 
discriminate and recognize its surrounding objects, to 
distinguish the relevant ones and to track, among 
them, those that move, is a major problem for any 
robot. For soccer robots, this problem is simplified 
since the relevant objects are distinguished by their 
colors (e.g., the ball is orange, the goals are blue and 
yellow). Nevertheless, fast and reliable color 
segmentation is not a trivial problem and requires 
some attention too. Furthermore, object detection may 
be performed by more than one sensor, such as 
different virtual sensors based on the vision transducer 
(e.g., mass center, edge detector, color segmentation), 
sonars, infrared and others. Therefore, sensor fusion 
arises as an important topic. 

B. Cooperative Multi-Robot Research Problems 

Functional and Software Architectures: If a team of 
cooperative robots is involved, the single-robot 
architectures of each of the team members must be 
integrated in the overall team architecture. The most 
usual solutions are 

centralized, where one of the robots (or an 
external machine) processes the data acquired 
and sent by all the team members, takes all the 
team decisions and sends commands to the 
others; 

distributed, where local data processing is made 
at each of the robots but then information is 
sent to one of them to take the decisions; 

fully decentralized, where each robot takes its 
own decisions based on its own data and on 
information exchanged with its teammates. 

    When the population is composed of heterogenous 
robots,  if a robot has to perform a particular task for 
which it does not have the necessary actuators, it 
might ask another robot with the adequate skills to 
carry it out. In the particular case of the ISocRob 
robotic team, where the robots are homogeneous, 
examples of cooperative behavior, in terms of sensors 
and actuators, are the cooperative localization of the 

ball and the execution of a pass or the decision of 
which robot should go for the ball. 

Multi-Robot Task Planning and Allocation: In the 
multiple-robot case, plans must take into account the 
distributed nature of the task at hand. Different tasks 
must be allocated to the different robots in the team, 
according to their skills and performance. Plans must 
also include synchronization and communication 
among team members involved in the task. 

Multi-Robot Task Coordination: The extension of 
task coordination to a team of multiple robots 
introduces issues related to knowledge distribution and 
maintenance, as well as communications and related 
problems (e.g., noise, protocols, limited bandwidth). 
Furthermore, communication can be explicit (e.g., 
through wireless radio-frequency channels) or implicit 
(e.g., through the observation of teammates actions, 
should an apriori model of the teammates behavior 
exist). The coordination of a task carried out by a team 
of cooperating robots involves signaling events 
detected by one robot which are relevant for some or 
all of its teammates and/or to exchange information 
obtained locally by the different robots of the team. 
Whenever a formation is required, several formation 
topologies are possible and the one suitable for the 
task at hand must be chosen as part of the coordination 
process. Although not inevitable, communications 
among team members are also required to keep the 
formation under control. 

Distributed World Modeling: A team composed of 
multiple robots, possibly heterogeneous concerning on 
board sensing, can benefit from the availability of a 
world model, obtained from the observations made by 
the different team members and its on board sensors. 
This world model can be richer that if it were obtained 
by a single robot, due to the coverage of a broader area 
by a more diverse sensors set. It can also be distributed 
through the teammates, e.g., by keeping in a single 
robot information which is only relevant locally and 
by broadcasting information gathered locally butwhich 
is of interest for the team as a whole. The sensor 
fusion problem is similar to the single-robot case, with 
the important difference that the sensor subsets are 
now independently mobile and can be actively 
positioned to improve the determination of object 
characteristics. 

III. PROBLEMS ALREADY ADDRESSED 

A key issue of the research work developed under the 
SocRob project is the application of conceptual results to 
real robots. However, a basic factor to achieve this 
endeavor is to ensure hardware reliability so as to avoid 
spending a large percentage of time handling hardware 
problems. Therefore, even though the original ISocRob 
team robots were developed at ISR/IST, they were later 
replaced by 4 Nomadic Super Scout II commercial 

 



  
 

platforms, each of them equipped with the following 
items: 

Two-wheel differential drive kinematics; 
Sixteen sonar sensors radially distributed around the 

robot, equally spaced; 
Pentium 233MHz based motherboard, 64MB of RAM, 

8GB of hard drive (laptop model), one PCI and one 
PC104 bus connectors; 

m68k based daughter board with three-axis motor 
controller, sonar and bumper interface, and battery 
level meters; 

Two 12V batteries, 18Ah capacity. 
 
The following components were added to enable other 
functionalities, most of them described in the sequel: 

Ultrak KC7500CP color 1/3'' CCD camera with a 4mm, 
F1.2 lens, in the robot front, through one of the sonar 
transducer openings; 

Omni-directional catadioptric vision assembly: one 
MicroVideo MVC26C color CCD camera under a 
11cm diameter mirror, manufactured to capture the 
bird's eye view of the soccer field; 

Bt848 based (Zoltrix TVmax) frame grabber board, with 
S-VHS and Composite video inputs; 

Pneumatic kicking device, based on Festo components, 
plus two bottles for pressurized air storage; 

Lucent WaveLAN/IEEE Turbo 11Mbps (Silver) 
wireless Ethernet modem connected through a 
PC104/PCMCIA bridge; 

Logitech Optical Mouse, to detect when a robot is 
blocked. 

 

A. Color Segmentation and Object Recognition 

A specific application with a graphical interface that 
allows a user-friendly adjustment of thresholds in HSV 
(Hue-Saturation-Value) [8] color space to discriminate all 
the relevant colors (thus, all the relevant objects) was 
developed to handle the color segmentation problem. Two 
look-up tables (LUT), one for each camera image, are 
compiled from the adjusted thresholds and linked to the 
main code to provide real-time color segmentation. The 
LUTs return, for each point in HSV space, either a color 
label or an unknown label, if the point is outside any of 
the regions defined by the thresholds. Typically, only 
first-order moments (i.e., the mass center) are then used 
for sets of pixels classified with the same color, so as to 
determine the object position. We are currently working 
on using higher-order moments (e.g., inertia moments and 
axes) as well as other features (e.g., edges) to attain more 
robust object segmentation. 

B. Vision-Based Self-Localization 

An algorithm that determines the posture of a robot, with 
respect to a given coordinate system, from the observation 
of natural landmarks of the soccer field, such as the field 

lines and goals, as well as from apriori knowledge of the 
field geometry, has been developed within the SocRob 
project[9]. Even though the intersection between the field 
and the walls is also currently used, the wall replacement 
by the corresponding field lines would not change the 
algorithm. The algorithm is a particular implementation of 
a general method applicable to other well-structured 
environments, also introduced in [9]. 
The landmarks are processed from an image taken by an 
omni-directional vision system, based on a camera plus a 
convex mirror designed to directly obtain the soccer field 
bird's eye view, thus preserving the field geometry in the 
image. The image green-white-green color transitions 
over a pre-determined number of circles centered with the 
robot are collected as the set of transition pixels.  The 
Hough Transform is applied to the set of transition pixels 
in a given image, using the polar representation of a 
line[8]: 
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Note that a small φ∆ denotes almost parallel straight 
lines, while ρ∆  is the distance between 2 parallel lines. 
The φ∆ and ρ∆  values are subsequently classified by 
relevance functions which, based on the knowledge of the 
field geometry, will filter out lines whose relative 
orientation and/or distances do not match the actual field 
relative orientation and/or distances. The remaining lines 
are correlated, in Hough space, with the geometric field 
model, so as to obtain the robot posture estimate. An 
additional step must be taken to disambiguate the robot 
orientation. In the application to soccer robots, the 
ambiguity is due to the soccer field symmetry. The goal 
colors are used to remove such ambiguity. 
Currently, the algorithm is used by each of the ISocRob 
team robots to obtain their self-localization during a game 
in specific states after a pre-determined timeout has 
expired. The algorithm is part of each robot navigation 
system, but it is also used by the robot to share 
information with its teammates regarding team postures 
and ball location. 
A paper on this work won the Engineering Challenge 
Award of the RoboCup 2000 Workshop. 
 

C. Multi-Sensor Guidance with Obstacle Avoidance 

The ability to navigate at relatively high speeds through 
an environment cluttered with static and dynamic 



 
 

obstacles is a crucial issue for a mobile robot. Most 
robotic tasks require a robot to move to target postures 
adequate to carry out its planned activities.  
In robotic soccer, relevant activities include facing the 
opponent goal with the ball in between or covering the 
team goal by positioning itself between the ball and the 
goal, while avoiding the field walls and the other (stopped 
and moving) robots. Also relevant is the capability to 
move towards a given posture while avoiding obstacles 
and keeping the ball (also known as dribbling). 
A guidance control method for non-holonomic 
(differential drive) vehicles, based on odometry reset by 
the vision-based self-localization algorithm described 
before was introduced in [10]. The vehicle must be 
endowed with a sonar ring, used for obstacle avoidance. 
The odometry is reset at specific robot states, such as (in 
the case of soccer robots) at restart time or before 
returning to home position. The algorithm, designated as 
Freezone, can be generally applied to structured indoors 
environments, provided that visual features can be 
observed by the self-localization method. 
The Freezone algorithm starts by creating a polar diagram 
centered with the origin of the robot frame, using the 
distance-to-obstacles information obtained from the 16-
sonar ring. Next, it searches in the diagram all the possible 
candidate directions that will let the robot move safely. 
The candidates are the “valleys” of the diagram that allow 
safe passage of the robot without bumping into obstacles. 
To find “valleys” in the diagram a mask was created. This 
mask represents an angular interval with a minimum 
distance to the obstacles that allow the robot to pass 
between them. Among the candidate directions, the one 
with the smallest angle w.r.t. the line connecting the 
origins of the frames representing the robot current and 
target postures is chosen.  The robot is moved towards the 
center of the selected valley, with linear and angular 
speeds determined from the analysis of the robot vicinity 
(nearby obstacles reduce linear speed) and smoothness 
considerations (the closer to the desired heading, the 
slower the robot rotates). 
An alternative guidance method has been introduced in 
[3], consisting of a modified potential fields method for 
robot navigation, especially suited for differential-drive 
non-holonomic mobile robots. The potential field is 
modified so as to enhance the relevance of obstacles in the 
direction of the robot motion. The relative weight 
assigned to front and side obstacles can be modified by 
the adjustment of one physically interpretable parameter. 
The resulting angular speed and linear acceleration of the 
robot can be expressed as functions of the linear speed, 
distance and relative orientation to the obstacles. This 
formulation enables the assignment of angular and linear 
velocities for the robot in a natural fashion. Moreover, it 
leads to an elegant formulation of the constraints on 
angular speed, linear speed and acceleration that enable a 
soccer robot to dribble a ball, i.e., to move while avoiding 
obstacles and pushing the ball without losing it, under 
severe restrictions to ball holding capabilities. It is shown 

that, under reasonable physical considerations, the angular 
speed must be less than a non-linear function of the linear 
speed and acceleration, which reduces to an affine 
function of the acceleration/speed ratio when a simplified 
model of the friction forces on the ball is used and the 
curvature of the robot trajectory is small. 
 

D. Behavior-Based Architectures 

The basic functional architecture of the SocRob team is 
organized in three levels of decision and responsibility, 
similar to those proposed in [6]: individual, which is 
responsible for all functionalities that involve only one 
agent; relational, which is responsible for the relationships 
between the robot and its teammates; and, organizational, 
which is responsible for the strategic decisions that 
involve the team as a whole. The current instantiation of 
this functional architecture considers that: 

there is, at the organizational level, a mapping from the 
environment state, including the team state, to a 
tactical decision, resulting in an organizational 
behavior displayed by the team. The tactics consists of 
the set of role assignments to each team member. In 
robotic soccer,  basic roles can be Goalkeeper, 
Defender and Attacker. Only the captain robot will 
have the organizer enabled. Should the captain “die”, 
the next robot in a pre-specified list will have its 
Organizer enabled and become thecaptain. 

there are, at the relational level, operators which control 
relations between two or more team members (e.g., to 
pass a ball, to avoid moving simultaneously towards a 
ball, to cover a field region while the  teammate 
advances in the field). Any team member has 
relational operators running. Each operator has a pre-
conditions set and, when this set is satisfied, 
establishes communications with the relational 
operator(s) of designated teammates, asking them to 
start a negotiation process which may end up in a 
coordinated action among this temporary sub-team. As 
a result, a relational behavior is displayed. 

there are, at the individual level, operators consisting of 
single primitive tasks or of composite tasks (primitive 
tasks linked by logical conditions on events).  

 
The software architecture is the practical implementation 

of the functional architecture, which could be done in any 
programming language and using different software 
technologies. In the SocRob project, the software 
architecture was defined based on three essential 
concepts: micro-agents (µA for short), blackboard and 
plugins. 
 

Inspired by the idea of Society of Agents, proposed by 
Minsky[11] , each functional module of the SocRob 
architecture was implemented by a separate process, using 
the parallel programming technology of threads. In this 
context a functional module is named µA. In the current 

 



  
 

implementation of the SocRob architecture there are  nine 
different threads, but only the three most important ones 
are mentioned here: µA Vision, responsible for processing 
the data acquired from the cameras, µA Machine, 
responsible for deciding which behavior should the robot 
display, and µA Control, responsible for the execution of 
the corresponding operator. 
The concept of threads was chosen to improve module 
performance and facilitate the information passing 
throughout the threads. This was accomplished by the 
blackboard concept (memory space shared by several 
threads), further sophisticated here by the development of 
a distributed blackboard, in what information availability 
is concerned. Instead of being centralized in one agent, 
the information is distributed among all team members 
and communicated when needed. 
As mentioned before, the decision making involved for 
each agent is twofold: which behavior should be 
displayed, and how the operator which displays such 
behavior is executed. This separation between behavior 
decision and operator execution allows the µA Machine, 
the one responsible for behavior decision, to work with 
abstract definitions of behaviors, and choose among them 
without knowing details about their execution. So, new 
operators could be easily added and removed without 
affecting the existing ones, and these can also be easily 
replaced by others with the simple restriction of 
maintaining the name. This was accomplished using the 
concept of plugin, in the sense that each new operator is 
added to the software architecture as a plugin, and 
therefore the µA Control can be seen as a multiplexer of 
plugins. Examples of already implemented operators are: 
dribble, score, go, standby, to name but a few. 
The same idea of plugins was also used for the µA Vision, 
as each particular functionality related to vision data is 
defined as a different plugin, and multiplexed by the µA 
Vision (e.g., a plugin for the front camera, a plugin for the 
up camera, a plugin for the self-localization algorithm, 
etc.). 
Both relational and individual operators have been 
implemented as state machines. For individual operators, 
the states represent primitive tasks, while the arcs between 
states (if any) are traversed upon the validation of given 
logical conditions over events (e.g., see ball, 
distance < x). The relational operator state machines 
are defined similarly, but events include synchronization 
signals between the state machines running in the sub-
team robots. However, the way the functional architecture 
was conceptualized allows the implementation of these 
operators and the switching among them using different 
approaches, as for example AI production systems. 
 

E. Steps Towards Cooperation and Coordination 

Each agent of the team will have access to all individual 
and relational operators. However, a role defines which 
individual and relational operators are enabled and which 

ones are not. Furthermore, for a given role, there is always 
a default (initial) individual operator running until it is 
temporarily replaced by a relational operator which claims 
a temporary action. Such an action may consist of 
executing a primitive task or a composite task, in order to 
comply with the requirements of an established relation. 
An example of an already implemented relation is when 
two robots want to go for the ball. As the ball is a scarce 
resource, and to avoid that robots from the same team 
would jeopardize their own actions, a relational operator 
is needed to manage which robot should go to the ball and 
which one(s) should not. In the current implementation, 
each robot that sees the ball and wants to go for it uses a 
heuristic function to determine a fitness value. This 
heuristic penalizes robots that are far from the ball, are 
between the ball and the opposite goal and need to 
perform a angular correction to center the ball with its 
kicking device. Each robot broadcasts its own heuristic 
value, and the robot with the smallest value is allowed to 
go for the ball whereas the others execute a standby 
behavior. 

IV. PROBLEMS TO BE ADDRESSED  

The previous section shows that most of the work done 
so far has been concentrated on single-robot behavior and 
primitive task development. This is a natural consequence 
of our bottom-up approach to implementation. 
Nevertheless, many design issues have been analyzed in a 
top-down perspective since the beginning of the project, 
and several interesting problems remain to be tackled and 
solved. We will only mention the currently most 
important ones. 

Behavior Modeling: A consistent model for individual 
and relational behaviors is required to provide a 
systematic methodology for behavior synthesis and 
analysis. Finite state automata (FSA) have been used 
for this purpose up to now. They have the advantage 
of the availability of several tools for analysis and 
synthesis in the literature [2] but suffer from limited 
modeling capabilities. Petri nets [2] extend the 
modeling capabilities of FSA and provide a more 
convenient modeling methodology starting from the 
identification of the system components and events. A 
wide range of analysis (e.g., concerning boundedness, 
liveness, stochastic and deterministic time) and 
synthesis (e.g., concerning admissible marked 
languages) tools is also available, and the non-
decidability of some analysis problems can be 
overcome with no significant expenses. Furthermore, 
modularity and system design can be achieved by 
interconnecting several sub-systems, each modeled as 
a Petri net. This is particularly convenient to model 
relational behaviors, where more than one teammate is 
involved. So, Petri nets are being investigated as an 
alternative tool for behavior modeling. Behavior 
switching can also be modeled as discrete-event 
systems supervision [2], for which there are results 



 
 

 

available regarding FSA and Petri nets. Production 
systems also have modeling characteristics that make 
them suitable for this purpose. However, further work 
must be done to study its design and analysis 
properties. 

Distributed Planning: The available behaviors among 
which switching is possible are currently designed “by 
hand”. However, a more appropriate approach would 
be to develop a planner capable of periodically (or 
when invoked) analyzing the world state and 
providing a new set of individual and relational 
behaviors appropriate for the current conditions. A 
suitable approach should be the continuous 
interleaving of plan generation and execution. Task 
allocation among the team robots and distributed 
world modeling are relevant issues to be further 
investigated under this topic. 

Cooperative Learning: One possible way of designing 
plans which continuously adapt to new situations and 
are fine tuned to the actual surrounding environment is 
to use reinforcement learning (RL) algorithms, 
especially those which guarantee convergence 
properties [12]. However, learning is usually slow. An 
envisaged approach that overcomes this problem is to 
provide plans with alternative paths among which the 
RL algorithms can learn to switch over time. 
Cooperative learning arises when a robot takes its 
decisions from information learned and provided to it 
by its teammates. 

Control as a Game: Modern views of control state the 
control problem as a game against an adversary (i.e., 
the disturbances). In the particular case of soccer, 
there is an actual opponent whose modeled behavior, 
once estimated (e.g., using Hidden Markov Models), 
can be used as information for game-playing 
algorithms, as part of the planning process. 

V. CONCLUSIONS 

This paper described the SocRob project (on the 
development of methodologies for analysis, design and 
implementation of multi-robot cooperative systems), its 
objectives, past, current and intended future work. One 
interesting feature of the project is that it enables different 
approaches to the solution of the problem at hand. This 
naturally motivates competing research approaches, as 
well as research on analysis methods to compare  the 
different results. Furthermore, the project fosters 
education in AI and Robotics related topics, because so 
many issues must be solved to handle the overall problem. 

Students from different levels (undergraduate, graduate, 
post-doctorate) can get involved at different difficulty 
levels and accomplish project sub-goals. The SocRob 
project has involved so far 10 undergraduate and 4 
graduate (MSc and PhD) students, besides 2 doctorates 
who have been supervising the project. All these students 
have participated regularly in RoboCup - The World Cup 
of Soccer Robots, since 1998. We believe that RoboCup 
is a very attractive long-term scientific challenge that 
brings together people from several different scientific 
fields in an exciting fusion of research, education and 
science promotion which are actually the driving forces of 
our project too. 
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