REVISTA DO DETUA, VoL. 4, N° 3, SETEMBRO 2004

389

The ARPA Project - Creating an Open-Source Real-Time
System-on-Chip

Arnaldo S. R. Oliveira, Valery A. Sklyarov, Anténio B. Ferrari

Abstract — This paper describes the ARPA project.

The aim of this project is to develop an open-
source System-on-Chip model for real-time applica-
tions. The main component of the SoC is a MIPS-
based RISC processor. It is implemented using
a pipelined Simultaneous Multithreading (SMT)
structure, which allows exploring the Instruction
and Task Level Parallelism, decrease the context
switching time and avoid speculative execution.
Another fundamental component of the SoC is the
Operating System Coprocessor, which implements
in hardware some of the operating system func-
tions, such as task scheduling, switching, synchro-
nization, communication and timing. The pro-
posed approach allows building high performance
and time predictable processors optimized for em-
bedded real-time systems that consume less energy
than currently available superscalar processors.

Resumo — Este artigo descreve o projecto ARPA.
O objectivo deste projecto é a concepgao de
um modelo aberto de um sistema integrado para
aplicacées de tempo real. O componente princi-
pal do sistema é um processador RISC baseado na
arquitectura MIPS e implementado usando uma
estrutura pipelined com suporte para multitarefa
simultanea. Esta implementagiao permite combi-
nar a exploragdo do paralelismo entre instrugoes de
uma e de vérias tarefas, diminuir o tempo de co-
mutagao de tarefas e evitar a utilizagdo de técnicas
complexas de execugado especulativa. Outro com-
ponente fundamental do sistema é o coprocessador
de sistema operativo, que implementa em hardware
algumas das fungoes de sistema, tais como tempo-
rizagdo, escalonamento, comutagio, sincronizagao e
comunicagao entre tarefas. A abordagem proposta
permite construir processadores de elevado desem-
penho, previsiveis e optimizados para sistemas de
tempo real e que consomem menos energia que os
processadores superescalares actuais.

Keywords — Simultaneous multithreading, Time-
predictable processors, Operating system coproces-
sors.

Palavras chave — Multitarefa simultanea, Pro-
cessadores temporalmente previsiveis, Coproces-
sadores do sistema operativo.

I. INTRODUCTION

The number of transistors on a single chip has in-
creased considerably over the last decades. The re-
cent advances in integrated circuit (IC) technology
has allowed the construction of complex Systems-on-
Chip (SoC) and the manufacturing of large field pro-
grammable logic devices, such as FPGAs. FPGAs with
the equivalent logic capacity of millions of gates are
now available at reasonable price and are considered a
strong alternative to custom ICs (ASICs), mainly due
to its reconfigurability and low NRE costs. Assuming
the continuous evolution of the IC technology, the next
generation of processors will reach, by the year 2010,
the 10 billions of transistors on a single chip. The
mission of the engineers and computer architects is to
find the best way to use efficiently this huge number
of transistors, which obviously depends on the appli-
cation domain.

The advances in computer architecture during the last
decade led to the construction of very fast and ex-
tremely complex superscalar processors, employing ad-
vanced techniques to improve performance, such as su-
perpipelining, branch prediction/speculation, out-of-
order/predicated execution and sophisticated memory
hierarchies. However, these techniques are also respon-
sible for much of the power consumption and for the
non deterministic performance of nowadays comput-
ers. Although, they were successfully applied to im-
prove the performance of desktop computers, they are
not appropriate for embedded real-time systems be-
cause predictable performance and in some cases low
power consumption are considered important proper-
ties for this class of systems. In this paper we suggest
an approach to explore the large integration capacity
currently available, to build optimized, predictable and
energy efficient SoCs for embedded real-time systems.

II. MOTIVATION

Embedded hard real-time systems typically consist of
a set of concurrent tasks executing periodically or ape-
riodically with a well defined deadline. The execution
is usually done on a single processor, which is able to
execute only one task at a time. Therefore, a Real-
Time executive or Operating System (OS/RTOS) is
normally used to manage the concurrent execution of
the tasks, performing the following roles:

e Schedule task execution accordingly to the prede-
fined parameters and the established scheduling
policy;



390

e Switch, i.e. preempt and dispatch, tasks accord-
ingly to the computed schedule;

e Synchronize task execution and provide the ad-
equate primitives to ensure a correct sequential
behavior;

e Provide efficient mechanisms for inter-task com-
munication.

In systems with high temporal resolution and/or a
large number of (computationally intensive) tasks with
tight parameters (small periods and deadlines) a high
performance processor is required and a large number
of context switches between tasks and the OS are per-
formed during runtime. Context switches take time
and spend energy without doing any useful work. A
possible approach to improve the performance of such
systems would be the utilization of an optimized pro-
cessor with the following capabilities:

e Simple pipelined execution of instructions from
each task, avoiding the complex techniques used
currently in superscalar processors to minimize
pipeline stalls;

¢ Simultaneous execution of several tasks eventually
time sharing the same functional units. i.e. the in-
struction fetch stage is able to feed the succeeding
pipeline stages with instructions from multiples
tasks;

o Efficient hardware implementation of the OS func-
tions using an Operating System Coprocessor
(OSC);

o Reduced
switches.

overhead associated with context

Such a processor would reduce the number of con-
text switches, explore both types of parallelism (In-
struction Level Parallelism - ILP and Task Level Par-
allelism - TLP) and improve the energy efficiency with-
out require considerably hardware complexity. The
OSC based implementation of OS activities such as,
task scheduling, switching, communication and syn-
chronization also improves the system performance be-
cause they are performed in parallel with the user
tasks, reducing processor load and the number of con-
text switches. A close interaction between the OSC
and the CPU core would also improve the utilization
of CPU resources and increase the ability to introduce
optimizations (e.g. at the context switching level).

III. OBJECTIVES

The main objective of the ARPA project is to create,
implement and test a synthesizable model of a SoC op-
timized for hard real-time systems, as well as develop
or adapt the respective compilation tools. This ambi-
tious goal can be divided into the following parts:

o Create a processor architecture optimized for hard
real-time systems. It must provide high perfor-
mance and execute the tasks accordingly to the
timing constraints specified during system design.
The architectural optimizations must not be re-

REVISTA DO DETUA, VoL. 4, N° 3, SETEMBRO 2004

sponsible for a considerable increase in power con-
sumption. The use of complex performance im-
provement techniques which consume considerable
area and power and introduces non-determinism
must be avoided. To save project time, this work
could be based on an existing architecture with
stable development tools widely available.

e Develop an optimized pipelined implementation
of the architecture employing simple techniques
to improve performance and avoid pipeline stalls
caused by control and data hazards. The imple-
mentation must explore different types of paral-
lelism (ILP and TLP) and exhibit low overhead
associated with context switches.

e Using an hardware description language (e.g.
VHDL) and/or a high-level language (e.g. Handel-
C) elaborate a behavioral model of the processor,
which must be used directly for hardware synthe-
sis. The model must be portable, i.e. independent
of the target technology.

IV. RELATED WORK

Intel Corporation launched in 2001 the Hyper-
Threading (HT) technology [1]. A HT-enabled pro-
cessor is seen by the OS as a single physical pro-
cessor acting as multiple logical processors. HT im-
proves the performance of multitasking applications
executing in a processor by dynamically multiplexing
instructions from multiple tasks into the same func-
tional units. Current Pentium 4 HT processors can
execute two tasks simultaneously by time sharing the
same hardware resources. The Sweden company Re-
alFast launched in 2003 the ” UltraFast Micro Kernel”
real-time kernel/executive, previously named ”Sierra
16” [2]. It implements in hardware some of the oper-
ating systems functions, conventionally performed in
software. Task scheduling is fully implemented in hard-
ware and the interrupt service routines are scheduled
as ordinary tasks accordingly to a predefined priority.
The CPU has a single interrupt request line driven by
the executive and activated whenever a task switching
has to be performed. The executive also provides tim-
ing primitives and synchronization mechanisms. Data
exchange between the CPU and the executive is per-
formed through the system bus, acting the coprocessor
as an ordinary peripheral. In [3] it is also presented a
configurable scheduler for real-time systems. The prin-
ciple of operation and the interface are similar to the
"UltraFast Micro Kernel”.

The ARPA project is on the same research line of the
referred work, but follows a different approach:

o Integrating closely the CPU and the OSC, allow-
ing a more efficient use of the functional units and
an optimized context switching procedure.

e Providing the means to dynamically select the
scheduling policy and the static choice, i.e. at
compile time, of memory sizes, number of execu-
tion contexts, task synchronization and communi-
cations mechanisms.



REevisTA DO DETUA, VOL. 4, N° 3, SETEMBRO 2004

1/0 Pins

Peripherals

I/ O Pins
I/ O Pins

Cép;‘c}ces;sm g
(MEC) (FPU)

oprocessor |

Peripherals
Peripherals

Coprocessor 2 Coproc ;
- {OSC) (User defined)

Peripherals

1/O Pins

Figure 1 - Target structure for the ARPA SoC.

Comparing the ARPA project with the HT technology
and the "UltraFast Micro Kernel”, our approach has
the advantage of simultaneously implement the OS in
hardware and provide a closer interaction between the
CPU and the OSC. This is possible because we are
developing open models of both components.

V. ARCHITECTURE

The target structure for the ARPA SoC is depicted in
fig. 1. Its main components are the following:

o The Central Processing Unit (CPU);

Up to 4 coprocessors for exception handling, mem-
ory management, OS implementation, floating
point calculations and user-defined operations;
Program and data memory;

Peripherals and [/O pins.

ARPA is based on the MIPS32 architecture because of
its simplicity, ease of implementation and availability
of stable compilation tools. In fig. 2 it is depicted the
CPU pipeline. The main stages are named on the top
of the figure. Depending on the implementation tech-
nology and required performance/area tradeoff, each of
these stages can be split into sub-stages to bound the
critical path. To support Simultaneous Multithread-
ing (SMT), N execution contexts are provided, each
supporting the execution of an individual task. Each
context has its own Program Counter and bank of Gen-
eral Purposes Registers. The remaining pipeline com-
ponents are shared by all contexts.

ARPA is an Harvard Architecture, i.e. contains sepa-
rate memories for program and data. This memory or-
ganization eliminates structural hazards during mem-
ory accesses. The required duplication of the bus sig-
nals is not an issue because the CPU and memory are
both integrated into the SoC. The need to predefine
the memory sizes assigned to code and data is not a
problem in embedded systems, because they are nor-
mally fixed at design time.

391

A distinctive feature of the ARPA project is the hard-

ware implementation of the RTOS. The basic OS func-
tions are implemented in hardware and performed in
parallel with the user tasks. This approach has sev-
eral advantages, such as better performance, improved
predictability and requires less memory for the RTOS
code and data. The main OSC blocks are shown on the
bottom side of fig. 2. The Task Table is used to store
the task parameters (entry point, state, timing infor-
mation, stack size, etc.). All units have access to the
Task Table. The Context Switching Unit has privileged
access to the CPU pipeline. The interface and data ex-
change between the CPU and the OSC are based on the
predefined MIPS coprocessor interface and instruction
set.

V1. IMPLEMENTATION

The ARPA architecture can be implemented in
different ways depending on the required perfor-
mance and features. To obtain a reasonable perfor-
mance/complexity compromise, the first implementa-
tion is based on a single issue, 5 stage multithreaded
pipeline. To simplify and save hardware resources, all
traditional superscalar techniques, such as branch pre-
diction, and speculative/out-of-order execution were
avoided. The adoption of a SMT implementation min-
imizes the negative impact of the proposed simplifica-
tions in the performance. Pipelined SMT allows the
exploration both ILP and TLP. The ARPA SoC is be-
ing prototyped on a Trenz Electronic TE-XC2Se devel-
opment system [4], which contains a XC2S300E Xilinx
FPGA. The CPU core is being modeled at RTL level
using VHDL because the operations performed are rel-
atively simple and VHDL provides good control over
hardware synthesis. For CPU synthesis the Xilinx XST
engine is used. On the other hand, the OSC is being
modeled in Handel-C because the operations and algo-
rithms are more complex and Handel-C provides the
adequate support for describing them. For OSC syn-
thesis the Celoxica’s DK2 suite is being employed. The
netlists produced by both synthesis tools are integrated
and used within Xilinx ISE tools for implementation on
the target device.

VII. APPLICATION DESIGN FLow

The design flow for FPGA based applications using
the ARPA architecture is depicted in fig. 3. It con-
sists of two sub-flows: the hardware design flow and
the software design flow. The hardware sub-flow allows
obtaining, with the aid of the synthesis and FPGA ven-
dor implementation tools, the hardware configuration
file from the behavioral SoC description. The output
of the software sub-flow is an executable file generated
by compilation of the software source code and used
to program the system memory. If the FPGA internal
memory is large enough to store the application code
and data, the executable file can be merged with the
hardware configuration file into a single file used to pro-
gram the FPGA at system startup. The executable file



392

Instruction Fetch

Intruction Decode

REVISTA DO DETUA, Vor. 4, N° 3, SETEMBRO 2004

Execution

Address Myl ijf}te xing

Data Maltiplexing tnit

I P
I Memory Access ‘ Wrikeback

Central Processing Unit (CPU)

Execution
Units

Data
Memory

Writeback Multiple xin

- Context
Switching
Unit

Commniunication
Unit

Figure 2 - ARPA CPU and OSC internal structure.

Compiler

Software
Design Flow

System
Execution oo a
Enulator/
Sinudator

Flush Memory
Programiming

Application
Design Flow

Hardware and
Software
Conliguration
Merging

Hardware
Design Flow

Figure 3 - Application design flow assuming an FPGA imple-

mentation.

resulting from software compilation can also be used
for simulation purposes within an emulator.

VIII. CONCLUSIONS

The ARPA architecture provides a convenient plat-
form for implementing hard real-time systems. It
provides hardware support for traditional OS func-
tions and allows exploiting both ILP and TLP. The
less aggressive exploration of ILP is compensated by
the TLP exploration and the hardware implementa-
tion of OS functions which allows improving perfor-
mance without the complexity and power consump-
tion of current superscalar processors. The web page
for the ARPA project is at the following address:
http://www.ieeta.pt/” arnaldo/projects/ARPA/.

REFERENCES
[1} D. Marr D. Koufaty,

netburst microarchitecture”, IEEE Micro, pp. 56-65, March-
April 2003.

“Hyperthreading technology in the

RealFast, http://www.realfast.se, UltraFast Micro Kernel,
2003.

V. Mooney III P. Kuacharoen, M. Shalan, “A configurable
hardware scheduler for real-time systems”, in Engineering
of Reconfigurable Systems and Algorithms, Las Vegas - USA,
2003, pp. 96-101.

Trenz Electronic, http://www.trenz-electronic.de, Spartan-
IIE Development Platform QOuverview, 2004.



