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Abstract — Fourier theory plays a central role in
tomography and a special class of reconstruction
methods, known as direct Fourier methods, belongs
directly from this theory. Recently, related to
the demand for 3D reconstruction, the interest
for these methods has been growing due to their
reduced computational complexity.

In this paper we are going to review the application
of Fourier theory to the field of tomography, both
for projection and reconstruction. The basics of
direct Fourier methods as well as some specific
implementations are addressed.

Resumo — A teoria de Fourier tem um papel de
primeira importancia em tomografia e uma classe
de metodos de reconstrugao, conhecida como méto-
dos directos de Fourier, deriva directamente desta
teoria. Recentemente, devido a crescente exigén-
cia de reconstrugao em 3D, o interesse para estes
métodos tem aumentado dada a reduzida complex-
idade computacional. Neste artigo revé-se a apli-
cagao da teoria de Fourier 4 tomografia, tanto em
reconstrugao como em projecgao, descrevendo as-
pectos basicos dos métodos de Fourier assim como
algumas especificas implementagoes.
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reconstruction algorithms, direct Fourier methods,
sinogram, linogram, rebinning.
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ritmos de reconstrugao tomografica, métodos direc-
tos de Fourier, sinograma, linograma, "rebinning".

I. INTRODUCTION

Given a set of projection data, tomographic recon-
struction allows for the visualization of cross sections
of an object in a non invasive way. Various reconstruc-
tion methods, measurement tools and techniques, have
been developed and successfully applied to fields like
medicine, astronomy, oceanography, industry etc.
Despite of some peculiarities due to the specific ap-
plication, tomographic projection and reconstruction
processes are based on a common framework in which
Fourier theory, with the well known Fourier Slice The-
orem (which states the relation between the Fourier
transform of parallel projections and the 2D Fourier
transform of the object cross section), plays a central
role.

Moreover, a special class of reconstruction methods,
known as Direct Fourier (or Fourier-based) methods,

stems directly from this theory.

The first Fourier-based reconstruction method (ap-
plied to astronomy) was described in 1956 by Bracewell
[1]. Since then, many Fourier-based methods have
been developed, both for projection and reconstruc-
tion. With the use of FFT -Fast Fourier Transform-
algorithm, Fourier-based reconstruction methods are
the fastest now available being preferred in data inten-
sive applications like microtomography [2], and suit-
able for 3D reconstruction. In fact, compared with the
Filtered Backprojection —-FBP— method which has a
computational complexity of O(NN3), the computation-
al complexity of the direct Fourier methods is about
O(N?log N). Moreover, also from the point of view of
image quality, direct Fourier methods are now able to
compete with methods like filtered backprojection.

Although Fourier methods applied to 3D reconstruc-
tion have been recently described [3], this paper will
concern only with 2D tomography, meaning that both
projection and reconstruction processes are limited to
a plane (section) transversal to the object being stud-
ied.

In section II the basics of tomography are briefly de-
scribed, a complete and rigorous approach to this field
can be found in [4], [5] and [6].

Section III deals with the standard direct Fourier
method, which suffers from distortion, and with some
of the most significant implementations aiming to solve
the distortion problem through different sampling-
interpolation schemes.

Fourier methods are not directly suitable for divergent
projections, this means that in order to be applied to
the real data (which normally are taken with divergent
geometry) a rebinning step has to be performed. This
procedure, as well as some comments about the pos-
sible development of a Fourier method to be directly
applied to divergent projections, is described in section
V.

In section V, the Fourier based projection process is
briefly described and, finally, in section VI a few results
are shown, comparing the quality of the reconstructed
images.

II. BASICS OF TOMOGRAPHY

Some physical phenomena can be modeled, from a
mathematical point of view, as the calculation of a
line integral of some physical parameter along straight
lines. For instance in Computer Tomography —CT—,
the intensity of an x-ray traveling through a body suf-
fers an attenuation that can be modeled as the integral
of attenuation coefficient of the tissues calculated along



the line from focus to detector.

The distribution of a parameter on a transversal sec-
tion of an object is described by a 2D function f (object
function) in the (z,y) plane of the section. In most of
the applications (medical, for example), the function
f is limited in space, which means that it vanishes
outside a finite region of the plane. An important con-
sequence of this characteristic (we’ll see how it affects
Fourier reconstruction methods) is that the 2D Fourier
transform of an object function is not band limited.

The two parameters ¢ (slope of the line +3) and s
(distance to the center of rotation) univocally specify
the line with equation

xcosf+ysinf =s (1)

in the (z,y) plane and the general formula for the line
integral, known as the Radon transform of f(z,y), is:

p(f,s) = / f(z,y)6(xcosh + ysinf — s)dzdy (2)

A projection consists of a collection of integrated val-
ues of f(z,y) taken along a set of straight lines in the
plane and the projection data set is given by a number
of projections taken with different orientations. Ba-
sically, two geometries have been defined for the sets
of line integrals making a 2D projection: parallel and
divergent (or fan-beam).

In parallel geometry (historically, the first to be used),
a projection py(s) consists of a collection of line inte-
grals (2) taken along straight parallel lines in the plane,
that means, a collection of p(f, s) with constant 6 (fig.
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Figura 1 - An object f(x,y) and its paralel projection pg(s).

In divergent geometry, to each angular position of the
focus corresponds a fan of focus-detector lines (the de-
tector being an array of detector elements). In this
case, each line is defined by a pair of parameters (3, 7),
where 3 is the slope of the central line of the beam +7
and v is the angular offset of the line relative to the
central one (fig. 2). Being I' the fan-angle and r the

focus-center of rotation distance, the equation of the
line is

zcos(f+9) +ysin(B+7) =—rsiny (3

and each divergent projection is described by the for-
mula:

/ f(z,y)8(zcos(B +v) +
ysin(B + v) + rsiny)dxdy 4)

with constant 3 and v € [—57 %]

Figura 2 - An object f(z,y) and its fan-beam projection pg(7y).

In Radon space (6,s), the space of f(x,y) Radon
transform, a projection data set for a given geometry
corresponds to a set of samples taken over a specific
sampling grid. A projection data set for parallel geom-
etry, called sinogram, is a 2D matrix (fig. 3a) where
to each row corresponds a value for the parameter 6
(a parallel projection), and to each column a value for
the parameter s.

Similarly, a projection data set for a divergent geom-
etry is a 2D matrix (fig. 3-b) where to each row cor-
responds a value for the parameter 3 (a divergent pro-
jection) and to each column a value for the parameter
.

Figure 3 turns easy to understand that, given a diver-
gent projections data set, it’s possible to evaluate an
approximation of a sinogram rearranging and interpo-
lating the samples to the new grid. This process, called
rebinning (section IV-A), allows us to apply to diver-
gent projections data sets the reconstruction methods
that are suitable only to sinograms.

A. Fourier Slice Theorem

The Fourier slice theorem (see [4] for details and
demonstration) states that:

Theorem 1: The Fourier transform of a parallel pro-
jection of an object function f(z,y) taken at angle
0 gives a slice of the two dimensional transform of
f(z,y), F(u,v), subtending an angle § with the u axis.
In other words, the 1D Fourier transform Py (o) of the
parallel projection pg(s), gives the values of F(u,v)
along line BB in figure 4.
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Figura 3 - Projection data sets of Herman head phantom for
parallel and divergent geometries: a) sinogram (512 projections
over 3609, 255 rays); b) divergent projections data sct (512 pro-
jections over 360°, 255 rays).
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Figura 4 - Graphic visualization of Fourier slice theorem state-
ment.

III. FOURIER RECONSTRUCTION METHODS FOR
PARALLEL PROJECTIONS

The Fourier slice theorem suggests a simple way to
solve the reconstruction problem. Taking parallel pro-
jections of the object function f at angles 61,09,...0,
and Fourier transforming each of them, we obtain the
2D Fourier transform of the object function F(u,v) on
n radial lines like in figure 5. In ideal conditions (infi-
nite number of projections and samples per projection)
F(u,v) would be known at all points in the frequency
domain and the object function f(z,y) could be recov-
ered by 2D inverse Fourier transforming F'(u,v).

Fourier reconstruction methods (also known as direct
Fourier or Fourier based methods) follow directly from
this ideal procedure, adapted to the discrete case.

In practice, only a finite number of projections and
samples per projection are taken and F'(u,v) is known
just on a finite number of points along a finite number
of radial lines and, in order to obtain an approximation
of f(z,y) by 2D inverse Fourier transform of F(u,v),
we have to interpolate from the radial points to the
points on a Cartesian grid. Basically, Fourier recon-
struction methods are three steps methods:

cV¥

Figura 5 - Fouricr transform of parallel projections gives samples
of the 2D Fourier transform of the object along radial lines.

e 1D discrete Fourier transform (through FFT algo-
rithm) of the parallel projections taken at n angles
01,02,...0,

e Polar to Cartesian grid interpolation

e 2D inverse Fourier transform (again, using FFT).

Avoiding theoretical aspects that exceed the aim of
this paper, we’ll make some comments about potential
sources of error and refinements that can be introduced
in Fourier reconstruction methods (in general) in order
to improve the performance [7].

From sampling theory, we know that the number of
projections over 180°should be larger than the essen-
tial bandwidth of the image b (rad/length unit) and
that the distance between samples (for parallel projec-
tions) should be less or equal to 7/b [5]. This gives
us a theoretical lower bound for the number of sam-
ples per projection. Anyway, it’s common practice to
take a number of projections M approximately twice
the number of pixels N in the z and y directions of
the image, and N samples per projections (which is a
sufficient number of samples). The problem is that a
physical object is virtually unlimited in frequency and,
even if we collect a number of samples according to the
lower bound, aliasing in the Fourier domain may still
occur. In order to reduce this phenomenon a technique,
called ”zero-padding”, can be introduced. This tech-
nique consists in adding zeros to each end of the pro-
jection signal before transforming. The transformed
signal has a double sample density and the periodical
repetitions of the spectrum pattern are moved apart
reducing the aliasing effect. In 2D Fourier domain, the
polar to Cartesian grid interpolation is performed over
the denser domain and, after 2D inverse Fourier trans-
form, the image is recovered keeping just the central
part of the result.

Eventually, undersampling of the Fourier domain
gives rise to aliasing in the space domain after inverse
2D Fourier transforming. In this case, a technique
called ”gridding” can be applied to the polar to Carte-
sian grid interpolation step. This technique consists
in interpolating to a finer Cartesian grid, for instance,
doubling the number of points in the v and v direc-
tions (which means quadruplicating the total number
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Figura 6 - Examples of polar and Cartesian grids for interpola-
tion. a) Conventional polar and Cartesian grids. b) Modified
polar grid with a radial offset of the samples at alternate an-
gles. ¢) Modified polar squarc grid with samples calculated at
intersections with concentric squares. d) Modified polar grid for
linogram projections.

of points). Also in this case, after 2D inverse Fouri-
er transform, the image is recovered keeping just the
central part of the result.

While improving image quality, the former techniques
deteriorate the computational performance of the algo-
rithm because of the larger number of data involved.

Certainly, the most critical step is the polar to Carte-
sian grid interpolation in Fourier domain and most of
the existing Fourier reconstruction methods basically
differ just on the way they deal with the interpolation
step.

A. Polar to cartesian grid interpolation

Comparing the polar and the Cartesian grids in figure
6-a, it becomes clear that the polar grid is a very ineffi-
cient way to sample the Fourier domain. The fact that,
close to the origin (where most of the frequency infor-
mation is concentrated), the polar samples are sepa-
rated by a very short angular distance and by a long
radial distance, has suggested that a trade off should be
found between the unnecessary fine angular sampling
and the unsufficient radial sampling.

First of all, while linear interpolation in the angular
direction is normally acceptable, in the radial direc-
tion a higher order filter should be used. For exam-
ple, a method proposed by Low and Natterer [8] uses
nearest neighbour interpolation in the angular direc-
tion and a modified sinc interpolation filter applied to
the sample set with double density in the radial direc-
tion (obtained by zero-padding of the sinogram).

In any case, whatever the method choosed for inter-
polation, since the density of the points in the polar

grid becomes sparcer far away from the center, the in-
terpolation error increases at higher frequencies.
Some authors have introduced modifications to the
starting polar grid leading to faster and/or more accu-
rate interpolation:

A.1 Polar interleaved grids

Lewitt, in [7], asserts that the performance of Fourier
reconstruction algorithm can be improved by interleav-
ing two polar sample grids in Fourier space like in figure
6-b. Such a pattern can be obtained by offsetting the
samples from alternate projections, this means that the
1D Fourier transform of (let’s say) even projections has
to be computed in points shifted of half a radial sample
increment relative to the odd projections.

This way, the average distance between samples is con-
siderably reduced and an even better result can be ob-
tained by applying techniques like zero padding of the
projections.

A.2 Concentric squares grid

This sampling pattern can be obtained by varying the
distance between consecutive projection rays with a
factor of cos @ for projection angle 6 € [—45°,45°) and
sinf for projection angle 6 € [45°,135°). The effect
in the Fourier domain can be seen in figure 6-c where
the sample points are distributed over a polar-squared
grid. The same effect in Fourier domain can be ob-
tained with a conventional parallel projection set by
chirp-z transforming each projection with the desired
distance instead of 1D Fourier transforming.

The advantage of this sample pattern due to Pasci-
ak [8] is that the interpolation step in the Fourier do-
main can be performed just in one dimension: on ver-
tical lines for angles between —45° and 45° and on
horizontal lines for angles between 45° and 135°.

B. Other methods

Some methods have been conceived in order to com-
pletely avoid the interpolation step in the Fourier
space.

B.1 Linogram

This method (see [9] for a detailed and rigorous de-
scription) is based on the so called linogram projec-
tions which are taken varying the distance between
consecutive projection rays with a factor cosf for
6 € [—45°,45°) and sin 6 for 6 € [45°,135°). Moreover
the projection angles are not taken in equidistant 6
steps but in equidistant tan f-steps for § € [—45°,45°)
and equidistant cot f-steps for § € [45°,135°). After
1D Fourier transform of the projections, the sampling
pattern in the Fourier domain appears like in figure
6-d, with half of the points evenly spaced along radi-
al and vertical lines and the other half of the points
evenly spaced along radial and horizontal lines. This
pattern looks similar to the pattern of figure 6-¢ with
the difference that the samples are unevenly distribut-
ed in the angular direction and because of this cannot
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Figura 7 - Flow diagram of the Linogram direct Fourier method
starting by the Fourier domain decomposition step.

be obtained by simple chirp-z transform of the con-
ventional parallel data set like in that case. In this
case a process called rebinning (section IV-A) should
be applied.

The Linogram direct Fourier method proceeds with
the decomposition of Fourier sample data in two sub-
spaces Fy and Fy, corresponding to the projection an-
gles included in 6 € [—45°,45°) and 6 € [45°,135°),
which are kept separated until the last step of the al-
gorithm (fig. 7). For Fy the first inverse Fourier trans-
form is computed in the vertical direction (by chirp-z
transform) and the second in the horizontal direction
(by simple FFT), while for Fj the first inverse Fourier
transform is computed in the horizontal direction (by
chirp-z transform) and the second in the vertical di-
rection (by simple FFT). Finally, the two functions fy
and f; are added obtaining the reconstructed image.
It has to be noticed that the use of the chirp-z trans-
form, which can handle different equidistant data spac-

ing, avoids any interpolation in the Fourier domain.

B.2 NUFFT-based methods

Some new algorithms have been proposed based on
recent developments connected to the efficient compu-
tation of discrete Fourier transform for non-equispaced
data (NUFFT - Non Uniform Fast Fourier Transform
[10] [11] [12]).

These algorithms are designed for different sampling
geometries in the Fourier domain of the image and al-
low to perform the reconstruction completely avoiding
the interpolation step. For instance in [13] and [14]
the algorithm basically flows in two steps: first the
1D FFT of the projections is calculated with a given
oversampling factor obtaining a conventional oversam-
pled polar grid and then 2D inverse NUFFT is applied
directly to this sample pattern.

Again in [13] another algorithm based on the linogram
geometry is described (in this case the author identifies
as linogram geometry the geometry of figure 6-c). The
algorithm flows exactly like the one of figure 7, with
the difference that, since the samples in the Fourier
domain are not equispaced in the vertical nor in the
horizontal directions, the 1D inverse Fourier transform
is performed through NUFFT instead of chirp-z trans-
form.

Figura 8 - The interpolation scheme proposed by Fourmont

An original approach, due to Fourmont [14], is based
on a pre-computation step in which a sample pattern is
determined, suitable for interpolation just in the angu-
lar direction (in this case linear interpolation suffices).
In order to obtain such a sampling pattern (figure 8),
for each point p of the Cartesian grid to be evaluated,
the two closest radial segments in the angularly dis-
cretized polar coordinate system are determined and,
on these segments, the points (the black dots) having
the same radial coordinate than p. For each projec-
tion, the Fourier transform is calculated through 1D
NUFFT in those points and then the samples on the
Cartesian grid are calculated by linear interpolation in
the angular direction of the associated couples of points
with pre-calculated (in the pre-computation step) in-
terpolation coefficient. The last step of the algorithm
is, of course, the 2D inverse FFT.



v
Fourier transform

p B(V)

cy

focus

space domain frequency domain

Figura 9 - Adaptation of Fouricr slice theorem to a divergent
projection.
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Figura 10 - Sample pattern for divergent beam projections data
in the Fourier domain.

B.3 Fourier Series Method

In this method, which uses conventional parallel pro-
jections and is described by Gottlieb in [15], the inter-
polation in Fourier space is avoided by relating (again,
based on the slice theorem) the Fourier series of pg(s)
to the truncated Fourier series of the image function.
In this case, an analytical formula for the exact evalua-
tion of the Fourier coefficients of f(x,y) in terms of the
Fourier coefficients of py(s) is derived and implemented
with some approximation (truncation of infinite terms
sums). From the point of view of image quality, the re-
sults of this method are similar to those obtained with
filtered backprojection method.

IV. FOURIER RECONSTRUCTION METHODS FOR
DIVERGENT PROJECTIONS

Unfortunately, since Fourier slice theorem applies just
to parallel projections, the classical Fourier reconstruc-
tion methods don’t match the case of divergent geom-
etry. In figure 9 we show a graphic representation of
Fourier slice theorem adapted to divergent projections:
the Fourier transform of a divergent projection taken
at angle 6 gives, in the frequency space, n points along
a curve described (in polar coordinates (6,s)) by the
equation

6 = 8 — arcsin 2 (5)
T

giving rise to the sample pattern of figure 10.

An interesting remark concerning whatever recon-
struction method for divergent projections is that,
while in the parallel case projections have to be taken
over an arc of just 180° in order to cover the complete
Fourier domain, in the divergent case a larger arc has
to be considered. Namely, an arc of 180° + I' is the
minimum arc to be considered. This well known fact
can also be seen in the frequency sample pattern of
figure 10 where, intentionally, have been drawn just
projections with 3 € [0,180°] and the unshaded sector
of Fourier domain results uncovered.

Intuitively, one can imagine three possible ways to ap-
ply Fourier reconstruction methods to divergent pro-
jections. The first way is to interpolate parallel pro-
jection data from divergent projection data and then
simply apply a classical Fourier reconstruction method.
The interpolation process performed in the projections
domain is called rebinning and will be described below.
The second is to interpolate in the frequency domain
from the sample pattern of figure 10 to a cartesian grid
and then 2D inverse Fourier transform like in classical
methods.

The last is to develop a Fourier reconstruction method
to be applied directly to the divergent data set.

To our knowledge, the second and the third way are
still unattempted, probably due to the difficulties in
the interpolation step. Nevertheless, taking advantage
of recent development in NUFFT calculation, an at-
tempt should be made in order to inverse Fourier trans-
form based on such a sampling grid.

A. Rebinning

We’ll describe here the most straightforward type of
rebinning that allows to obtain parallel data sets from
divergent ones. Anyway, has to be pointed out that
rebinning in general can be applyed also to obtain lino-
gram and other geometries’ data sets from divergent or
parallel ones [9] (and vice-versa, even if it is not useful
from a practical point of view).

Rebinning is a well known interpolation process that
has been employed in the first divergent beam CT scan-
ners until the advent of reconstruction methods dedi-
cated to that geometry (fan beam filtered backprojec-
tion). Since interpolation is performed in the projec-
tion domain, it is not a critical operation like it is in
the Fourier domain and can even be performed linearly
without introducing noticeable error.

Comparing equations 1 and 3, we see that the param-
eters of a ray in the parallel geometry are related to the
parameters of the corresponding ray in the divergent
geometry by the simple equations:

= -y (6)
S
= —arcsin—. 7
resin (7)
Thus, to each sinogram sample to be computed corre-

sponds a point in the space of the divergent projections
which value can be evaluated through interpolation.
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Figura 11 - Rebinning process: dots represent the desired sino-
gram sample points and the corresponding interpolated points
in the divergent projections space.

It’s interesting to notice that to a line of sinogram sam-
ples corresponds a line of points slanted —45° in the
divergent projections space (figure 11), fact that can
be also observed in figure 3.

To confirm the remark made about the minimum am-
plitude of the rotation arc for a complete set of di-
vergent projections, can be observed that, in order to
obtain a complete sinogram for § € [0,180°], at least
divergent projections with 8 € [-I'/2,180° +I'/2] has
to be known.

V. FOURIER PROJECTION METHOD

Direct Fourier method can also be applied in the re-
verse order allowing for the calculation of projection
data sets from a digital sample object. Thus, the Fouri-
er projection method flows in three steps:

e 2D Fourier transform (through FFT)

e Cartesian to polar interpolation

e 1D discrete inverse Fourier transform (through
FFT algorithm) of the radial segments od the po-
lar grid obtaining the parallel projections.

Despite of the usual problems due to interpolation in

the Fourier domain, Fourier projection method (which
is very fast) has been used in iterative reconstruction
methods in order to speed up the reprojection step.
Approaches similar to those described for the recon-
struction methods can be used in order to reduce the
interpolation error.

Recently, Fessler has described a new Fourier based
iterative method using min-max interpolation for the
NUFFT, both in projection and in backprojection
steps, obtaining an efficient iterative approach to the
reconstruction problem [16].

In any case, it has to be pointed out that here the in-
terpolation step is not so critical as in the reconstruc-
tion methods since the sample points in the starting
grid (Cartesian) are uniformly distributed.

VI. SOME EXAMPLES

In order to have an idea of the effectiveness of the de-
scribed algorithms, when compared with the common-
ly used FBP algorithm, we’ve performed some simula-
tions using the Herman head phantom [17] as a model
of an object’s transversal section (fig. 12).

Figura 12 - Herman head phantom.

The simulator, both projection and reconstruction
processes, has been implemented in Matlab and the
reconstruction error has been quantitatively evaluated
measuring the distance between the original and the
reconstructed images. For this purpose we’ve used the
distance metrics proposed by Herman [17] (d- normal-
ized root mean squared distance, - normalized mean
absolute distance, e- worst case distance measure) ap-
plied to the region of interest of the images.

In figure 13 are shown some images obtained with
different reconstruction methods applied on the same
parallel projection data set and in table I are sum-
marized the results of the reconstruction error evalua-
tion. At a first glance it’s clear that the quality of the
DFM with simple two dimensional linear interpolation
in the Fourier space is unacceptable but it significantly
improves introducing zero padding of the projections.
Moreover, with the introduction of two dimensional
cubic interpolation in the Fourier space an even better
result is obtained, comparable to the result obtained
through FBP. The behaviour of the different methods
can be grafically evaluated in figure 14 where the di-
agonal profile of the reconstructed images and of the
original one are compared. Also in this case the good
quality of the DFM with zero padding and cubic inter-
polation in the Fourier domain is confirmed.

The last column of table I summarizes the recon-
struction time of the different methods and shows how
Fourier based methods are impressively faster than the
commonly used FBP method.

The results obtained with the corresponding recon-
struction methods applied to the divergent projection
data set are shown in figure 15 and compared in ta-
ble II. In this case the FBP is applied directly to the
divergent beam data set (DBFBP stands for ”diver-
gent beam filtered backprojection”) while the Fourier
based methods are preceded by a rebinning step and
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Figura 13 - Images obtained with different reconstruction meth-
ods from parallel projection data set: a) filtered backprojection;
b) direct Fourier method with lincar interpolation in the Fourier
space; ¢) dircet Fourier method with zero padding of the pro-
jections and linecar interpolation in the Fourier space; d) direct
Fourier method with zero padding of the projections and cubic
interpolation in the Fourier space.

are applied on the synthesized parallel projection data
set. From the perceptual point of view the obtained
images do not show any remarkable difference with re-
spect to those of figure 13. The quantitative evaluation
of the reconstruction error does confirm the perceptu-
al analysis, showing that the rebinning step, prior to
reconstruction, doesn’t affect image quality. The only
item that differs from the corresponding in the parallel
beam case is the reconstruction time which increment,
in the case of Fourier based methods, corresponds to
the rebinning time while, in the DBFBP case, is due
to the larger amount of data to be processed (our im-
plementation of DBFBP, which considers all the views
corresponding to a 360°rotation of the focus, can be
improved considering just the views corresponding to
180° + T rotation of the focus). Also in this case, the
Fourier based methods show an impressive reduction
of reconstruction time.

VII. CONCLUSIONS

Far from the goal of having completely covered the
subject, we’ve given an overview of the main topics of
Fourier reconstruction methods. A number of imple-
mentations have been described and some important
aspects have been pointed out. Topics like iterative
Fourier based algorithms have been just touched and
other like 3D Fourier reconstruction have been left for
further pubblications.

The results of the performed simulations have been

a) b)

c) d)

Figura 14 - Comparison between the diagonal of the original
image (fig. 12) and the diagonals of the reconstructed ones (fig.
13). a) original to FBP. b) original to DFM. ¢) original to DFM
with zero padding. d) original to DFM with zero padding and
cubic interpolation in the Fourier space.

analysed qualitatively and quantitatively showing that
direct Fourier reconstruction methods are a valid al-
ternative to the commonly used FBP algorithm with a
remarkable reduction in computation time.
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