REVISTA DO DETUA, VoL. 4, N° 3, SETEMBRO 2004

403

StackFences: a run-time approach for detecting stack overflows

André Ziquete

Abstract — This article describes StackFences, a run-time
technique for detecting overflows in local variables in C pro-
grams. This technique is different from all others devel-
oped so far because it tries to detect explicit overflow occur-
rences, instead of detecting if a particular stack value, namely
a return address, was corrupted because of a stack overflow.
Thus, StackFences is useful not only for detecting intrusion
attempts but also for checking the run-time robustness of ap-
plications. We also conceived different policies for deploying
StackFences, allowing a proper balancing between detection
accuracy and performance. For testing StackFences we de-
veloped a prototype for Linux systems using TCC (Tiny C
Compiler). C modules compiled with StackFences are fully
compatible with C modules compiled differently and standard
libraries. Effectiveness tests confirmed that all overflows in
local variables are detected before causing any severe dam-
age. Performance tests ran with several tools and parameters
showed an acceptable performance degradation.

Resumo - Este artigo descreve o StackFences, uma técnica
para detectar em tempo de execucio transbordamentos de
memdéria em varidveis locais de programas em C. Esta técnica
¢ diferente das demais desenvolvidas para lidar com este pro-
blema porque detecta directamente os transbordamentos de
memdria, em vez de detectar se valor especificos na pilha,
como enderecos de retorno, foram corrompidos devido a um
transbordamento de memoria. Assim, o StackFences ¢ qtil
nio sé para detectar tentativas de intrusio mas também
para monitorizar a correccio de execugﬁd das aplicagdes.
Foram também concebidas duas politicas de exploragido do
StackFences que permitem um equilibrio apropriado en-
tre correc¢io e desempenho. Para testar o StackFences
desenvolveu-se um protétipo para sistemas Linux usando o
TCC (Tiny C Compiler). Os médulos C compilados com o
StackFences sio totalmente compativeis com médulos C com-
pilados diferentemente ou com bibliotecas padrio. Os testes
de eficicia confirmaram que todos os transbordamentos em
variaveis locais sdo detectados antes de causar um estrago si-
gnificativo. Os testes de desempenho executados com diversas
ferramentas e parimetros revelarain uma degradacio de de-
sempenho aceitavel.

Keywords — Buffer overflows, run-time detection, run-time
correctness assessment, damage containment, dependability

Palavras chave — Transbordamentos de memoéria, detec¢io
em tempo de execugio, verificacio de correc¢io em tempo de
execucdo, minimizagio de estragos, confianca operacional

This article is an extended version of another one published in the 1st
International Conference on E-business and Telecommunication Networks
(ICETE 2004).

I. INTRODUCTION

The exploitation of overflow vulnerabilities has been one
of the most popular forms of computer attacks during the
last 15 years. According to the ICAT Metabase vulnerabil-
ity statistics!, about 20% of the vulnerabilities published in
the last 4 years are related with buffer overflows. Such vul-
nerabilities existed in compiled C or C++ code used for dif-
ferent purposes: operating system (OS) kernel; server and
client applications. For some people the problem will con-
tinue to exist as long C is used, and can only be minimized
or eliminated by using other languages instead of C [1].
However, C is still widely used, and probably will continue
to be, because it generates fast compiled code and there is
a large repository of legacy code written in C. Therefore,
there is a real need for techniques and tools that help to
minimize the number and the risk of overflows in old or
new C programs.

In this paper we address only problems caused by buffer
overflows, i.e., with write operations outside the proper
memory area, invading neighboring memory areas. But
there are other kinds of overflows, such as overflows in
the values of variables. These overflows do not directly
affect neighboring memory areas but do modify the execu-
tion flow of the application (e.g. the SSH daemon integer-
overflow vulnerabilities CVE-2001-0144 and CVE-2002-
0639 reported in the ICAT Metabase).

StackFences is a solution for detecting buffer overflows
affecting local variables, i.e., variables allocated in stack
frames. The key idea that we explored is an extension to
the canary mechanism, introduced in StackGuard [2], com-
plemented with the XOR canary mechanism introduced also
in StackGuard. The original canary mechanisms were de-
ployed for protecting only return values stored in the stack.
We extended the protection scope and used canaries for
controlling all stack areas susceptible to overflow. This
way, we hope to detect each and every stack overflow, ei-
ther affecting highly sensible values, like return addresses,
or not. We also conceived different policies for balancing
detection accuracy and performance. Namely, run-time val-
idations can be performed in two different ways: (i) one
more detailed, allowing a more accurate and timely detec-
tion of overflows, more suitable for development scenarios,
and (ii) one lazier, checking only when absolutely neces-
sary, more suitable for production environments.

For testing StackFences we developed a prototype for
Linux systems using TCC (Tiny C Compiler), a very sim-
ple, though complete C compiler. The code generated by
our modified version of TCC manages boundary canaries
near local variables susceptible to overflow. C modules

1http://icat.nist.gov

404

compiled with StackFences are fully compatible with the
standard C libraries and with modules compiled with other
compilers or compilation options. The modifications in-
troduced by StackFences affect only the code inside each
function, and the external visibility of such modifications is
required only for some StackFences’ checking procedures.
This paper is structured as follows. Section II overviews
the issues raised by stack buffer overflows. Section III
presents the related work concerning run-time detec-
tion/prevention of stack buffer overflows. Section IV
presents our contribution to detect stack buffer overflows.
Section V presents some implementation details regarding
the modified compiler and some extra modules with auxil-
iary variables and functions. Sections VI and VII evaluate
the effectiveness of StackFences and the overheads intro-
duced in the execution of microbenchmarks and real appli-
cations. Finally, Section VIII presents the conclusions and
future work.

II. OVERVIEW

There are mainly two reasons for the buffer overflow prob-
lems in C programs. First, the language does not check
for any boundaries around variables and allows program-
mers to manage memory areas at will, without any run-
time control, using pointers, type casts and pointer arith-
metic. Second, many standard C library functions are in-
trinsically unsafe concerning buffer overflows (e.g. the in-
famous gets () and several functions for manipulating
strings [3]).

Buffer overflows are a problem because they can be used to
modify data that controls the execution of a victim process
or OS kernel. The exploitation of a buffer overflow vul-
nerability can expose a victim application to two different
risks:

Denial of Service (DoS): an attacker may interfere ran-
domly with the application’s execution flow, eventu-
ally making it fail after some illegal operation. The
damage caused by such an attack is difficult to assert,
both for the attacker and the victim, because the at-
tacked application may fail without any control.

Penetration: An attacker may take control of the appli-
cation’s execution flow by performing a crafty buffer
overflow. In principle, the attacker knows very well
the damage produced by the attack, or produced by
conducting an intrusion thereafter.

Ideally, one would like to avoid both risks, but that may
be difficult or even impossible to achieve with current hard-
ware architectures and existing software. Comparing both
risks, the risk of penetration is greater than the risk of DoS.
Therefore, it seems useful to avoid penetration risks by
transforming them into DoS risks. We followed this rea-
soning in the design of StackFences.

A. Detection/prevention of buffer overflows

Buffer overflows may be detected using static analysis, i.e.,
before actually compiling and deploying the code (e.g. [4],
[5]). This approach, however, is not likely to be complete,
even though it may be used to spot well-known vulnerabil-

REevisTAa DO DETUA, VoL. 4, N° 3, SETEMBRO 2004

variables

zl @ @ @ > local
L]

current yl
frame —»
pointer prev frame pointer

return address

z2 @ > function

¥2 I parameters

stack : :
growth | |

! stack bottom |
Figure 1 - Possible overflows of the stack memory reserved for a C variable
 (either 1 or 22). Overruns may affect (1) neighboring variables y1 or
y2, (2) a saved frame pointer, or (3) a return address.

ities. Another possibility is to tackle buffer overflows dy-
namically, or at run-time, during the execution of the vul-
nerable applications. In this case, the vulnerable applica-
tion, or the execution environment, must be instrumented
to prevent or detect overflows or problems caused by over-
flows. This was the approach that we followed in Stack-
Fences.

Dealing with buffer overflows at run-time implies either
prevention or detection. Prevention attempts to conceal
overflow vulnerabilities or to make their occurrence par-
tially or totally harmless. If the prevention is effective a
vulnerable application may continue to execute normally
even when under attack. Though prevention does not help
finding problems out, it is highly desirable for avoiding both
DoS and penetration risks. But total prevention is difficult
to achieve and partial prevention should be avoided because
it gives a false sense of security.

Detection attempts to detect the occurrence of buffer over-
flows or the occurrence of abnormal facts that may be con-
sequence of buffer overflows. Detection only mitigates the
problem, since the usual reaction is to raise some sort of
alert and immediately terminate the affected application or
OS kernel, eventually leading to a DoS situation. There-
fore, detection helps to assess correctness on the execution
of applications or OS kernels with overflow vulnerabilities,
which is important for improving damage containment and
reducing penetration risks. StackFences is a detection solu-
tion.

B. Anatomy of a stack overflow

The overflow of the stack memory reserved for a C vari-
able x can corrupt the execution flow of an application in
many ways. Assuming only overflows across memory with
growing addresses and a x86 processor, we have at least the
following scenarios (cf. Fig. 1):

1. By setting the value of a neighboring variable y. If
y is a pointer to a function, one can reassign it to a
different function. If y is a pointer to a memory area,
one can cause a (probably fixed) memory modification
somewhere else. If y is a longjmp buffer, one can
control a future jump using it. If v is an integer, float
or struct/union variable one can modify the flow of the
program if the value of y is relevant for making flow

REevisTA DO DETUA, VoL. 4, N° 3, SETEMBRO 2004

decisions or producing useful results.

2. By setting the value of a saved frame pointer of a pre-
vious stack frame to another address. When the mod-
ified frame pointer is recovered, the application will
use, in that stack frame, different local variables and
function arguments, since the frame pointer is the base
address for addressing them.

3. By setting the return address for the calling function.
When the function returns it will continue to execute
at an address chosen by the attacker.

These attacks can be complemented by inserting auxiliary
data, like microprocessor instructions or function parame-
ters, into input buffers, overflowed or not. The auxiliary
data can be used later for a penetration bootstrap if the at-
tacker succeeds in using it.

Most overflow attacks are stack-smashing attacks [6], i.e.,
attacks of the third type referred above, that overwrite re-
turn addresses and jump into bootstrap penetration code.
The famous Internet Worm of 1988 did it [7], as well as
many other attacks thereafter. But the two other types
are also risky. For instance, M. Rolf presents in [8] a
difficult, though possible, exploit using a tampered frame
pointer. Furthermore, the use of canaries and other pro-
tection mechanisms for detecting the modification of return
addresses (cf. Section III) pushes attackers to work around
them in order to exploit stack buffer overflows without trig-
gering those protection mechanisms. Thus, by detecting as
much as possible all stack overflows we should be able to
defeat more overflow attacks, both already known or still
unknown.

C. Protection paradigms

J. Wilander and M. Kambar pointed out, in [9], that a gen-
eral weakness of the solutions presented so far for run-time
detection or prevention is that they protect known attack
targets, mainly return addresses in the stack, instead of pro-
tecting all targets. From a pragmatic point of view, we can
understand why that happens: stack-smashing attacks are
the simplest and most popular ones. But for dealing with fu-
ture and more sophisticated attacks exploiting buffer over-
flows we need to change the protection paradigm.

In [9] it is also mentioned that “changing the flow of con-
trol occurs by altering a code pointer”. This is true but
not complete. Namely, we can change the flow of control
by overflowing a simple integer variable. It may be argued
that it should be difficult to succeed in a penetration attempt
using such a simple overflow vulnerability, but the fact of
not knowing any instance of such an attack doesn’t mean
that it could not appear in the future. And, in any case, such
apparently useless overflows may lead to DoS situations,
either by crashing the victim application or, even worse,
by leading it to an abnormal behavior. Thus, for ensuring
the run-time correctness of an application we should con-
trol each and every variable susceptible to be affected by an
overflow; we tried to do so for local variables with Stack-
Fences.

405

III. RELATED WORK

In this section we describe the approach followed by sev-
eral run-time overflow detection or prevention techniques.
We do not address any static detection solutions.

Many run-time protection techniques were developed to
protect the most common target of overflow attacks: the re-
turn pointer. StackGuard [2] uses canaries, which are spe-
cific values that are placed between the local variables and
the return address in the same stack frame. The canary is
installed in the function prologue and checked in the epi-
logue. If its value changed in the meanwhile then there was
an overflow and the process is halted; otherwise the func-
tion returns normally. Two types of canaries where pro-
posed for StackGuard — terminator canary for preventing
overflows with character strings and random canary com-
puted in run-time — but only the first is actually used [9].

Propolice [10] enhances the basic protection of Stack-
Guard by rearranging local variables. The assumptions of
propolice are that (i) only character arrays are vulner-
able to overflows and (ii) function arguments do not con-
tain character arrays. Thus, vulnerable local variables —
character arrays or structures with character arrays — are
packed together in a vulnerable location next to the canary
(guard). All other variables are placed after the vulnerable
location, above in the stack. This way, overflows can occur
inside vulnerable locations but cannot affect non-vulnerable
variables, because they are in lower stack addrtess, neither
the return address because it is protected by the canary.
However, propolice assumptions are not complete, be-
cause there are other kinds of vulnerable variables besides
character arrays, and ignores overflows affecting only vari-
ables in a vulnerable area.

Another way of protecting return addresses is by hiding
them with a XOR canary, or cookie. The XOR canary is
XORed with the return address in a function’s prologue
and again in the epilogue. Attackers not knowing the value
of the XOR canary are unable to modify return addresses
in a useful manner. StackGuard was the first to use XOR
canaries to frustrate attacks (to return addresses) circum-
venting the basic canary mechanism?. StackGhost [11] is
kernel-level solution for Sparc architectures that protects re-
turn addresses this way. StackGhost uses either per-kernel
or per-process XOR canaries, but the first is too weak for
competent hackers. Overflow attacks affecting return val-
ues produce wrong return addresses. These can be automat-
ically detected in 75% of the cases because Sparc instruc-
tions must be aligned on a 4-byte boundary; on the other
25% the program will run uncontrolled.

StackGuard’s MemGuard [2] protection makes return ad-
dresses in the stack read-only during the normal execution
of functions. This way, any attempts to overwrite them raise
a memory exception. However, the performance penalty of
this approach is huge.

Another way of protecting return addresses is to keep a
separate copy of them in a return-address stack. Return ad-
dresses are stored in and fetched from the return-address
stack in the function’s prologue and epilogue, respectively.

2This mechanism was introduced in version 1.12.

406

Vendicator’s StackShield® Global Ret Stack protec-
tion and Secure Return Address Stack [12] use only the
copied values, thus preventing attacks affecting return ad-
dresses stored in the normal stack. These solution are very
good in keeping return addresses correct but fail completely
in protecting any other stack values from overflows.

The Return Address Defender [13] also uses a return-
address stack but provides only detection because return
addresses on the Return Address Repository are compared
with the ones in the ordinary stack before being used and
the process is halted if they are different. StackShield’s
Ret Range Check is similar but stores a copy of the
current return address in a global variable. All these detec-
tion mechanisms are useless against overflow attacks over-
writing the return address with its exact value, which is not
difficult to guess for a competent hacker.

Libverify [14] is another protection mechanism that uses a
return-address stack but, unlike the former, it can be trans-
parently applied to existing binary code by means of a dy-
namic library. The drawback of Libverify is that all pro-
tected code must be copied into the heap to overwrite in-
structions in the prologue and epilogue of all functions.
‘This means that processes are unable to share the code they
effectively run in main memory and absolute jumps within
the text area must be handled with traps.

Yet another way of protecting return addresses is to check
memory limits within certain critical functions. For in-
stance, Libsafe [14] is a dynamic library that replaces un-
safe functions of the standard C library that are typically
used for performing buffer overflows. All Libsafe functions
compute the upper bounds of destination’s buffers before
actually transferring data into memory. The upper bounds
are defined by the location of return addresses. But the pro-
tection is limited and misses unsafe functions compiled in-
line within existing applications or libraries.

PointGuard [15] is an extension of the original XOR ca-
nary mechanism for protecting pointer variables. Pointers
are stored encrypted (XORed with the XOR canary) and are
decrypted when loaded into CPU registers. However, this
approach raises problems when integrating mix-mode code
(some PointGuard, some not).

Practically all protection mechanisms look only at the ef-
fects of overflows within the current stack frame — excep-
tions are PointGuard and Libsafe. The solutions like Stack-
Guard, that use a boundary canary, can also protect frame
pointers stored next to return addresses; it is only necessary
to place the canary between the frame pointer and the lo-
cal variables. StackGuard 3 [16] and Libsafe protect frame
pointers. And propolice, under their assumptions, fur-
ther protects all variables that are not character arrays or
structures with character arrays.

Most of the protection mechanisms described are added at
compile time; exceptions are Libsafe, Libverify and Stack-
Ghost. StackFences is also added at compile time.

With StackFences we tried to further improve the detec-
tion of stack overflows. Namely, we tried to (i) detect over-
flows within all existing stack frames, not only the cur-
rent one; and to (ii) detect overflows from all variables that

3http://www.angelfire.com/sk/stackshield

REvisTA DO DETUA, VoL. 4, N° 3, SETEMBRO 2004

could be overflowed. In this particular case we extended
propolice’s and PointGuard’s notions of vulnerable ar-
eas and we do not ignore overflows within variables belong-
ing to a vulnerable area, as propolice does.

IV. OUR CONTRIBUTION: STACKFENCES

To detect overflows in stack variables we decided in favor
of managing StackGuard-like boundary canaries between
them. The management of canaries, which involves their al-
location, setup and checking, depends on the kind of stack
variables we are dealing with: local variables or function
parameters. In this paper we handle only the management
of boundary canaries for local variables. But a similar ap-
proach for function parameters is already scheduled for fu-
ture work.

To protect the value of canaries we use a XOR canary. Like
in StackGhost and PointGuard, this is a per-process random
32-bit value that is used to hide important values. It can be
compared to a 32-bit long keystream that is used to encrypt
and decrypt sensitive values. The canary is stored in a pub-
licly known variable (cXor in this text) and should not be
modified after being setup. Adaptive attacks trying to guess
the correct value of a process’ canary are infeasible, in the-
ory, because attacked processes should terminate after an
attack with an unsuitable, tentative canary value. We also
assume, like for StackGhost and PointGuard, that it is im-
possible for an attacker to get dumps of stack areas contain-
ing any boundary canaries XORed with the XOR canary.

As for StackGuard, we assumed that overflows are caused
by writing continuous amounts of data from a memory ad-
dress pointing to any byte of the correct memory area. But,
unlike StackGuard, we can also tackle certain overflows
caused from wrong pointers, i.e., pointers referring to (se-
mantically) wrong memory areas. For instance, such point-
ers appear when wrong indexes, both positive or negative,
are used to access arrays.

A. Overview

Boundary canaries are located near local variables, on
higher addresses. The questions now are (i) which variables
we want to, or should, bound with canaries, (ii) how do we
find the canaries and check their value; and (iii) when do
we want to, or should, check the value of canaries.

A.1 Variables to bound with canaries

Which variables should be bounded with canaries? Fol-
lowing a high security policy, we should bound all stack
variables. But this is a sort of brute force approach that has
considerable impact in the performance of modified appli-
cations.

A more relaxed policy is to setup boundary canaries after
all potentially vulnerable variables. Such variables are the
ones for which a pointer is taken and used in the current
Sfunction or other function called upon ir. Note that with
this definition all local arrays are frequently vulnerable (un-
less they are not used or used only with constant indexes)
but a pointer is not vulnerable until getting its address (see
Figure 2). This policy is more efficiency then the previous
one and should tackle most stack overflow problems (since

RevisTa D0 DETUA, VoL. 4, N° 3, SETEMBRO 2004

they usually derive from deficient uses of legitimate stack
addresses). Consequently, this was the policy we chose for
installing our boundary canaries.

£ 0
{

int A, B;
int % C;
int D[10], E[10];

C = &A; // A becomes vulnerable

£ (&, C, D); // B and D become vulnerable,
// but not C

g (&C); // C becomes vulnerable

E[A] = 3; // E becomes vulnerable ...

Figure 2 - C function with 5 local variables, all of them potentially vulner-
able to buffer overflows.

Additionally, all vulnerable variables are packed together
to improve the detection mechanism. In fact, those vari-
ables and the canaries between them and at the end of the
pack form a sort of “mined area”, where most overflows,
caused by dangling pointers and using either positive or
negative offsets, are highly unlikely to occur without being
noticed. The pack can either be placed close to the saved
frame pointer or as far as possible; in principle, such de-
cision should have no impact on the security provided by
StackFences.

Because the size of C structures cannot be altered, canaries
cannot be added between members of local struct vari-
ables. Therefore, overflows may still exist strictly inside
structures, but not affecting external memory areas.

A.2 Looking for and checking canaries

How can we look for all or part of the canaries and how can
we check the correctness of their value? One possibility is
to generate and use per-function checking code, knowing
the exact location of canaries and their values in the cur-
rent stack frame. However, this approach would complicate
a simple task of checking all existing canaries. Another
possibility is to define a more function-independent way of
locating and checking canaries.

We followed the last approach because it appeared to be
more flexible and simple to implement and test. Conse-
quently, the set of all boundary canaries form a linked list,
as shown in Fig. 3. The location of the head and tail ca-
naries of the list are stored in publicly known variables
(cHead and cTail in this text). The virtual address (of
another canary) stored in each canary is protected using
the XOR canary previously referred. This way an attacker
causing the overflow of a stack variable cannot easily guess
valid values for boundary canaries between the overflowed
variable and the neighboring variables to be tampered.

The full list of canaries, or particular sublists, can eas-
ily be checked by dereferencing canaries, XORing the ob-
tained value with the XOR canary and testing whether the
result is a valid address. Testing the validity of an address is
straightforward: (i) it must be higher than the previous one,
because the list goes strictly from the top to the bottom of
the stack, and (ii) it cannot be higher than a target canary

407
local variable
cHead — [[lf[f] canary~]
previous stack frames local variable :]
([T canary-—1 ITIITE
local variable local variable :'
([T} camary= s T (L} canary~—2 T
local variable prev frame pointer
AT canary= —a AT return address
prev frame pointer function parameters
return address

function parameters current stack frame

1 1
MIIT_canaryo [+— eTait

L _ _stackbottom _ _,

I

Figure 3 - Example of the list of canaries, starting in the current stack
frame (canary,) and until the first one inserted at the beginning of the
process execution {(canaxryyp). Variables cHead and ¢Tail point the head
and tail of the list. Shaded boxes represent canaries XORed with the pro-
cess” XOR canary.

address that we want to reach. Any violation of these asser-
tions is an overflow evidence.

A.3 Triggering canary checking

When should the application check the boundary canaries
for looking for stack overflows? We think that there are
at least two distinct situations that should trigger canary
checking:

Before doing some operation related with the exter-
nal perception of the application’s behavior. In
other words, the coherence of stack variables should
be checked before each and every operation capable
of reflecting a wrong behavior of the application to
the outside world. Broadly, this means that checking
should be done before any 1/0 attempt;

Just before the return of a function. In this case, we
should check for overflows within the current stack
frame, i.e., caused in local variables or parameters,
that will disappear because the stack frame will be re-
leased. Note that a local overflow may have affected
the past execution flow of the function, values returned
by the function, variables modified by the function that
are not bounded by overflow canaries (v.g. heap vari-
ables), or the frame pointer or the return address of the
current stack frame.

In the first case, we should check the full list of canaries,
because we are looking for any stack overflow. The full list
of canaries, from the head cHead to the tail cTail, can
be checked at any time during the execution of the program
for finding out overflows affecting any of the canaries. The
more times it is checked, the more timely we can find stack
overflows, but with a significant impact on the performance
of the application. Checking the full list of canaries is a
straightforward iterative walk, starting in the canary pointed
to by cHead and ending when the canary pointed to by
cTail is reached. Since canaries along the list must have
strict growing addresses and cannot be higher than cTail,
any violation of these assertions is an overflow evidence.

408

In the second case, we should check only the list of ca-
naries belonging to the local stack frame (canary, to
canaryn-2 in Fig. 3) since we are looking for evidences
of local stack overflows that are about to disappear. If no ca-
naries exist in the current stack frame then no local check-
ing is required. Checking a local list of canaries is also an
iterative walk starting in cHead but ending in the head ca-
nary in the previous stack frames (canary,_3 in Fig. 3).
The location of this canary must be supplied by the com-
piler.

B. Management of the canary list

The canaries in each stack frame are similar to local vari-
ables. The difference is that (i) they are invisible to applica-
tion code, being only known and managed by the compiler-
generated code and (ii) they have a mandatory initial value
that depends on the address of the next canary and the value
of the XOR canary. Therefore, managing local canaries fol-
lows many of the usual procedures used for ordinary local
variables.

The stack space for canaries around local variables can be
allocated when the offsets of local variables (from the frame
pointer) are defined by the compiler. This is a compile-time
action that does not incur any run-time overhead. The setup
of the canaries should occur after the normal C prologue *.

The linked list is increased after the prologue of a function
and decreased when the function returns. Increasing the
list consists of adding all canaries next to local variables to
the head of the list, referred to by cHead, and setting a new
value for cHead with the address of the new top-most stack
canary (the one with lowest address, canary,, in Fig. 3).
Decreasing the list consists simply of setting the value of
cHead using the address of the first canary of the previous
stack frames (the one with highest address, canary,_s in
Fig. 3).

The list of canaries must also be increased when the pro-
gram calls alloca. The space requested should be in-
creased to accommodate a canary at the end of it and that
canary should become the new list head. The list must also
be decreased when the program calls longjmp; in this
context it is similar to a long return. The value of cHead
must be set with the address of the first canary (the one with
lowest address) in the stack frame we are jumping into, or
in some other stack frame below.

C. Policies for canary checking

Checking boundary canaries is a potentially expensive op-
eration, thus it needs to be carefully managed in order to
balance two requirements: (i) effective detection of stack
overflows and (ii) efficient execution of the program. Fur-
thermore, in terms of effectiveness, two natural approaches
should be contemplated: (i) for development or testing pur-
poses, the sooner the overflow is spotted the better, while
(ii) for the execution of the program in production environ-
ments, preventing the application from “making damage”
may be enough for most cases.

*In order to use a correct frame pointer, or stack pointer in compilations
omitting stack frames, to setup their values.

Revista po DETUA, VoL. 4, N° 3, SETEMBRO 2004

Thus, considering the two execution environments men-
tioned above — development and production — we con-
ceived two different policies for checking the correctness of
boundary canaries. The two policies define when two lists
of canaries are checked: (i) the list of canaries belonging to
the current stack frame and (ii) the full list of canaries.

C.1 Checking local canaries

As previously explained, boundary canaries on the cur-
rent stack frame should be checked when the stack frame
is about to be released. Otherwise, we could fail to de-
tect some local overflows. Note that an overflow in a stack
frame may compromise memory areas all over the program
if local memory pointers where affected (case 1 of Fig. 1).
Consequently, the reduction of the canary list, both within a
normal function return or within a call to 1longjmp, always
checks the consistency of all released canaries.

The extra code for checking local canaries and reducing
the list of canaries was placed in a function (canReduce)
that is called before the function’s epilogue. All regis-
ters used to carry the return value of the ending function
— EAX for 32-bit integer values or EAX+EDX for 64
bit integer values — are saved in the stack before calling
canReduce and recovered afterward. canReduce gets,
as a parameter, the address of the canary after the last one
of the current stack frame (the address of canary,_; in
Fig. 3).

For passing the correct value to canReduce we should
not use the value stored in the last canary of the current
stack frame because it may have been modified and, yet,
be apparently valid. Being apparently valid means, in this
context, that (i) it points to an address higher than its own
and (ii) its value is not higher than the tail canary address
(given by cTail). Thus, for a more accurate validation
of canaries we store a clear copy of the previous head of
the canary list at the top of each stack frame that adds ca-
naries to the list (see Fig. 4). The function canReduce
receives the previous head as parameter and follows the
canaries from the current head until reaching the previous
one; at the end the previous head will be stored in cHead.
Overflow attacks cannot correctly corrupt both copies of the
same value: one copy XORed with the XOR canary and an-
other copy in clear, i.e., not XORed with the XOR canary
(canary,_; and prev cHead, respectively, in Fig. 4).

For handling the reduction of the canary list after a
longjmp call we use a function similar to canReduce.
The function starts from cHead and walks along the ca-
nary list until finding a canary with an address higher than
the stack pointer saved in the jump context. The address
of that canary will be stored in cHead. Note that this ap-
proach does not require any modification of the jump con-
text stored by set jmp and used by longjmp. It only re-
quires an extension of the longjmp functionality.

C.2 Checking all canaries

We conceived two policies for checking the full list of ca-
naries: one more suitable for development scenarios, an-
other more suitable for production environments. In either
case, we (ried to prevent an attacked process from doing any

Revista po DETUA, VoL. 4, N° 3, SETEMBRO 2004

current stack frame

prev cHead
local variable

cHead — [[T_cenary~]

. local variable
previous stack frames T canary- -1 [

' local variable
== caacy n —s [T canary~ -2 T
st

femmmmresmasaamm———— f
'

tt |

function parameters

|
1
]
i
|
1

M=o [~— et

stack bottom '

L

- ——

#--- Check/remove local canaries
push %eax

mov prev cHead off (%esp), %eax
push (%eax)

call canReduce

pop %eax

#--- end of canary processing
leave

ret

Figure 4 - Epilogue of function (returning a 32-bit integer value) with extra
code to check local canaries and remove them from the global list.

/O after a stack buffer overflow. The checking function is
named canWalk.

Development policy: In a development scenario we want
to catch an overflow as accurately as possible, in order to
simplify the process of finding and fixing the vulnerabil-
ity. It is, thus, natural to sacrifice execution efficiency in
favor of debugging effectiveness. Our development policy
consists of a canWalk call before each function call. This
approach is computationally costly but has the advantage of
detecting overflows not far from where they occurred.

The rationale for the development policy is the following.
We want to check the list of canaries often but we need
to define exactly how often, when and why. By checking
before calling a function we can do it quite often and still
prevent the program from doing any I/O after a stack over-
flow. We are assuming, of course, that for doing 1/O it is
necessary to call a function (e.g. a system call library func-
tion) but this is not completely true. In fact, I/O can hap-
pen without actually calling any functions. For instance,
we can use memory-mapped /O objects, like files, and do
I/O using pointers and read/write memory accesses. But we
believe that most I/0, even for memory-mapped objects, is
done using functions of utility libraries, thus enabling our
development approach.

Production policy: In a production scenario we want the
applications to run efficiently and, yet, we want to detect
overflows before they can interfere with their I/O. Our pro-
duction policy consists of a watchdog process to catch all
the system calls of the target process and to call canWalk
before each I/0 system call requested by the target process.
We define an I/O system call as a system call interacting
with I/O objects (files, pipes, sockets, etc.) or with other

409

operating system resources (e.g. send signals to other pro-
cesses, manage virtual memory attributes, change the own-
ership of the process, etc.).

This approach should be faster than the previous one, since
it implies fewer calls to canWalk. Again, any I/O using
pointers and memory-mapped objects will not trigger the
checking of all boundary canaries. Thus, it may be possi-
ble to perform I/O operations after a stack overflow without
notice. Nevertheless, the overflow would eventually be de-
tected afterward.

V. IMPLEMENTATION

For implementing all the mechanisms and policies pre-
viously described for detecting stack buffer overflows we
modified a C compiler and developed 3 auxiliary C mod-
ules for Linux systems that must be linked with the appli-
cations we want to protect. The applications don’t need to
be modified to use StackFences; they only need to be re-
compiled with the modified compiler and linked with some
of the auxiliary modules. The C startup function main is
transparently redefined for doing some setup actions in the
auxiliary modules before actually starting the application.

For the C compiler we used the version 0.9.16 of TCC
(Tiny C Compiler), a simple, complete and relatively easy
to modify compiler developed by Fabrice Bellard [17]. We
chose this compiler mainly because it allows a fast proto-
typing for getting a proof of concept. In the future we plan
to modify gcc, a more popular but also more complex com-
piler, to support StackFences. For lack of space we will not
describe here the modifications we did in TCC for imple-
menting StackFences.

The first auxiliary module defines variables and func-
tions that are common to all overflow checking facilities.
Namely, it defines: the public variables cXor, cHead
and cTail; the XOR canary setup function, the function
canReduce; and a new 1longjmp function redefining the
original one of the C library. For setting up a random value
for the XOR canary this module uses the Linux special file
/dev/urandom.

The second auxiliary module defines a new main function
and all the checking and aborting functions for the develop-
ment policy described in Section IV-C.2. The new main
simply defines the initial boundary canary (canaryg in
Fig. 3), initiates the value of the variables in the previous
module and calls the original main function of the appli-
cation. None of the stack variables below the current stack
frame are bounded with canaries; this means that program
arguments and environment variables are still vulnerable.
We decided this way because we believe that those vari-
ables can be protected more efficiently by other means, like
memory protection mechanisms (see Section VIII).

The third auxiliary module defines a new main function
and all the checking and aborting functions for the produc-
tion policy described in Section IV-C.2. The new main
first creates a child process for running the application and
the initial process stays as the watchdog of the new one.
The watchdog process will catch all system calls of the ap-
plication process using the ptrace facility, typically used
by debuggers and available in all Unix systems. The main

410

function, when executing in the child process, is basically
identical to the one of the second module. Again, stack
variables below the current stack frame are not protected
by boundary canaries.

For the watchdog action the third module includes a func-
tion for catching the system calls of the child process.
This function triggers the call to canWalk before allow-
ing the execution of any requested I/O system call. The
canWalk function is similar to the one in the second mod-
ule but, because it runs in a different process, canary values
must be loaded from the target process with the system call
ptrace and the request PEEK_DATA.

VI. EFFECTIVENESS EVALUATION

We tested the effectiveness of StackFences with the test
suite developed by J. Wilander and M. Kambar, described
in [9] and kindly provided by the authors. The results were
the best possible: StackFences detected and halted all 12
attacks overflowing stack variables. We where also able to
do so using either of the canary checking policies described
in Section IV-C.2.

The empirical results obtained with the same test suite
and using 4 protection tools — StackGuard, StackShield,
propolice and Libsafe/Libverify ~ showed that the tools
where able to handle, in the best case, 10 out of the 12 at-
tacks (with propolice) [9, Tables 4 and 5]. Note, how-
ever, that:

e the test suite is not complete, it only overflows charac-
ter arrays, which are exactly the vulnerable variables
considered by propolice. But StackFences is more
powerful, being able to detect overflows in local vari-
ables other than character arrays. Therefore, Stack-
Fences is much better suited for assessing the correct-
ness of applications in run-time than propolice but
that cannot be fully demonstrated with this test suite.

¢ propolice does not detect any overflows within
consecutive character arrays, as StackFences does, and
such vulnerability is also not explored by the test suite.

There are other forms of attacks overflowing stack loca-
tions that are not performed by the test suite neither han-
dled by StackFences. We are talking about overflows ac-
tually using function parameters, and not only considering
them as targets. We believe that the general reason for re-
searchers not considering such attacks is that overflows usu-
ally happen in arrays, typically for character strings, and C
programmers usually pass arrays to functions by reference,
not by value®. But we think that function parameters are
as vulnerable as function variables and should be checked
likewise, though that is not currently the case with Stack-
Fences.

VII. PERFORMANCE EVALUATION

The performance penalties introduced by StackFences de-
pend on several factors, namely: (i) the number of vulner-
able local variables; (ii) the number of function calls; (iii)
the length of the list of canaries when canWalk is called;

3To pass an array to a function by value the array must be member of a
structure an the structure must be passed to the function by value.

REvISTA DO DETUA, VoL. 4, N° 3, SETEMBRO 2004

and (iv) the number of I/O operations that trigger the call
to canWalk (if using the production policy). We could
have devised microbenchmarks to study the influence of all
these factors, but that would not help us to extrapolate the
results in order to foresee the overheads introduced in real
applications.

We decided to evaluate StackFences with both micro and
macro benchmarks. The microbenchmarks provide upper
bounds to the overheads caused by setting and checking
canaries in each function’s prologue and epilogue, respec-
tively. The macro benchmarks help us to have an idea about
the relative cost of each checking policy, because they con-
trol the calls to canWalk, and also to get an idea about the
space occupied by canaries.

All benchmarks ran in a Red Hat 8.0 Linux box, with the
kernel 2.4.18-27.8.0, a Intel Pentium IV CPU at 2.4 GHz,
256 Mbytes RAM and 512 Kbytes cache.

A. Microbenchmarks

As microbenchmarks we used a set of functions with a
variable number of variables, all of them vulnerable, and
an expression per variable for triggering their vulnerabil-
ity (see Figure 5). We measured the minimum CPU clock
cycles taken by 100 consecutive calls of those functions.

void null (int » x) {}

void £0 () {}

void f1 ()
int AL;

// Turn Al vulnerable

null (&ALl };
void £32 ()
int Al, ..., A32;
// Turn Al, ... and A32 vulnerable
null (&A1); ...; null (&A32);

Figure 5 - Example of functions used in microbenchmarks.

The microbenchmarks where compiled in 3 different ways
— with gce, tec, and tcce with StackFences and the pro-
duction policy. The results of the evaluation are presented
in Table I: the first two columns show function names and
their number of vulnerable local variables; the remaining
columns show the minimum CPU clock cycles observed
in 10000 consecutive runs of the benchmark. The val-
ues were measured using the Pentium’s RDTSC instruc-
tion after a proper serialization with a CPUID instruction
(as suggested by Intel [18]) and corrected by subtracting

RevisTa DO DETUA, VoL. 4, N° 3, SETEMBRO 2004

elapsed time (ms)
function [vulnerable gce | tce
l variables l { “orig. T with StackFences
00 0 3,520 3,528 (+0%)
f10 1 4524 | 4532 6,732 (+49%)
£20) 2 5,724 | 57736 8,960 (+56%)
30 3 6,940 | 7,004 | 10,556 (+51%)
£40 4 8,136 | 8,136 | 12,576 (+55%)
50 5 9,340 | 9,332 | 14,388 (+54%)
elapsed time (ms)
function | vulnerable gcc tce
variables orig. | with StackFences
f6() 6 10,536 | 10,824 | 16,512 (+53%)
70 7 12,148 | 11,932 | 21,212 (+78%)
80 8 12,928 | 12,928 | 26,656 (+106%)
160 16 22,756 | 22,536 | 47,988 (+113%)
320 32 41,724 | 41,768 | 92956 (+123%)

Table I
RESULTS OF THE EXECUTION OF MICROBENCHMARKS FOR
EVALUATING THE MAXIMUM OVERHEADS INTRODUCED BY
STACKFENCES’S PROLOGUES AND EPILOGUES.

the minimum time taken by the measurement code. There-
fore, they give a accurate notion of the maximum overheads
imposed by StackFences in functions’ prologues and epi-
logues. Note that these overheads are independent of Stack-
Fences’s checking policies but the total overhead of Stack-
Fences per function used in the microbenchmark is not in-
dependent, because with the development policy we would
call canWa 1k before actually calling the dummy function.
To avoid such call we compiled the benchmarks only with
production policy, as previously referred.

The microbenchmarks show that the maximum base over-
head for protecting local variables is significant (approx-
imately 50%) but the maximum cost per variable is rela-
tively reduced. The base overhead is mostly due to the epi-
logue, namely to the canReduce function, because it im-
plements a costly validation loop. StackFences’s prologues
are faster because they have no loops and no tests. The mi-
crobenchmarks also show that the overheads introduced by
StackFences, when comparing with gcc, are not imputable
to tcc. Thus, since StackFences’s prologues and epilogues
are almost compiler-independent®, a similar overhead could
be obtained with gcc.

B. Macrobenchmarks

For the evaluation of StackFences with macro benchmarks
we chose 3 tools with moderate file I/O and high CPU ac-
tivity: ctags, tcc and bzip2. These 3 tools where
compiled in 4 different ways — with gcc, tcc, and tcc
with the two StackFences checking policies — and exe-
cuted with 3 different parameters — the sources of each
of the 3 tools. For ctags and t cc we used a list of source
files; for bzip2 we used a tar file with the sources.

The results of the evaluation are presented in Table II: the
second and third columns show the number of local vari-
ables used by the tools and the number and percentage of
them that are vulnerable and checked by StackFences; the

SActually StackFences’s prologues/epilogues use the frame pointer,
which is the common case and the only one supported by tcc. Thus,
in compilations omitting the frame pointer, that are possible with gcc,
they must be generated differently.

411

fourth column shows the arguments used with the tools; the
fifth column shows the protection policy used with Stack-
Fences. In the rest of the columns we have execution re-
sults: the sixth and seventh columns show the elapsed time
observed with the tools compiled with gcc (with maxi-
mum optimization) and the normal tcc (that has no op-
timizations); the eighth column shows the elapsed time ob-
served with the tools compiled with t cc and StackFences,
using both security policies, and the overhead in percent-
age comparing with the results of the previous column; the
last six columns show the number of calls to canReduce
and canWalk and the average and maximum number of
canaries checked per call. StackFences’ auxiliary modules
were written in C and compiled with gcc and maximum
optimisation. The elapsed times are the minimum observed
in 100 consecutive runs of each test.

The values provided for gcc are only indicative, because
many dynamic solutions for dealing with buffer overflows
were implemented with it. But it doesn’t make sense to ex-
trapolate the overhead of StackFences comparing with gcc
because some of the optimizations used by the latter would
also reduce the overhead of StackFences if it was part of
gcc. For instance, tcc has many small inline func-
tions. Since our version of TCC ignores inline qualifiers,
that greatly increases the number of canReduce calls
and the average number of canaries checked by canWalk.
Such overhead would not happen if we had integrated
StackFences with gcc.

The results in Table II show that the overheads introduced
by StackFences are acceptable. With the development pol-
icy, overheads are between 22% and 189% of the elapsed
time with tcc and without StackFences. With the produc-
tion policy, overheads are lower, as desired, between 3%
and 41%. The production policy greatly reduces the num-
ber of calls to canWalk, as expected. But in some cases,
namely with ctags, results show that it is almost irrele-
vant to use either checking policy. That happens because
the average number of canaries checked by canWalk is
low, making more relevant the cost of the process switching
between the application and its watchdog in the production
policy.

Considering the applications tested, the extra space occu-
pied by canaries in the stack is not an issue. In the worst
case there is a maximum of 252+10 canaries (when tcc
is compiled by itself using the development policy), which
represents a memory overhead of about 1 KB.

A small comparison can be established between the perfor-
mance of ctags with StackGuard and with StackFences.
According to [2], ct ags with StackGuard has an overhead
of 80% when processing 78 files, 37,000 lines of code. Us-
ing the same number of files and an approximated number
of lines of code (37,188) we got for StackFences a lower
performance penalty: 31% with the production policy and
41% with the development policy.

According to Table II, gcc and tcc generate equally fast
ctags executables. Therefore, for this particular experi-
ence we can compare the overheads of the two protection
mechanisms independently of the compilers implementing
them. And the conclusion is that StackFences is faster than

412

Revista D0 DETUA, VoL. 4, N° 3, SETEMBRO 2004

execution
elapsed time (ms) StackFences statistics
tool local variables arguments | StackFences gce [canReduce canWalk
total [vulnerable policy -03 | org. with calls Tength calls length

StackFences avg. | max. avg. | max.
bzip2 development 70 122 149 (+22%) 1,667 59 11 437,946 | 21.8 24
sources production 126 (+3%) 48 73 3
bzip2 | 462 302 | tec development 207 324 396 (+22%) 1,970 6.0 | 127,521 221 24
(65%) | sources production 333 (+3%) 62 84 i3
ctags development 230 360 439 (+22%) 1,683 59 1T 11,207,621 | 223 29
sources production 377 (+3%) 60 8.3 13
bzip2 development 89 167 419 (+151%) 411,256 24 10 | 2,927,026 | 308 1635
SOurces production 217 (+30%) 1,250] 146 65
tec 978 603 | tec development 97 179 517 (+189%) 464,208 25 1071 3737023 | 333 252
(62%) | sources production 222 (+24%) 928 | 159 60
ctags development 304 541 1,149 (+112%) | 1,231,803 23 10 1 8297317 1 241 163
sources production 724 (+34%) 4682 1 130 102
bzip2 development 36 36 49 (+36%) 3,338 14 3 | 1,334837 2.1 5
sources production 44 (+22%) 137 23 4

ctags 911 178 | tec development 91 92 132 (+43%) 13,899 1.4 377 3599.838 2.2
(20%) | sources production 116 (+26%) 207 23 4
ctags development 91 08 138 (+41%) 16,530 T4 31 380,356 22 3
sources production 138 (+41%) 391 2.2 4

Table I1

RESULTS OF THE EXECUTION OF MACRO BENCHMARKS WITH EXISTING APPLICATIONS FOR EVALUATING THE TOTAL OVERHEADS INTRODUCED

BY STACKFENCES AND STATISTIC DATA REGARDING THE CHECKING OF STACKFENCES® CANARIES.

StackGuard, which makes less validation actions! This
paradox is probably explained by the fact that the perfor-
mance figures presented in [2] were obtained with a non-
optimized version of StackGuard, that added canaries and
code for checking them to all functions, instead of doing it
only for functions with vulnerable local variables. This fact
is mentioned in the performance optimisations for Stack-
Guard described in [2]. StackFences, on the contrary, was
optimized to add canaries and for checking them locally
with canReduce only in functions with vulnerable vari-
ables.

We believe that the overhead introduced by Stack-
Fences can be further reduced. For instance, different
canReduce functions may be used for different lengths
of local canary lists, allowing more effective loop unrolling
optimizations. For reducing the overhead of the production
policy we can keep the current watchdog model but use a
thread, or Linux clone of the monitored process, to execute
the function canWalk, or we can develop a kernel module
or patch for tracing only the relevant system calls (see [19]
for a detailed analysis and examples of this approach), in-
stead of tracing all system calls from the watchdog process
with ptrace.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented StackFences, a run-time solution for
detecting buffer overflows affecting variables allocated in
stack frames. StackFences detects overflows in all poten-
tially vulnerable local variables instead of detecting only
overflows affecting known attack targets, like return ad-
dresses. To the best of our knowledge this is the first solu-
tion to perform such a detailed run-time stack analysis. For
this purpose StackFences extends two canary mechanisms
to detect overflows: the canary mechanism introduced in
StackGuard and the XOR canary mechanism introduced
in StackGhost. StackFences uses canaries for monitoring
all local variables susceptible to overflow, either affecting

highly sensible values, like return addresses, or not.

For balancing detection accuracy and performance we con-
ceived two checking policies for StackFences: a devel-
opment policy, more detailed and allowing a more accu-
rate and timely detection of overflow occurrences, suitable
for development scenarios; and a production policy, lazier,
checking only when absolutely necessary, thus more suit-
able for production environments.

For testing StackFences we developed a prototype for
Linux systems using TCC (Tiny C Compiler). C modules
compiled with TCC and StackFences are fully compatible
with the standard C libraries and with modules compiled
with other compilers or compilation options. The modifica-
tions introduced by StackFences affect only the code inside
each function.

In terms of effectiveness, StackFences detected and halted
all the 12 attacks of the test suite developed by Wilander
and Kambar [9]. Although it may appear that StackFences
is minutely different from propolice, which avoids 10 of
those attacks, that is not true because StackFences detects
other overflows that are not considered by the test suite and
neither tackled by propolice. Namely, (i) propolice
only tries to reduce the impact of overflows in character
arrays, while StackFences detects all overflows in other
kinds of vulnerable stack variables (ii) propolice may
not detect overflows within consecutive character arrays, as
StackFences does. Therefore, StackFences is much better
suited for assessing the correctness of applications in run-
time than propolice, though that is not properly demon-
strated by the test suite.

The performance of StackFences is acceptable but de-
pends a lot on the compiled application. Microbenchmarks
showed that StackFences’s prologues and epilogues have a
significant maximum base overhead of about 50% in the
elapsed time, but a small overhead per each vulnerable lo-
cal variable. Macrobenchmarks with 3 tools showed a over-
head in the elapsed time between 22% and 189%, when us-

