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Resumo - O presente artigo apresenta o estado-da-arte das 

técnicas de análise e simulação de circuitos de RF e 
microondas. Esta compilação é o resultado do trabalho de 
preparação das Provas de Agregação do seu autor, bem 
como de posteriores seminários apresentados sobre o 
assunto. 
Usando uma abordagem que se pretende pedagógica, o 

artigo começa por estabelecer o problema da simulação de 
circuitos não-lineares de um ponto de vista geral e teórico. 
De seguida, a apresentação das várias técnicas é iniciada 
pelos métodos do domínio do tempo, porque, decorrendo da 
forma natural com que percebemos o comportamento dos 
circuitos, são, por isso, os mais intuitivos. Os métodos do 
domínio da frequência são depois apresentados com o 
objectivo de colmatar algumas das desvantagens dos 
primeiros. Finalmente, descrevem-se as mais recentes 
técnicas multi-cadência mostrando como podem vir a 
constituir uma forma revolucionária de simular circuitos 
não-lineares. 
 
Abstract - This paper presents an overview of state-of-the-

art techniques for the analysis and simulation of microwave 
and RF nonlinear circuits. It is the result of the work done 
for preparation of “Provas de Agregação” (the habilitation 
degree for full professorship in Portuguese Universities) of 
its author, and the various seminars given on this subject. 
Using a pedagogical approach, the paper first states the 

problem of nonlinear circuit simulation, as seen from a 
theoretical viewpoint. Then, it starts the presentation by the 
most natural and intuitive time-domain methods. Frequency-
domain techniques are then introduced as a means to 
circumvent the most important disadvantages of time-
marching engines. Finally, multi-rate techniques are 
addressed, and it is shown how they can become one of the 
most important breakthroughs of circuit simulation. 
 

I. INTRODUCTION  

The specificity of nonlinear RF circuits is pushing the 
advancement of new circuit analysis methods and 
simulation techniques from the infancy of analog circuit 
simulation. In a few simple words, we could say that 
while traditional SPICE like programs [1], [2] were 
conceived to handle nonlinear circuits by integrating their 
transient response in time-domain, and linear circuits by 
computing their steady-state response in the frequency-

domain, RF circuit simulation typically demands for direct 
nonlinear solvers of the steady-state response under a 
periodic excitation. So, not only the conventional steady-
state methods based on the integration of the transient 
response are inefficient, as the application of frequency-
domain techniques are compromised by the presence of 
nonlinearity. 
On another different aspect, microwave and RF circuits 

added a new range of distributed elements, like 
transmission media and their discontinuities, in which the 
spatial dependence of voltages and currents showed to be 
orthogonal to what time-marching engines could handle. 
However, thirty years of evolution turned today’s 

nonlinear microwave/RF circuit simulators into powerful 
tools capable of integrating, in a single software package, 
time-domain transient engines, time-domain and 
frequency-domain steady-state periodic solvers, or even 
any combination of these. 
The main objective of this paper is to conduct a brief 

voyage through the showcase of these tools, in a simple 
but pedagogical way. Actually, we will always benefit the 
conceptual underlying ideas behind the various methods, 
against some of their more advantageous 
implementations. 
Just to give a glimpse to what will be described next in 

more detail, we should start by saying that most of the 
circuit simulation problems above formulated can already 
be tackled by the nowadays-standard nonlinear RF and 
microwave circuit simulator tool: The Harmonic-Balance 
technique, HB [3]. In its more usual implementation it 
handles the linear sub-circuit in frequency-domain, 
treating, this way, any kind of (linear) lumped or 
distributed component, and the rest of (lumped and 
algebraic) nonlinear elements in time-domain [4]. Because 
it operates simultaneously in time and frequency-domains, 
HB must rely on a domain transformation tool, usually the 
discrete Fourier transform, DFT. Unfortunately, this 
restricts HB applicability to periodic, or at least quasi-
periodic, signals amenable for a common DFT, or a multi-
dimensional DFT representation [5]. So, although it is 
quite popular for simulating circuits driven by stereotype 
forcing functions as single-tone or two-tones, it has been 
difficult to apply to real telecommunication signals. 
This opened a new field of RF and microwave circuit 

simulation tools capable of meeting these practical 
engineering needs, whose most notorious implications 
were a renewed interest for the ancient time-domain 
transient methods (or, eventually, hybrid-combinations of 
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time and frequency-domain techniques), and a revolution 
in the way we now see circuit analysis [6]. Actually, the 
circuit solution is no longer necessarily considered as 
progressing according to a natural time variable, but, for 
these modulated excitations, considered as evolving in a 
multi-rate space of new artificial time variables. 
These multi-rate techniques [6]-[10] consider that the 

envelope and the carrier are uncorrelated, as if they 
evolved in two orthogonal time scales. Then, they convert 
the original circuit model of an ordinary differential 
equation, ODE, in natural time, into another multi-rate 
partial differential equation, MPDE, in those artificial 
time variables. Since, typically, the envelope is aperiodic, 
while the carrier is a sinusoid (or at least a periodic 
signal), their most common implementation treats the 
aperiodic information envelope as a time-varying signal 
modulating a frequency-domain representation of the RF 
carrier. This way, multi-rate methods take profit of the 
advantages of both time-domain and frequency-domain 
techniques. 

II. STATING THE NONLINEAR CIRCUIT SIMULATION 
PROBLEM FROM A THEORETICAL VIEWPOINT 

In order to get a common framework for the presentation 
of the various RF circuit simulation algorithms, let us take 
a simple nonlinear network like the one depicted in figure 
Fig. 1. 
      

iNL[vO(t)]iS(t) vO(t)G qNL[vO(t)] iNL[vO(t)]iS(t) vO(t)G qNL[vO(t)]

 
Fig. 1 -  Nonlinear dynamic circuit example. 

Although very simple, this circuit already includes many 
of the features encountered in real analogue or 
microwave/RF circuits. In fact, the application of 
Kirchoff’s currents law to its single node leads to the 
following nonlinear ODE in time:  
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which can be understood as a particular one-dimensional 
implementation of a more general model of a nonlinear 
dynamic (i.e. showing memory) system. Such model 
expresses the circuit state variable vector, x(t), [in our 
case the single node voltage vO(t)] in implicit form, as 
dependent, in a nonlinear way, on its past, dx(t)/dt, 
d2x(t)/dt2,…, the excitation vector, e(t) [iS(t), in (1)] and 
the past of the excitation, de(t)/dt, d2e(t)/dt2,…. :  
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Such a model is, indeed, capable of modelling a wide 
variety of circuits. 
For example, it could easily represent an autonomous 

circuit (an oscillator) if e(t) and all its time derivatives 
were made zero. 
It could handle nonlinear inductors if we realize that they 

are nothing but the dual of the considered nonlinear 
capacitor. In that case we would express the voltage 
across the inductor as the time-derivative of a magnetic 
flux (dual of storage charge) nonlinearly dependent on the 
inductor current (dual of voltage). 
Finally, as we will clear from frequency-domain 

methods, this model could even represent linear 
distributed elements. 
However, for the sake of being faithful to the truth, we 

should also say that, although applicable to the vast 
majority of circuits and elements found in practice, the 
form of (1) is still lacking some features for being 
absolutely general [11]. In fact, not only it can not treat 
distributed nonlinearities, as it even can not handle truly 
nonlinear dynamic elements. Actually, we might think 
that the nonlinear capacitor (or the nonlinear inductor) are 
already instances of nonlinear dynamic elements, but they 
are not. They are simply memoryless nonlinearities (static 
charge or flux whose dependence on voltage or current is 
nonlinear but algebraic) followed by a dynamic, but 
linear, operator, the time derivative. 
This type of nonlinear model, usually known to be based 

on the so-called quasi-static approximation 
(semiconductor charges are supposed to react 
instantaneously to the applied time varying electric 
fields), is actually the way every modern device model is 
nowadays commonly formulated. So, and unless some 
theoretical problems are considered, (1) is already 
sufficiently general, and we will keep it for the following 
discussion. 

III. TIME-MARCHING TECHNIQUES 

A. Time-Step Integration 

Time-step integration constitutes the base of all time-
marching [12] methods. It solves the circuit’s ODE of (1) 
for vO(t) transforming it into a difference equation. For 
that, continuous time is discretized in various instants tk 
separated by dynamic time-steps hk, and the time-
derivative is approximated by a difference ratio: 
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Then, this nonlinear difference equation is solved in a 

time-sep by time-step basis, for all vO(tk), beginning with 
some predefined initial state vO(t0) until the desired final 
time vO(tK) is reached. 
Since this time-step integration scheme was conceived 

for transient response calculations, its direct application to 
the RF steady-state response becomes very inefficient, 
requiring that we wait until all transients have died [2]. It 
is also inadequate, since it works in time-domain, while 
most RF signal and circuit models are represented in 
frequency-domain. Finally, it is also inaccurate because 
the use of the DFT requires interpolation and re-sampling 
between the non-uniform dynamic time-steps, and the 
need for the ideal complete vanishing of all transients [2].  
Nevertheless, time-step integration is still one of the 

mostly used methods of nonlinear circuit and system 
simulation. It is the core method of all SPICE-like [1] 
circuit, or Simulink [13] system simulation programs. 

B. Shooting-Newton 

In order to overcome most of the above disadvantages 
associated with time-step integration, shooting methods 
calculate directly the steady-state response in time-
domain. They bypass the transient computation selecting a 
certain initial condition, vO(t0), such that, after the 
excitation period, T, the same initial state is obtained [2]: 
 

)()( 00 tvTtv OO =+    for   )()( 00 tiTti SS =+  (5) 
 
The underlying idea consists in evaluating the sensitivity 

of the final state, vO(t0+T), to variations of the initial 
condition, vO(t0): 
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and then use this sensitivity to propose an educated guess 
for the correct initial condition vO(t0) [14]. That is, this 
method converts the nonlinear transient initial value 
problem of (3) and (4) into the new nonlinear periodic 
boundary value problem of (5), which is then solved for 
vO(t0+T) = vO(t0) using a Newton-Raphson iteration 
scheme, that, as is known, is based on a first order Taylor 
series approximation of the nonlinear function: 
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To calculate the sensitivity, we should first realize that 

the chain differentiation rule imposes that, since 
φ[vO(t0),T]≡φ[vO(t0),tK] {where φ[vO(t0),T]=vO(t0+T), and 
φ[vO(t0),tk] is known as the phase transition state of vO(t0) 
into vO(tk) [2]} is a function of φ[vO(t0),tK-1], which, itself, 

also depends on φ[vO(t0),tK-2], and so forth; the desired 
sensitivity, ∂φ[vO(t0),T]/∂vO(t0), can be given by: 
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or 
 

)(
)(..

)(
)(..

)(
)(.

)(
)(

)(
)(

0

1

1

2

1

10

tv
tv

tv
tv

tv
tv

tv
tv

tv
tv

O

O

kO

kO

KO

KO

KO

KO

O

KO

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

−

−

−

−

""
  (9) 

 
Now, recalling the time-step iteration scheme, which 

states that any state vO(tk) can be calculated from the 
previous one vO(tk-1) by solving 
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we can easily compute all derivatives of (9) along the 
time-step integration process, because 
∂φ[vO(t0),tk]/∂φ[vO(t0),tk-1] can be obtained by simply 
deriving (10) with respect to vO(tk-1): 
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where Jq[.] and Ji[.] are the charge and current entries of 
the Jacobian, computed when solving (4) using the 
Newton-Raphson iteration. 
This combination of a shooting method with the Newton-

Raphson iteration scheme is known as the Shooting-
Newton. It constitutes an important means of RF steady-
state simulation in time-domain.  Actually, its efficiency is 
the result of the calculation of the sensitivity along with 
time-step integration - without the need for any additional 
post-processing -, and because it has been verified that the 
boundary-value equation vO(t0+T)-vO(t0)=0 is usually 
mildly nonlinear, despite the circuit may be pushed well 
into strongly nonlinear regimes [2]. 
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Just for completeness, we could also mention some other 

alternatives to time-domain simulation. One involves the 
use of wavelet expansions of the circuit’s transient 
response [15], while the other is a relaxation solution of 
the boundary value problem formulated for periodic 
regimes [2]. 
  

IV. FREQUENCY-DOMAIN METHODS 

In the same way SPICE treats linear dynamic circuits, 
the conventional RF approach to solve our original 
nonlinear ODE for the periodic steady-state, takes profit 
of the special property of Fourier expansions in 
converting differential equations into much simpler 
algebraic formulations. Therefore, the objective ceases to 
be a set of time points of the output, but a vector of 
coefficients of the Fourier expansion. So, both the 
excitation and the state-variables are represented as 
truncated Fourier series: 
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which, substituted in the circuit’s time-domain ODE of 
(1), leads to: 
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in which it was assumed all summations span from k=-K 
to k=K. Because terms of Fourier series are orthogonal, 
(14) actually corresponds to a nonlinear system of (2K+1) 
independent equations, one for each harmonic component 
k. In matrix form, this system is known as the Harmonic-
Balance Equation: 
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There are basically two alternative ways of solving this 

HB equation for Vo, the Volterra Series and the 
Harmonic-Newton. 

A. Volterra Series  

Starting with the Volterra series, it is assumed that the 
problem is only mildly nonlinear, so that the circuit’s 
response can be approximated by the analytical solution 
of a similar problem in which the nonlinearities are 
substituted by low order polynomial expansions around 
some pre-defined quiescent point [12], [16], [17]. In this 
sense, the recursive nonlinear model of (2) is substituted 

by a non recursive approach, where the output is given as 
a (m+1)-dimensional nonlinear function of the input and 
its past: 
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Then, the nonlinear function hNL[.] is approximated by a 

n’th order (m+1)-dimensional polynomial: 
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Assuming continuous time-delayed versions of the input 

and a memory span tending to infinity, we end up in the 
conventional time-domain Volterra series form: 
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      (18) 
If now a frequency-domain representation of both x(t) 

and e(t) were substituted into the n’th-dimensional 
convolutions of (18) we would obtain the frequency-
domain Volterra series representation: 
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where the various Hn(k1ω0,…,knω0) are known as the n’th 
order Nonlinear Transfer Functions, NLTF’s, and 
correspond to the n’th-dimensional Fourier transforms of 
the time-domain n’th order Kernels hn(τ1,…,τn): 
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Expressions (18) and (19) affirm that, expanded in a 

Volterra series, the system becomes completely identified 
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by its n’th order kernels or nonlinear transfer functions 
[12], [16]-[18]. 
Constituting a true analytical model of a nonlinear 

dynamic system, the main advantage of Volterra series is 
its ability to provide qualitative information in analytic 
form, being thus amenable for circuit design.  
Returning now to our nonlinear circuit example, we first 

need to approximate the nonlinearities, qNL[vO(t)] and 
iNL[vO(t)], by low order polynomial expansions around 
some quiescent point, (IS,VO), [12]. So, the nonlinear 
charge and current components become: 
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which leads to a circuit solution for vo(t) of the form [12]: 
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In its most common form, the polynomial approximation 

adopted for the Volerra series is the Taylor expansion, for 
which there is a full set of methods to compute the time-
domain kernels and frequency-domain NLTF’s. However, 
the limited approximation range provided by the Taylor 
expansion, associated with the excessive labor required by 
the nonlinear sources method [12], determines that 
Volterra series is normally restricted to mildly nonlinear 
circuits described up to 3rd order. Unfortunately, the 
conditions describing this “mildly nonlinear” behaviour 
are not clear. As a matter of fact, this is a consequence of 
the limited range of convergence of this uniform error 
approximation Volterra series [17], which requires 
smooth behaviour of the nonlinear function and its 
derivatives in the whole domain of signal amplitude and 
memory span. But, even if the function is, in this sense, 
well behaved, it may still happen that the desired level of 
accuracy requires a Volterra model with a large number of 
kernels. In this case, although the mathematical 
convergence may not be an issue, the practical utility of 
the Volterra expansion is still questioned. Practical 
observations have shown that the Volterra formulation has 
its usefulness restricted to excitation amplitudes much 
smaller that the quiescent point, for example, comfortably 
below the circuit’s 1dB compression point [12]. 

B. Harmonic-Balance 

Alternatively, the full nonlinear harmonic-balance 
equation can be solved for Vo using a (2K+1)-dimensional 

Newton-Raphson algorithm (harmonic-Newton). If the 
HB equation of (15) is put in the form of: 
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the iterative solver creates a succession of solution 
estimates 0Vo, 1Vo, ..., iVo, i+1Vo, ..., fVo 
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until ||F(fVo)||<ε, where ε is a predefined acceptable error. 
The harmonic-Newton is clearly the most used method 

for microwave circuit simulation. In its most common 
implementation - Piecewise Harmonic-Newton [4] - the 
network is divided into two sub-circuits as shown in Fig. 
2. One of these sub-circuits is nonlinear and memoryless, 
while the other is dynamic but necessarily linear. By 
adding the excitation, this allows the construction of a 
nodal form of the HB equation: 
 
( ) ( ) ( ) 0)( =−+≡ ωsocnloclo III VVVF   (26) 

 
where the current entering in the linear sub-network is 
calculated in the frequency-domain by: 
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iNL[vO(t)]

Icnl(ω)=DFT[iCNL(t)]

Is(ω) Vo(ω)G
qNL[vO(t)]d

dt { }

iCL(t)     Icl(ω)

 

Fig. 2 – Division of the circuit into a nonlinear and a linear sub-networks 
according to the piece-wise HB implementation. 

Unfortunately, direct frequency-domain calculation of 
the current component entering the nonlinear sub-network 
is not possible. So, this problem is circumvented by 
constructing a time-domain representation of voltage (via 
inverse DFT), computing the current in a time-step by 
time-step basis, and then converting this time-domain 
current back again to the frequency-domain (via the 
DFT). Mathematically, this is computed by:  

( ) [ ][ ]{ })(1 ωoCNLocnl VDFTiDFTI −=V   (28) 

This approach, known as the mixed-mode HB to 
distinguish it from implementations entirely working on 
the frequency domain (see [12], [19] and [20], for 
example), takes maximum profit of time and frequency-
domain representations. As a matter of fact, it uses 
frequency-domain to solve the convolutions imposed by 
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the dynamic sub-network as simpler products, and time-
domain to solve the convolutions that would arise if we 
tried to compute the spectra of nonlinearities directly in 
frequency-domain (remember that the basic nonlinear 
function is the product [11], [17]). 
However, this also brings two important restrictions 

underlying the sub-network separation determined by 
piecewise HB. First, the use of frequency-domain 
techniques in the linear sub-network forbids the existence 
of any source of nonlinearity there. Second, to be 
efficient, the time-domain computation of the nonlinear 
current should not involve any memory so that each time-
step, vO(tk), can be calculated independently, regardless of 
its past. 
Figure Fig. 3 concludes this discussion by showing a 

flow-chart of the piecewise harmonic-Newton 
implementation. 
The conventional harmonic-Newton, or some of its 

newer implementations using quasi-Newton techniques 
[21], have been successfully applied to a large variety of 
microwave nonlinear circuits like amplifiers [22] mixers 
[23] and oscillators [24]. Relying on iterative methods for 
solving the associated Newton-Raphson linear system 
[25], they have recently relaxed the necessity of handling 
large Jacobian matrices, allowing their application to 
circuits (or systems) involving a huge number of 
unknowns [21]. These continuous research efforts have 
turned harmonic-Newton into the most general and 
reliable analysis technique for RF and microwave circuit 
simulation. 
Nevertheless, the source of HB main advantage 

constitutes also the reason of its major weakness. The 
necessity of passing from the time to frequency-domain, 
and vice-versa, requires the use of the DFT, and so 
restricts its application to stimuli and responses where this 
signal processing tool is both valid and efficient. 
Therefore, this leaves outside true non-commensurate 
multi-tone (quasi-periodic or aperiodic) signals [12] and 
strong nonlinear regimes where the DFT requires a very 
large number of coefficients. 

V. MULTI-RATE AND HYBRID DOMAIN METHODS 

Multi-rate techniques appeared exactly to ease the 
difficulties in handling quasi-periodic signals [6], [26], 
and have gained a strong acceptance in the wireless circuit 
design area because of the typical two time-rate nature of 
these modulated RF signals. However, their application is 
not restricted to this field, but extends to all situations in 
which the operating regime can be thought as being 
determined by two or more different time scales. That is 
the case of RF mixers, but also of analogue samplers or 
switched-capacitor filters [6]. These methods have indeed 
revolutionized the way we saw and understood circuit 
analysis and simulation. 
When the excitation is an RF carrier cos(ω0t) (or a digital 

sampling clock) modulated by a base-band envelope ve(t) 
(or a analogue low frequency information signal), which 
is uncorrelated with the carrier, the circuit behaves as if it 
had a stimulus dependent on two orthogonal time-scales 
τ1 and τ2: 
 

)cos()(),( 20121 τωτττ eS vi =    (29) 
 
The original circuit’s ODE, in t shown in (1) becomes a 

Multi-Rate Partial Differential Equation, MPDE, in these 
two different time scales (τ1,τ2) [6], [10]: 
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which can now be solved in a bi-dimensional time-domain 
for vO(τ1,τ2), a bi-dimensional frequency-domain for 
Vo(k1Ω0,k2ω0) or any combination of time and frequency-
domain methods. Despite the wide variety of applications 
they opened, these multi-rate methods have been up to 
now tried in three different cases. 

 
 

Estimate  0Vo

Icl(ω)=Ycl(ω)Vo(ω) Inl[Vo(ω)]+jΩ Qnl[Vo(ω)]

Solution - fVo
End 

Not Yet Converged !

vO(t)=DFT-1[iVo(ω)]

iNL(t)=iNL[ivO(t)] qNL(t)=qNL[ivO(t)]

Inl(ω)=DFT[iNL(t)] jΩQnl[iVo(ω)]=jΩDFT[qNL(t)]F(Vo) = Icl + Inl(iVo) + jΩ Qnl(iVo) - Is = 0

||F(Vo)||<ε

Calculate next 
Newton iteration

i+1Vo  
 

Fig. 3 – Piecewise harmonic-Newton flowchart. 
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In one, it is assumed that both signals are periodic, so 
that they impose a doubly periodic (or quasi-periodic) 
regime. That is the case, for example, of two-tone 
simulations or, eventually, of the simulation of circuits 
subject to carriers modulated by periodic envelopes (e.g. 
digital modulation in which it is assumed that the 
information signal is actually a repeated pseudo-random 
sequence). Although this could be solved in time by a 
two-dimensional shooting-Newton, its most common 
implementation profits from the many frequency-domain 
advantages and is known as the multi-dimensional 
harmonic-Newton algorithm. 
The other two possibilities of solving the MPDE assume 

that one of the signals is periodic, while the other is not. 
Therefore, a time (shooting-Newton) or frequency-domain 
(harmonic-balance) steady-state regime is sought for one 
signal, and a time-domain transient calculation (time-step 
integration) is calculated for the other.  

A. Multi-Dimensional Harmonic-Balance 

If both the envelope and the carrier are periodic and the 
consequent doubly-periodic regime is sought, it is better 
to solve the MPDE in a bi-dimensional frequency-domain. 
In this case, the state variable would be described by the 
following bi-dimensional Fourier expansion: 
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which, substituted in the MPDE of (30), leads to the 
following bi-dimensional HB equation, the basis for most 
of the multi-tone nonlinear simulation methods [5]: 
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Then, (32) is solved for the doubly periodic regime of 

Vo(k1Ω,k2ω) using a bi-dimensional piecewise harmonic-
Newton similar to the one already described for the 
sinusoidal periodic steady-state. 
For the sake of completion, it should be also added that 

another possibility exists to solve this quasi-periodic 
regime. It uses frequency mappings of the original two-
dimensional plane into new artificial spectra [12], [23], 
[27]-[29], in which the new frequency positions are dense 
and uniformly distributed along the real axis. This way, 
the conventional DFT is again applicable and the quasi-
periodic regime can be handled by the usual harmonic-
Newton solver as it if actually were strictly periodic. 
More recently, an attempt was made [30] to improve the 

efficient computation of quasi-periodic regimes under 
conventional HB engines, by using wavelet 

decompositions. However, such approaches are still in 
their infancy, having not deserved yet any attention from 
the CAD industry.  

B. Envelope-Transient Harmonic-Balance 

In most practical cases, however, the information nature 
of the envelope makes it an aperiodic signal, and so it 
results better to solve the MPDE in the frequency-domain 
for the carrier, ω, but in the time-domain, τ1, for the 
envelope. In this case, the state variable description 
becomes a DFT (for the carrier) with τ1 time varying 
(according to the envelope) coefficients: 
 

∑=
2

202
2

)(),( 121
k

jk
kO eVv τωτττ    (33) 

 
which, substituted in the MPDE, would lead to the 
following τ1 time-varying HB equation: 
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This time-varying HB equation is now discretized in τ1 

envelope time-steps, hk, 
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which allows the determination of the envelope transient 
solution for each of the Vok(τ1) harmonics, solving: 
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(36) 
 

After having all Vo(tk) - i.e., from the considered initial 
envelope state, Vo(t0), to the final desired state Vo(tK) - 
this frequency-domain representation can be converted 
back to time-domain so that the envelope dynamics are 
appreciated.  
This method, from which a particular implementation is 

known as the Envelope Transient Harmonic-Balance [7]-
[10], constitutes a serious step towards a true nonlinear 
envelope driven circuit simulator. Fig. 4 shows the 
various processing phases of this envelope transient 
harmonic-balance engine. 
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Fig. 4 -  Illustration of the different processing phases of the envelope transient harmonic-balance algorithm. a) - Decomposition of the original spectrum 
in a RF carrier modulated by a low-frequency envelope. b) - Time-domain representation of the composite signal. c) - Time-step integration of the slowly 

varying Fourier coefficients. d) Frequency-domain and time-domain reconstruction of the desired composite circuit response. 
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VI. CONCLUSIONS 

The field of analysis and simulation of microwave/RF 
circuits has now more thirty years of evolution, but is still 
interesting from both an engineering and scientific point 
of view. 
Contrary to the traditional SPICE methods, conceived to 

address the transient response of nonlinear circuits and the 
steady-state of linear ones, new techniques have been 
proposed to profit from all the benefits of time and 
frequency-domain representations. Hence, now a large 
variety of problems can already be efficiently tackled, 
ranging from steady-state quasi-periodic regimes, to more 
complex mutli-rate regimes combining simultaneous 
transient and steady-state responses. 
Although most of these technologies are still confined to 

the microwave/RF arena, the rapid deployment of devices 
with multi GHz bandwidths, and the use of signals whose 
wavelength becomes comparable to the circuit’s 
dimensions, will determine their spread among (at least) 
the analogue circuit design engineers. 
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