

Artificial Intelligence and Systems Theory Applied to Cooperative Robots:
the SocRob Project*

Pedro Lima, Luis Custódio
{pal,lmmc}@isr.ist.utl.pt

Instituto de Sistemas e Robótica, Instituto Superior Técnico – Av. Rovisco Pais, 1 – 1049-001 Lisboa

Abstract - This paper describes an approach to the design of

a population of cooperative robots based on concepts
borrowed from Systems Theory and Artificial Intelligence
The research has been developed under the SocRob project,
jointly carried out by the Intelligent Control and Artificial
Intelligence Laboratories at ISR/IST. The acronym of the
project stands both for "Society of Robots" and "Soccer
Robots", the case study where we are testing our population
of four robots. Designing soccer robots is a very challenging
problem, where the robots must act not only to shoot a ball
towards the goal, but also to detect and avoid static (walls,
stopped robots) and dynamic (moving robots) obstacles.
Furthermore, they must cooperate to defeat an opposing
team. Our current research in soccer robotics includes image
processing for object segmentation, recognition and
tracking, navigation and behavior-based architectures for
real time task execution of cooperating robot teams.
Cooperative learning, behavior modeling and distributed
planning are topics we have been investigating and plan to
apply to soccer robots and other case studies, such as search
and rescue robots.

* This project has been sponsored over the years by several public and private institutions: Fundação para a Ciência e a Tecnologia, Fundação Calouste

Gulbenkian, Agência de Inovação, Mota & Teixeira, Alcatel, Caixa Geral de Depósitos, ICEP - Portugal, FLAD, Público newspaper, ISR/IST, IST

I. INTRODUCTION

Cooperative Robotics is a modern research field, with
applications to areas such as building surveillance,
transportation of large objects, air and underwater
pollution monitoring, forest fire detection, transportation
systems, or rescue after large-scale disasters. In short, a
population of cooperative robots behaves like a
``distributed'' robot to accomplish tasks that would be
difficult, if not impossible, for a single robot. Many
lessons important for this domain can be learned from the
Multi-Agent Systems field of Artificial Intelligence (AI)
concerning relevant topics for Cooperative Robotics, such
as distributed continual planning[5], task allocation[7],
communication languages or coordination mechanisms[4].
Robotic soccer is a very challenging problem, where the
robots must cooperate not only to push and/or kick an
object (a ball) towards a target region (the goal), but also
to detect and avoid static (walls, stopped robots) and
dynamic (moving robots) obstacles while moving
towards, moving with or following the ball. Furthermore,
they must cooperate to defeat an opposing team. All these
are features common to many other cooperative robotics

problems. This paper surveys the several research
problems addressed by the SocRob project, building on
AI concepts a Systems Theory standpoint. In Section II
we describe our view of the general problem involving
multiple robots that act as a team, cooperating and
coordinating their actions to attain the team goal. Needless
to say, single-robot ``traditional'' research problems are
covered, both from the sub-system and the integration
standpoints. Natural extensions to cooperative multi-robot
teams are also detailed. The problems addressed so far
and the solutions we obtained for them are described in
Section III. Open problems of interest for the project and
clues on how we intend to approach their solution are
discussed in Section IV. We end the paper drawing some
conclusions in Section V.

II. A GENERAL MULTI-ROBOT COOPERATION AND
COORDINATION PROBLEM

Many researchers around the world are designing mobile
robots capable to display increasing autonomy and
machine intelligence properties. Most groups concentrate
in specific subsystems of a robot, such as the planner, the
navigator, or the sensor fusion. What usually is missing in
their design is a systematic way to glue together all these
subsystems in a consistent fashion. Such a methodology,
should one be available, would help engineering the
mobile robots of the future.
Perhaps the key factor of success for a robot lies on its
capability to perceive correctly its surrounding
environment, and to build environment models adequate
for the task the robot is in charge of, from the information
provided by its sensors. Different sensors (e.g., vision,
laser, sonar, encoders) can provide alternative or
complementary information about the same object, or
information about different objects. Sensor fusion is the
usual designation for methods of different types to handle
the data from the several sensors available and provide
improved information about the environment (e.g., about
its geometry, color, shape, relevance).
When a team composed of several cooperating robots is
concerned, the sensors are spread over the different
robots, with the important advantage that the robots can
move (thus moving its sensors) to actively improve the
cooperative perception of the environment by the team.

The information about the environment so obtained can be
made available and regularly updated by different means
(e.g., memory sharing, message passing, wireless
communications) to all the team robots, so as to be used
by the other sub-systems.
Once the information about the world is available, one
may think of using it to make the team behave
autonomously and machine-wise intelligently. Three main
questions arise for the team:

Where and which apriori knowledge about the
environment, team, tasks and goals, and perceptual
information gathered from sensors, should be kept,
updated and maintained? This involves the issue of
distributed knowledge representation adequate to
consistently handle different and even opposite views
of the world.

What must be done to achieve a given goal, given the
constraints on time, available resources and distinct
skills of the team robots? The answer to this should
provide a team plan.

How is the actual implementation of a plan handled,
ensuring the consistency of individual and team (sub)-
goals and the coordinated execution of the plan?

So far, a bottom-up approach to the implementation of a
cooperative multi-robot team has been followed in the
SocRob project, starting from the development of single
robot sub-systems (e.g., perception, navigation) and
moving towards relational behaviors, comprehending
more than one robot.
However, a key point is a top-down approach to system
design. The design phase establishes the specifications for
the system:

qualitative specifications - concerning formal logical
task design so as to avoid deadlocks, livelocks,
unbounded resource usage and/or sharing non-
sharable resources, and to choose the primitive tasks
that will span the desired task space;

quantitative properties - concerning performance
features, such as accuracy (e.g., the spatial and
temporal resolution, as well as the tolerance interval
around the goal, at each abstraction level), reliability
and/or minimization of task execution time given a
maximum allowed cost.

To support this top-down design and bottom-up
implementation philosophy, suitable functional and
software architectures, respectively, must be conceived
prior to the development of all the sub-systems.

A. Single-Robot Research Problems

Most of the problems tackled so far within the SocRob
project concern the sub-systems of the individual robots
composing a team. From our standpoint, relevant topics
are:

Functional and Software Architectures: Modern
robots should be designed based on a top-down design
from specifications to ensure desired performance
levels (both qualitative and quantitative). Therefore,
the designers should start by specifying a functional
architecture which will guide the design of the robot
sub-systems in an integrated fashion, i.e., each sub-
system is not necessarily designed to optimize its
performance but rather aiming at optimizing the
overall system performance. Another important issue
is to determine, given the desired task space (i.e., the
set of tasks that will have to be carried out by the robot
in a particular application), the minimal set of
primitive tasks that will span that task space.
Moreover, the final implementation should be
supported on a suitable software architecture designed
to allow real-time multi-processing, data sharing and
mutually exclusive allocation of shared resources
among the robot sub-systems.

Single-Robot Task Planning: Given the primitive task
set referred in the previous item, the robot must be
able, given the current and past world states (including
its own internal state), to compose primitive tasks so
as to come up with a plan that carries out a given
desired task. There may be more than one plan that
accomplishes a task, but the planning system should
be able to determine the one that achieves the best
performance, based on the available information and
prediction horizon.

Single-Robot Task Coordination: Plans must be such
that they allow continuous handling of the
environment uncertainties and unexpected events.
Once a plan is determined, task coordination deals
with its execution. Plan execution must, at least, take
into account the detection of events, smooth
transitions between primitive tasks, synchronization of
primitive tasks executed concurrently, mutual
exclusion when two or more tasks attempt to access
shared resources, iterative estimation of primitive task
performance, learning how to improve a plan over
time by choosing more convenient algorithms among
those available for each primitive task, and so on.

Navigation: The navigation system is an important sub-
system of a mobile robot. In many applications one
important feature of the navigation system concerns
the ability of the robot to self-localize, i.e., to
autonomously determine its position and orientation
(posture). Using posture estimates, the robot can move
towards a desired posture, i.e., by following a pre-
planned virtual path or by stabilizing its posture
smoothly[1]. If the robot is part of a cooperative multi-
robot team, it can also exchange the posture
information with its teammates so that appropriate
relational and organizational behaviors may be
established. In robotic soccer, these are crucial issues.
If a robot knows its posture, it can move towards a
desired posture (e.g., facing the goal with the ball in
between). It can also know its teammate postures and

prepare a pass, or evaluate the game state from the
team locations. Most approaches to Navigation
determine with high accuracy the posture of the robot
with respect to a given coordinate frame. However,
this approach is typically resource-consuming,
requiring the robot to spend a significant percentage of
its processing time with the navigation sub-system
disregarding other important sub-systems, such as
perception or planning, to name but a few.
Furthermore, high accuracy is not always required for
navigation purposes. One may be just interested to
move closer to an object, rotate to see a given
landmark, or move to another region. In those cases,
another approach to navigation, known as topological
(or relative) navigation, is advisable.

Object Recognition and Tracking: The ability to
discriminate and recognize its surrounding objects, to
distinguish the relevant ones and to track, among
them, those that move, is a major problem for any
robot. For soccer robots, this problem is simplified
since the relevant objects are distinguished by their
colors (e.g., the ball is orange, the goals are blue and
yellow). Nevertheless, fast and reliable color
segmentation is not a trivial problem and requires
some attention too. Furthermore, object detection may
be performed by more than one sensor, such as
different virtual sensors based on the vision transducer
(e.g., mass center, edge detector, color segmentation),
sonars, infrared and others. Therefore, sensor fusion
arises as an important topic.

B. Cooperative Multi-Robot Research Problems

Functional and Software Architectures: If a team of
cooperative robots is involved, the single-robot
architectures of each of the team members must be
integrated in the overall team architecture. The most
usual solutions are

centralized, where one of the robots (or an
external machine) processes the data acquired
and sent by all the team members, takes all the
team decisions and sends commands to the
others;

distributed, where local data processing is made
at each of the robots but then information is
sent to one of them to take the decisions;

fully decentralized, where each robot takes its
own decisions based on its own data and on
information exchanged with its teammates.

 When the population is composed of heterogenous
robots, if a robot has to perform a particular task for
which it does not have the necessary actuators, it
might ask another robot with the adequate skills to
carry it out. In the particular case of the ISocRob
robotic team, where the robots are homogeneous,
examples of cooperative behavior, in terms of sensors
and actuators, are the cooperative localization of the

ball and the execution of a pass or the decision of
which robot should go for the ball.

Multi-Robot Task Planning and Allocation: In the
multiple-robot case, plans must take into account the
distributed nature of the task at hand. Different tasks
must be allocated to the different robots in the team,
according to their skills and performance. Plans must
also include synchronization and communication
among team members involved in the task.

Multi-Robot Task Coordination: The extension of
task coordination to a team of multiple robots
introduces issues related to knowledge distribution and
maintenance, as well as communications and related
problems (e.g., noise, protocols, limited bandwidth).
Furthermore, communication can be explicit (e.g.,
through wireless radio-frequency channels) or implicit
(e.g., through the observation of teammates actions,
should an apriori model of the teammates behavior
exist). The coordination of a task carried out by a team
of cooperating robots involves signaling events
detected by one robot which are relevant for some or
all of its teammates and/or to exchange information
obtained locally by the different robots of the team.
Whenever a formation is required, several formation
topologies are possible and the one suitable for the
task at hand must be chosen as part of the coordination
process. Although not inevitable, communications
among team members are also required to keep the
formation under control.

Distributed World Modeling: A team composed of
multiple robots, possibly heterogeneous concerning on
board sensing, can benefit from the availability of a
world model, obtained from the observations made by
the different team members and its on board sensors.
This world model can be richer that if it were obtained
by a single robot, due to the coverage of a broader area
by a more diverse sensors set. It can also be distributed
through the teammates, e.g., by keeping in a single
robot information which is only relevant locally and
by broadcasting information gathered locally butwhich
is of interest for the team as a whole. The sensor
fusion problem is similar to the single-robot case, with
the important difference that the sensor subsets are
now independently mobile and can be actively
positioned to improve the determination of object
characteristics.

III. PROBLEMS ALREADY ADDRESSED

A key issue of the research work developed under the
SocRob project is the application of conceptual results to
real robots. However, a basic factor to achieve this
endeavor is to ensure hardware reliability so as to avoid
spending a large percentage of time handling hardware
problems. Therefore, even though the original ISocRob
team robots were developed at ISR/IST, they were later
replaced by 4 Nomadic Super Scout II commercial

platforms, each of them equipped with the following
items:

Two-wheel differential drive kinematics;
Sixteen sonar sensors radially distributed around the

robot, equally spaced;
Pentium 233MHz based motherboard, 64MB of RAM,

8GB of hard drive (laptop model), one PCI and one
PC104 bus connectors;

m68k based daughter board with three-axis motor
controller, sonar and bumper interface, and battery
level meters;

Two 12V batteries, 18Ah capacity.

The following components were added to enable other
functionalities, most of them described in the sequel:

Ultrak KC7500CP color 1/3'' CCD camera with a 4mm,
F1.2 lens, in the robot front, through one of the sonar
transducer openings;

Omni-directional catadioptric vision assembly: one
MicroVideo MVC26C color CCD camera under a
11cm diameter mirror, manufactured to capture the
bird's eye view of the soccer field;

Bt848 based (Zoltrix TVmax) frame grabber board, with
S-VHS and Composite video inputs;

Pneumatic kicking device, based on Festo components,
plus two bottles for pressurized air storage;

Lucent WaveLAN/IEEE Turbo 11Mbps (Silver)
wireless Ethernet modem connected through a
PC104/PCMCIA bridge;

Logitech Optical Mouse, to detect when a robot is
blocked.

A. Color Segmentation and Object Recognition

A specific application with a graphical interface that
allows a user-friendly adjustment of thresholds in HSV
(Hue-Saturation-Value) [8] color space to discriminate all
the relevant colors (thus, all the relevant objects) was
developed to handle the color segmentation problem. Two
look-up tables (LUT), one for each camera image, are
compiled from the adjusted thresholds and linked to the
main code to provide real-time color segmentation. The
LUTs return, for each point in HSV space, either a color
label or an unknown label, if the point is outside any of
the regions defined by the thresholds. Typically, only
first-order moments (i.e., the mass center) are then used
for sets of pixels classified with the same color, so as to
determine the object position. We are currently working
on using higher-order moments (e.g., inertia moments and
axes) as well as other features (e.g., edges) to attain more
robust object segmentation.

B. Vision-Based Self-Localization

An algorithm that determines the posture of a robot, with
respect to a given coordinate system, from the observation
of natural landmarks of the soccer field, such as the field

lines and goals, as well as from apriori knowledge of the
field geometry, has been developed within the SocRob
project[9]. Even though the intersection between the field
and the walls is also currently used, the wall replacement
by the corresponding field lines would not change the
algorithm. The algorithm is a particular implementation of
a general method applicable to other well-structured
environments, also introduced in [9].
The landmarks are processed from an image taken by an
omni-directional vision system, based on a camera plus a
convex mirror designed to directly obtain the soccer field
bird's eye view, thus preserving the field geometry in the
image. The image green-white-green color transitions
over a pre-determined number of circles centered with the
robot are collected as the set of transition pixels. The
Hough Transform is applied to the set of transition pixels
in a given image, using the polar representation of a
line[8]:

φφρ sin.cos. t
i

t
i yx +=

where (xi
t,yi

t) are the image coordinates of transition pixel
pt and ρ, φ are the line parameters. The q straight lines
(ρl, φl), ..., (ρq, φq) corresponding to the top q accumulator
cells in Hough space are picked and, for all pairs { (ρj, φj),
(ρk, φk), j,k=1, ...,q, j ≠ k } made out of those q straight
lines the following distances in Hough space are
computed:

kj

kj

ρρρ

φφφ

−=∆

−=∆

Note that a small φ∆ denotes almost parallel straight
lines, while ρ∆ is the distance between 2 parallel lines.
The φ∆ and ρ∆ values are subsequently classified by
relevance functions which, based on the knowledge of the
field geometry, will filter out lines whose relative
orientation and/or distances do not match the actual field
relative orientation and/or distances. The remaining lines
are correlated, in Hough space, with the geometric field
model, so as to obtain the robot posture estimate. An
additional step must be taken to disambiguate the robot
orientation. In the application to soccer robots, the
ambiguity is due to the soccer field symmetry. The goal
colors are used to remove such ambiguity.
Currently, the algorithm is used by each of the ISocRob
team robots to obtain their self-localization during a game
in specific states after a pre-determined timeout has
expired. The algorithm is part of each robot navigation
system, but it is also used by the robot to share
information with its teammates regarding team postures
and ball location.
A paper on this work won the Engineering Challenge
Award of the RoboCup 2000 Workshop.

C. Multi-Sensor Guidance with Obstacle Avoidance

The ability to navigate at relatively high speeds through
an environment cluttered with static and dynamic

obstacles is a crucial issue for a mobile robot. Most
robotic tasks require a robot to move to target postures
adequate to carry out its planned activities.
In robotic soccer, relevant activities include facing the
opponent goal with the ball in between or covering the
team goal by positioning itself between the ball and the
goal, while avoiding the field walls and the other (stopped
and moving) robots. Also relevant is the capability to
move towards a given posture while avoiding obstacles
and keeping the ball (also known as dribbling).
A guidance control method for non-holonomic
(differential drive) vehicles, based on odometry reset by
the vision-based self-localization algorithm described
before was introduced in [10]. The vehicle must be
endowed with a sonar ring, used for obstacle avoidance.
The odometry is reset at specific robot states, such as (in
the case of soccer robots) at restart time or before
returning to home position. The algorithm, designated as
Freezone, can be generally applied to structured indoors
environments, provided that visual features can be
observed by the self-localization method.
The Freezone algorithm starts by creating a polar diagram
centered with the origin of the robot frame, using the
distance-to-obstacles information obtained from the 16-
sonar ring. Next, it searches in the diagram all the possible
candidate directions that will let the robot move safely.
The candidates are the “valleys” of the diagram that allow
safe passage of the robot without bumping into obstacles.
To find “valleys” in the diagram a mask was created. This
mask represents an angular interval with a minimum
distance to the obstacles that allow the robot to pass
between them. Among the candidate directions, the one
with the smallest angle w.r.t. the line connecting the
origins of the frames representing the robot current and
target postures is chosen. The robot is moved towards the
center of the selected valley, with linear and angular
speeds determined from the analysis of the robot vicinity
(nearby obstacles reduce linear speed) and smoothness
considerations (the closer to the desired heading, the
slower the robot rotates).
An alternative guidance method has been introduced in
[3], consisting of a modified potential fields method for
robot navigation, especially suited for differential-drive
non-holonomic mobile robots. The potential field is
modified so as to enhance the relevance of obstacles in the
direction of the robot motion. The relative weight
assigned to front and side obstacles can be modified by
the adjustment of one physically interpretable parameter.
The resulting angular speed and linear acceleration of the
robot can be expressed as functions of the linear speed,
distance and relative orientation to the obstacles. This
formulation enables the assignment of angular and linear
velocities for the robot in a natural fashion. Moreover, it
leads to an elegant formulation of the constraints on
angular speed, linear speed and acceleration that enable a
soccer robot to dribble a ball, i.e., to move while avoiding
obstacles and pushing the ball without losing it, under
severe restrictions to ball holding capabilities. It is shown

that, under reasonable physical considerations, the angular
speed must be less than a non-linear function of the linear
speed and acceleration, which reduces to an affine
function of the acceleration/speed ratio when a simplified
model of the friction forces on the ball is used and the
curvature of the robot trajectory is small.

D. Behavior-Based Architectures

The basic functional architecture of the SocRob team is
organized in three levels of decision and responsibility,
similar to those proposed in [6]: individual, which is
responsible for all functionalities that involve only one
agent; relational, which is responsible for the relationships
between the robot and its teammates; and, organizational,
which is responsible for the strategic decisions that
involve the team as a whole. The current instantiation of
this functional architecture considers that:

there is, at the organizational level, a mapping from the
environment state, including the team state, to a
tactical decision, resulting in an organizational
behavior displayed by the team. The tactics consists of
the set of role assignments to each team member. In
robotic soccer, basic roles can be Goalkeeper,
Defender and Attacker. Only the captain robot will
have the organizer enabled. Should the captain “die”,
the next robot in a pre-specified list will have its
Organizer enabled and become thecaptain.

there are, at the relational level, operators which control
relations between two or more team members (e.g., to
pass a ball, to avoid moving simultaneously towards a
ball, to cover a field region while the teammate
advances in the field). Any team member has
relational operators running. Each operator has a pre-
conditions set and, when this set is satisfied,
establishes communications with the relational
operator(s) of designated teammates, asking them to
start a negotiation process which may end up in a
coordinated action among this temporary sub-team. As
a result, a relational behavior is displayed.

there are, at the individual level, operators consisting of
single primitive tasks or of composite tasks (primitive
tasks linked by logical conditions on events).

The software architecture is the practical implementation

of the functional architecture, which could be done in any
programming language and using different software
technologies. In the SocRob project, the software
architecture was defined based on three essential
concepts: micro-agents (µA for short), blackboard and
plugins.

Inspired by the idea of Society of Agents, proposed by
Minsky[11] , each functional module of the SocRob
architecture was implemented by a separate process, using
the parallel programming technology of threads. In this
context a functional module is named µA. In the current

implementation of the SocRob architecture there are nine
different threads, but only the three most important ones
are mentioned here: µA Vision, responsible for processing
the data acquired from the cameras, µA Machine,
responsible for deciding which behavior should the robot
display, and µA Control, responsible for the execution of
the corresponding operator.
The concept of threads was chosen to improve module
performance and facilitate the information passing
throughout the threads. This was accomplished by the
blackboard concept (memory space shared by several
threads), further sophisticated here by the development of
a distributed blackboard, in what information availability
is concerned. Instead of being centralized in one agent,
the information is distributed among all team members
and communicated when needed.
As mentioned before, the decision making involved for
each agent is twofold: which behavior should be
displayed, and how the operator which displays such
behavior is executed. This separation between behavior
decision and operator execution allows the µA Machine,
the one responsible for behavior decision, to work with
abstract definitions of behaviors, and choose among them
without knowing details about their execution. So, new
operators could be easily added and removed without
affecting the existing ones, and these can also be easily
replaced by others with the simple restriction of
maintaining the name. This was accomplished using the
concept of plugin, in the sense that each new operator is
added to the software architecture as a plugin, and
therefore the µA Control can be seen as a multiplexer of
plugins. Examples of already implemented operators are:
dribble, score, go, standby, to name but a few.
The same idea of plugins was also used for the µA Vision,
as each particular functionality related to vision data is
defined as a different plugin, and multiplexed by the µA
Vision (e.g., a plugin for the front camera, a plugin for the
up camera, a plugin for the self-localization algorithm,
etc.).
Both relational and individual operators have been
implemented as state machines. For individual operators,
the states represent primitive tasks, while the arcs between
states (if any) are traversed upon the validation of given
logical conditions over events (e.g., see ball,
distance < x). The relational operator state machines
are defined similarly, but events include synchronization
signals between the state machines running in the sub-
team robots. However, the way the functional architecture
was conceptualized allows the implementation of these
operators and the switching among them using different
approaches, as for example AI production systems.

E. Steps Towards Cooperation and Coordination

Each agent of the team will have access to all individual
and relational operators. However, a role defines which
individual and relational operators are enabled and which

ones are not. Furthermore, for a given role, there is always
a default (initial) individual operator running until it is
temporarily replaced by a relational operator which claims
a temporary action. Such an action may consist of
executing a primitive task or a composite task, in order to
comply with the requirements of an established relation.
An example of an already implemented relation is when
two robots want to go for the ball. As the ball is a scarce
resource, and to avoid that robots from the same team
would jeopardize their own actions, a relational operator
is needed to manage which robot should go to the ball and
which one(s) should not. In the current implementation,
each robot that sees the ball and wants to go for it uses a
heuristic function to determine a fitness value. This
heuristic penalizes robots that are far from the ball, are
between the ball and the opposite goal and need to
perform a angular correction to center the ball with its
kicking device. Each robot broadcasts its own heuristic
value, and the robot with the smallest value is allowed to
go for the ball whereas the others execute a standby
behavior.

IV. PROBLEMS TO BE ADDRESSED

The previous section shows that most of the work done
so far has been concentrated on single-robot behavior and
primitive task development. This is a natural consequence
of our bottom-up approach to implementation.
Nevertheless, many design issues have been analyzed in a
top-down perspective since the beginning of the project,
and several interesting problems remain to be tackled and
solved. We will only mention the currently most
important ones.

Behavior Modeling: A consistent model for individual
and relational behaviors is required to provide a
systematic methodology for behavior synthesis and
analysis. Finite state automata (FSA) have been used
for this purpose up to now. They have the advantage
of the availability of several tools for analysis and
synthesis in the literature [2] but suffer from limited
modeling capabilities. Petri nets [2] extend the
modeling capabilities of FSA and provide a more
convenient modeling methodology starting from the
identification of the system components and events. A
wide range of analysis (e.g., concerning boundedness,
liveness, stochastic and deterministic time) and
synthesis (e.g., concerning admissible marked
languages) tools is also available, and the non-
decidability of some analysis problems can be
overcome with no significant expenses. Furthermore,
modularity and system design can be achieved by
interconnecting several sub-systems, each modeled as
a Petri net. This is particularly convenient to model
relational behaviors, where more than one teammate is
involved. So, Petri nets are being investigated as an
alternative tool for behavior modeling. Behavior
switching can also be modeled as discrete-event
systems supervision [2], for which there are results

available regarding FSA and Petri nets. Production
systems also have modeling characteristics that make
them suitable for this purpose. However, further work
must be done to study its design and analysis
properties.

Distributed Planning: The available behaviors among
which switching is possible are currently designed “by
hand”. However, a more appropriate approach would
be to develop a planner capable of periodically (or
when invoked) analyzing the world state and
providing a new set of individual and relational
behaviors appropriate for the current conditions. A
suitable approach should be the continuous
interleaving of plan generation and execution. Task
allocation among the team robots and distributed
world modeling are relevant issues to be further
investigated under this topic.

Cooperative Learning: One possible way of designing
plans which continuously adapt to new situations and
are fine tuned to the actual surrounding environment is
to use reinforcement learning (RL) algorithms,
especially those which guarantee convergence
properties [12]. However, learning is usually slow. An
envisaged approach that overcomes this problem is to
provide plans with alternative paths among which the
RL algorithms can learn to switch over time.
Cooperative learning arises when a robot takes its
decisions from information learned and provided to it
by its teammates.

Control as a Game: Modern views of control state the
control problem as a game against an adversary (i.e.,
the disturbances). In the particular case of soccer,
there is an actual opponent whose modeled behavior,
once estimated (e.g., using Hidden Markov Models),
can be used as information for game-playing
algorithms, as part of the planning process.

V. CONCLUSIONS

This paper described the SocRob project (on the
development of methodologies for analysis, design and
implementation of multi-robot cooperative systems), its
objectives, past, current and intended future work. One
interesting feature of the project is that it enables different
approaches to the solution of the problem at hand. This
naturally motivates competing research approaches, as
well as research on analysis methods to compare the
different results. Furthermore, the project fosters
education in AI and Robotics related topics, because so
many issues must be solved to handle the overall problem.

Students from different levels (undergraduate, graduate,
post-doctorate) can get involved at different difficulty
levels and accomplish project sub-goals. The SocRob
project has involved so far 10 undergraduate and 4
graduate (MSc and PhD) students, besides 2 doctorates
who have been supervising the project. All these students
have participated regularly in RoboCup - The World Cup
of Soccer Robots, since 1998. We believe that RoboCup
is a very attractive long-term scientific challenge that
brings together people from several different scientific
fields in an exciting fusion of research, education and
science promotion which are actually the driving forces of
our project too.

REFERENCES

[1] C. Canudas de Wit and B. Siciliano and G. Bastin (Eds), Theory of
Robot Control, CCE Series, Kluwer, 1996

[2] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, Kluwer Academic Publishers, 1999

[3] B. Damas and P. Lima and L. Custódio, “A Modified Potential Fields
Method for Robot Navigation Applied to Dribbling in Robotic
Soccer”, Proceedings of RoboCup-2002 Symposium, 2002,
Fukuoka, Japan

[4] K. S. Decker and V. R. Lesser, “Designing a Family of Coordination
Algorithms”, Technical Report No. 94-14, Department of
Computer Science, University of Massachussets, Amherst,
MA01003, 1995

[5] M. E. desJardins and E. H. Durfee and C. L. Ortiz, Jr and M. J.
Wolverton, “A Survey of Research in Distributed, Continual
Planning”, AI Magazine, Winter 1999, pp. 13-22

[6] Drogoul and A. Collinot, “Applying an Agent-Oriented Methodology
to the Design of Artificial Organizations: A Case Study in Robotic
Soccer”, Autonomous Agents and Multi-Agent Systems Journal,
Vol. 1, pp. 113-129, 1998

[7] J. Ferber, Multi-Agent Systems: An Introduction to Distributed
Artificial Intelligence, Addison-Wesley, 1999

[8] R. Gonzalez and R. Woods, Digital Image Processing, Addison-
Wesley, 1992

[9] C. Marques and P. Lima, “A Localization Method for a Soccer Robot
Using a Vision-Based Omni-Directional Sensor”, RoboCup-2000:
Robot Soccer World Cup IV, P. Stone, T. Balch, G. Kraetzschmar
(Eds.), Springer-Verlag, Berlin, 2001

[10] C. Marques and P. Lima, “Multi-sensor Navigation for Soccer
Robots, RoboCup-2001: Robot Soccer World Cup V, A. Birk, S.
Coradeschi, S. Tadokoro (Eds.), Springer-Verlag, Berlin , 2002

[11] M. Minsky, The Society of Mind, Touchstone Publishers, 1988
[12] R. Sutton and A. Barto, Reinforcement Learning, MIT Press,

Cambridge, MA, 1998

	I. Introduction
	II. A General Multi-Robot Cooperation and Coordination Problem
	A. Single-Robot Research Problems
	B. Cooperative Multi-Robot Research Problems

	III. Problems Already Addressed
	A. Color Segmentation and Object Recognition
	B. Vision-Based Self-Localization
	C. Multi-Sensor Guidance with Obstacle Avoidance
	D. Behavior-Based Architectures
	E. Steps Towards Cooperation and Coordination

	Iv. Problems To Be Addressed
	V. Conclusions
	References

