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Practical Issues on RF Modelling of Multi-rate Nonlinear Systems

Telmo Reis Cunha, José Carlos Pedro

Resumo — Este artige apresenta uma anilise sobre questes
priticas referentes 4 utilizacdo de modelos RF de sistemas nio
lineares que possuem fendmencs em bandas de frequéncia
muite distintas (denominades por sistemas multi-ritmo). Esta
caracteristica dificulta a utilizachio de modelos que
transportam para a banda-base o comportamento do sistema,
sendo aplicados s chamados modelos RF (que nio
consideram qualquer translagio em frequéncia das suas
caracteristicas).

Havendo um interesse cada vez maior na modelacio de
sistemas multi-ritmo, por exemplo, para analisar fenémenos
térmicos em equipamento RF, este artigo aponta alguns
preblemas de ordem pratica na utilizagio de modelos RF,
nomeadamente a quantidade de pardimetros
necessdrios para o modelo, ¢ os elevades tempos de
computacie asseciados. Sao também propostas algumas tinhas
de acgiio para contornar estes problemas.
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Abstract — This paper presents an analysis on practical issues
regarding the use of RF modelling of multi-rate nonlinear
systems. Multi-rate systems are characterized by a frequency
spectrum concentrated on distinct and separated frequency
bands. This characteristic makes impossible the use of base-
band medels (that consider frequency shifting of the system
spectrum), and so, RF modelling is naturally applied.

Noticing the growing inferest on multi-rate system
modelling, for example, to analyse temperature phenomena on
RF equipment, this paper presents some implementation
problems associated to the use of multi-rate RF models,
namely the huge amount of model parameters, and the
associated computation time. Some suggestions to work
around these problems are also presented.

1, INTRODUCTION

The telecommunication society shows, throughout the last
decades, a growing interest on nonlinear behavioural
system modelling, as can be verified by the amount of
published papers on the issue ([1] through [17] is just a
small sample).

The predominant mathematical strategies used in
nonlinear system modelling are: neural networks and
multidimensional polynomial series (Volterra series). In
this paper only the Volterra series approach will be
considered, although the conclusions obtained from the
presented analysis are extendable to the neural network
case, Informatiocn on neural network modelling can be
found in diverse documentation, in which [1§] to [24] are
some reference examples.

Volterra series are used in systems that are only mildly
nonlinear, that is, whose nonlinearities can be
approximated by a low order polynomial expansion around
some quiescent point [8], [10]. [I1]). Fortunately, since
nonlinearity is most of the times an undesirable source of
signal fidelity impairments, many systems encountered in
telecommunications and  instrumentation  fit  that
description. Equation (1) shows the Volterra series
expansion, in its discrete form, of the transfer function of
the system presented in Fig. 1. Notice that the Volterra
series is nothing more than the sum of multidimensional
convolutions between the input signal and the
multidimensional impulse responses (the various n"-order
kernels).
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Both representations — neural networks and Volterra
series — have advantages and disadvantages. For example,
the parameters of a neural network result from a training
procedure performed over the application of a known
excitation sequence to its input. Different parameter sets
can result if different training sequences are used, so their
predictive ability can be compromised if the model input
has some characteristics that fall outside the expected
behaviour they were supposed to have. Volterra series,
similarly to one-dimensional polynomials, have severe
convergence problems when the input exceeds a certain
interval around the quiescent point.

It is not the objective of this paper to analyse theoretical
limitations of such methods, being the reader suggested to
[8]. (10]. [11] for further details on the subject. This article
is more concerned with practical implementation aspects of
noalinear FIR filters when multi-rate behaviour is to be
maodelled.

Taking as an example a power amplifier working at some
RF frequency band, its behaviour is likely to change if the
temperature of its components varies. In many cases, such
behavioural changes are quite noticeable, being worthy to
model. Since temperature variation is clearly a very low
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frequency phenomena, when compared to the RF working
band of the amplifier, this becomes a multi-rate system,
Evidently, there are many other equipment and phenomena
that present this multi-rate characteristic.

I multi-rate information is to be considered by the model,
it makes no sense ic use a low-pass equivalent model,
otherwise part of the information would be lost. So, the
solution adopted by several authors is to model the system
without any frequency shifting scheme, resulting in the so
called RF model.

Since the objective of these models is to simulate the
system behavicur to a broad class of inputs, the parameters
required for its characterization are the time-domain
parameters; the impulse response (first-order kernel) in the
case of a linear system, or the multidimensional kernels of
the Volterra series (1) in the nonlinear case.

This paper shows that the number of parameters of the
general time-domain Volterra series of a multi-rate system
is huge, which can compromise the practical use of such
technique if some restricting strategies are not applied. A
large set of parameters means, on one hand, that the system
identification process is very hard and, on the other hand,
the computation time during simulation can rapidly become
unbearable.

The following Section demonstrates that, for a multi-rate
linear system (and also for the nonlinear case), the
respective impulse response has a higher set of parameters
than the frequency-demain representation, although both
contain the same information. Some system examples are
given to illustrate the inefficiency of these models.

The third Section of this paper suggests a strategy to avoid
having such a huge number of parameters to deal with. This
is achieved by restricting the space of non-zero parameters,
using a predefined model topology. An example with first
and third-order kernels will be thoroughly analysed.

II. TIME DOMAIN REPRESENTATION OF MULTI-RATE
SYSTEMS

it is known that the time domain representation of a linear
system is the system impulse response, which is the inverse
Fourier transform of the frequency-domain representation.
In the present case, the Discrete Fourier Transform (DFT)
will be considered.

Let us analyse the linear system whose frequency-domain
representation is given in Fig. 2 {only the amplitude is
depicted). Applying the inverse DFT results in the system
impulse response shown in Fig. 3.

From the Fourier transform properties, the following
remarks are taken:

+ the sampling period At of A() is the inverse of twice
the maximum frequency of H(jw);

+ the period T of A(¢) is the inverse of Af, which is
equivalent to saying that 7 can be small if H{jw) is
smooth.
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Fig. 2 - Frequency domain representation of a lincar system,
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Fig. 3 - Time domain representation of the system of fig.2,

What is immediately observed in Fig. 2 and Fig. 3 is that
the frequency-domain representation requires only the
knowledge of |1 non-zerc parameters while the time
domain representation requires at least 36! But both should
represent the same information, so why is the number of
non-zero parameters so different?

Let us lock at the information that each representation
contains. As is known, the envelope of k() is nothing but
the inverse DFT of H(jw) when it is shifted to base-band
(through a band-pass sampling process [25], [26], for
example). Then, A#(¢) can be formed by filling the inside of
the envelope with a cosine wave at the centre frequency £
of H(jw) (cbviously, the cosine wave is multiplied by the
envelope), and sampled with period At

So, the information of each representation can be
described by:

Frequency Domain:
« Curve parameterization of H(jw) (by means of a
polynomial, for example) — » parameters;
+ Centre frequency f, — | parameter;
* Bandwidth Bw — | parameter;
+ Frequency spacing Af — 1 parameter;
* All values outside [ - p/2. s + B/2] are zero (this
statement is information tco);
* H{jw) has even symmetry on the amplitude and odd
symmetry on the phase.
Time Domain:



+ Curve parameterization of the envelope of Az} (by
means of a polynomial, for example) — »n
parameters;

* Frequency f; of the cosine wave multiplying the
envelope — 1 parameter;

* Sampling period At — | parameter;

+ Period T of &(t) — 1 parameter;

* A1) is real and has even symmeiry,

The similarities are evident, and the only difference is that
A() has no statement saying that a certain number of its
values are zero! This means that the samples A(r,) can be
nen-zero, for all ¢ in the period T!

This result, as can be verified through equation (2), is an
evident consequence of the definition of the inverse DFT.

wt)= S Hiw) e )

P

On systems like the one presented in Fig. 2, or even in
systems having fundamental and harmonic bands, some
schemes are usually implemented to avoid handling of a
huge number of time domain parameters. As shown in Fig.
4, a sub-sampling {a procedure called band-pass sampling)
followed by a proper low pass filtering can concentrate all
the non-zero information of H{jw) at low frequencies,
which paturally preduces an impulse response with fewer
parameters than the original H{jw) (Ar is wider and 7T
remains the same).
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Fig. 4 - Band-pass sampling example. followed by low-pass filtering.

If the system has non-negligible multi-rate characteristics
where the location of the distinct bands does not follow a
general relationship (such as with the harmonic bands), it
can be complicated to apply a frequency down-shifting
scheme. Again, if multi-rate characteristics are to be
preserved by the model, the low-pass equivalent model is
not a valid option. A solution adopted by several authors is
simply to use the RF model, where no frequency shift is
considered. A typical situation is in the analysis of
temperature effects (very low frequency) on systems that
operate at much higher frequencies,
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Take, for example, an equipment working at VHF, say
with £=100MHz and a bandwidth of 100kHz, presenting a
smooth curve that allows its parameterization with a
frequency spacing of Af=5kHz. The inverse DFT of this
band has Ar=5ns and 7=200us, which results in a top limit
of 40,000 parameters t¢ be used in the time-domain
simulatien. This number is already huge, but if some low
frequency phenomena is also to be considered in the
model, say at base-band with cut-off frequency at 2kHz,
and with a pattern that requires a frequency spacing of
20Hz to be properly represented, then the total system
impulse response would have 7=30ms, keeping the
previous sampling period Ar=Sns. The number of time
domain parameters is then 10,000,000 (250 times more)!
Fig. 5 illustrates this through an example of a system that
clearly has slow and fast time scale characteristics.
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Fig. 5 - Example of a multi-rate system.

For a general multi-rate RF linear system, the number of
time domain parameters is given by (3). It is equivalent to
represent the full frequency span (from /.. 10 /i) with
the minimum frequency spacing Af.

To 2 3

Number of Parameters = =

At nn A‘fmm

Let us now consider the nonlinear case, restricting the
nonlinearities up to the third-order kemel. The system
model is given by equation (4).

M= fh] (rx(r-7}+
(4)

£ mn. o)) (e~ 1)+

]

-l H-1
+3 ) Y k(R T X - ) X T, x(E -1,

2l T2 ny -

[t is evident that /(1) is the impulse response of the linear
approximation of the system, to which corresponds H,(jco)
in the frequency domain, after applying the DFT.
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The second-order kernel As(z;,72) has a 2D domain, and
As(7),12,73) a 3D domain. They also have the respective
frequency-domain  representations  Hi(jw,jw.) and
Hy(jeo jersjws)  which  result  from  applying the
multidimensional DFT [27].

Looking into the properties of the multidimensional DFT,
it is observed that it preserves the same characteristics of
the DFT, except that it is extended to 2 higher dimension
domain, So, the problem of having a huge number of time
domain parameters remains, and it gets even worse due to
the domain dimension — that is, if (.} has a memory span
of ¥ elements on both 7, and 1 axes, it contains N
parameters, and if M is the memory span of 45(.) then it has
M’ time domain parameters!

If (4} is used as a RF model of a multi-rate nonlinear
system, then it is necessary to constrain de domain of each
kernel so that it gets highly reduced. Otherwise, there will
be such a huge number of non-zere parameters that:

+ the parameter identification process will probably
be an impassible task;

» the amount of computer memory required to store
the model is huge;

* the computation time during simulation is
tremendous, even in high performance computers.

1. RESTRICTING THE NUMBER OF MODEL PARAMELTERS

Fig. 5 already shows an example of a model constraint:
the frequency domain representation has two clusters of
non-zero parameters; all others are null. But, to what
correspond these clusters in the respective time domain
representation?

Fig. 6 shows the inverse DFT of both base-band and RF
clusters. Since the responses of both low-pass and band-
pass filters are supposed to interact, v(f) is sampled at the
same sampling frequency as u(¢), so w{1) is represented with
redundancy (we are considering that the model topology of
Fig. 3 is not known a prieri). This means that v(r) can be
approximated by a step function as shown in Fig. 7. In
other words, v(f) can be represented by 200 distinct
parameters where cach one is then repeated 50,000
consecutive  times.  This  reduces, undoubtedly, the
parameter identification burden, but in terms of simulation
it still requires the cenvolution of all the 10 Msamples with
the filters input signal.

This simulation process can also be simplified by
grouping the input signal in 200 moving sums, each of
which is multiplied by the respective parameter of v(¢} 1o
perform the convolution. At each time instant, each moving
sum only needs to add a new sample and subtract the tail
sample, to the moving sum result of the previous epoch,

But it is also necessary to extract and use in simulation the
40,000 parameters of u(s)! If U{jjw) can have a smoother
pattern then A/ can be higher, reducing the number of
parameters in u(t).

This constraint procedure, with the creation of clusters in
the frequency-domain representation, can be extended to
the nonlincar case. It is simply required to create n-
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dimensional clusters in the H,(jo,,... ju,) frequency
domain kernels. But, contrary to the linear case, this is not
an intuitive procedure in practice since multi-frequency
signals are now being considered.
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Fig. 8 - Examplc of a model topology.

Another way of restricting the information contained in a
system is 1o use a model topology. Saying that a certain
system fits the description of some model topology is. in
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fact, an imposition on the information of the system that
will be represented by that model. An example of what is
called behavioural modelling with a priori knowledge of
the system.

Let us consider an example of a model topology for a
nonlinear system, given by Fig, 8.

This topology presents two main paths — path A models
the linear behaviour of the system, which corresponds to
the first-order kernel of (1}; path B models the nonlinear
characteristic of the system, which, in this case, is
concentrated on the third-order kernel (its output is a
double product of the input).

An immediate abservation is that this topology restricts its
usefulness to systems whose kernel orders other than first
and third only have non-significant information.
Nevertheless, it is known that several nonlinear interesting
phenomena, in telecommunication systems and other areas,
have most of their relevant information in those two
kernels.

Notice that this topology can model multi-rate systems, as
will be shown later, where low frequency components can
influence the behaviour at in-band frequencies.

This model is then defined by:
» the model topology of Fig. 8;
+ the N parameters of the band-pass linear filter of
branches A and B - g(¢);
* the M parameters of the low-pass linear filter of
branch B — A1).

So, given this topology, it should only be required N+M
parameters to model a system (and to simulate it),

Let us analyse the time-domain response of such topology,
given a general input signal x(¢). Equation (5) shows the
output of path A, and equation (6) the output of path B.

V=3 g xte—i ©)

N-1M-|

yu(f}=zzg(f} S X=X (- ) (6)

p=l y-0

By matching the terms of equation (1) with equation {6) it
becomes clear that (6) is the third-order kemel of a
Volterra series expansion. Moreover, (7) gives a general
definition of the third-order kernel that fits (6), where a
restriction on the domain of the kemel is evident, as
depicted in Fig, 9,
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Fig. & - Domain of the ha time-domain kernel.

Notice that, for symmetry purposes, the term g()f{j} was
distributed evenly by the three admissible planes. Other
distribution would also verify the matching with (6) as long
as the sum of the three contributions would equal 1.

Assuming no particular specification to g(#) and A7), it is
obvious from (7) that the /(1),7,.7;) kernel is formed by a
bi-dimensional matrix that is copied into the three planes
represented in Fig. 9. Taking, for example, g(f)=u(f) of Fig.
6, and fr)=w(t)} depicted in Fig. 7, this bi-dimensional
matrix A, whose element (/) is given by g(i)f(j), is plotted
in Fig. 10. It is shawn that each row equals the function g{f)
multiplied by a constant that changes only every 50,000
columns.

Similarly to what was exposed regarding the system of
Fig. 5, the clustered information {g(z) and £#) occupy two
distinct and very separated frequency bands) is visible in
the pattern of the matrix of Fig. 10. Again, it requires only
N+M parameters to be determined instead of NxM
parameters (or even instead of the full cube of the f;(.)
domain}.

Continuing with the analysis in the time-domain, it is easy
to observe that with the muliiple impulse input
identification method [8}, the N+ M parameters of a system
can be easily extracted without having to sweep the entire
A matrix. In more general terms, if a certain model
topology can be applied, then a specific and dedicated
identification process can be used to extract the maodel
parameters.
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Fig. 10 - Bi-dimensienal matrix A (only the upper envelope of w(t) was

considered).

In terms of simulation, two strategies are suggested to
avoid making a large number of multiplications per epoch.
The first is to implement an algorithmic scheme similar to
the moving sum presented above. The second strategy,
which looks more attractive, is to take advantage of the
model topology. In fact, since the parameters of g(f) and
A1) can be identified separately, each branch of Fig. 8 can
be evaluated independently, being the results of branch B
and C multiplied and added to the result of branch A
(moreover, the result of branch A is equal to the one of
branch B).

Analysing, now, the topology of Fig. 8 in the frequency
domain, it becomes again evident the restrictions that this
topology imposes on the H;(.} kernel.

Using the harmonic input method [8], consider a three-
tone input to path B, as shown in (8).

X1y =™ 4o 4 o ®)

After proceeding with the math analysis of path B, and
noticing that the final product is processed as a convolution
in the frequency domain, expression (9) is reached. Then,
the fh(jw jwsjw;) frequency-domain kernel is given by
(10}, according to the harmonic input method.
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If g(#) is a band-pass fiiter and ) a low-pass filter, like
those defined in Fig. 5, then H;(jw ) jewsjros) has non-zero
values on the coloured volumes depicted in Fig. 11. This
evidently shows the restrictions that this topology imposes
on the domain of H(.).
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Fig. 11 - Domain of the H3 frequency-domain kernel.

VI. CONCLUSIONS

When multi-rate phenomena are being studied in a
nonlinear {or even on a linear) system, some care must be
taken when an RF model of the system is considered and
implemented by means of a nonlinear FIR filter. As shown
in this paper, the number of model parameters easily grows
to incredible values that obviate any system identification
procedure, and deeply compromises the computation time
required to simulate the system behaviour.

To prevent that, some strategy must be used to strongly
restrict the domain of the nonlinear FIR filter kemnels. A
suggested approach is to consider a specific a priori
topology for the model. The model topology is, by itself, a
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specification of how the system relevant information is (or
should be) distributed. A proper model topology can
largely reduce de number of parameters necessary to model
the system, and also to significantly reduce the epoch-to-~
epoch simulation time. Dedicated parameter extraction
procedures can also be specified to ease the identification
process required to determine the parameter values that
best model a certain system (according to that topology).
However, to guarantee the desired model predictive
capabilities, when using a determined tepalogy it is
necessary to verify that it can, in fact, represent the system
behaviour.

REFERENCES

[1] V. Rizzoli and A. Neri, “State of the Art and Present Trends in
Nonlincar Microwave CAID) Techniques™, IEEE Trans. on
Microwave Theory and Tech., Yol. MTT-36, No. 2, pp.343-365.
1988.

[2] M. S, Nakhla and J. Vlach, “A Piccewise Harmonic Balance
Technique for Determination of Periodic Response of Nonlinear
Systems”, [EEFE Trans, on Circuits and Systems. Vol CAS-23, No.
2, pp.83-51, 1676,

[3] V. Rizeoli, A, Neri and F. Mastri, “A Modulation-Oriented Piccewise
Harmonic Balange Technique Suitable for Transicnt Analysis and
Digitally  Modulated  Analysis™, 26th  Furopean  Microwave
Conference Proc., pp.346-550, Praguc, 1996,

{31J. C. Pedro and N. B. Carvalho. “Simulation of RF Circuits Driven by
Modulated Sianals Without Bandwidth Constraints™, 2002 IEEE
Internaticnal Microwave Symposium Dig., Seattie, 2002,

[5] D Sharrit, “New Method of Analysis of Communication Systems™,
IEET MTT-S Nonlinear CAD Workshop, 1996,

16] .. Chua, "Nonlinear Circuits”™, IEEE Trans. on Circuits and Sysicms,
Vol. CAS-31, No. 1, pp.69-87, 1984

[7] ¥. Mathews and G. Sicuranea, Polynomial Signal Processing, John
Wiley & Sons, Inc.. New York, 2004,

[R] J. €. Pedre and N. B. Carvalho. Intermodulation Distortion in
Microwave and Wireless Circuits, Artech House, Norwood, 2003.

[5] T. }. Aprille and T. N. Trick, “Steady-State Analysis of Nonlincar
Circuits With Periodic Inputs”, Procsedings of the IEEE, Vol. 60,
No.l, pp.108-114. 1972,

[10] 5. A Maas, Nonlinear Microwave Circuits, Artech House, Norwood.
MA, 1988,

[11] M. Schetzen. The Volterra and Wiener Theories of Nonlinear
Systems, John Wiley & Sons, New York. 1980,

[12] N. B. €Carvaiho and J. C. Pedro, “Multi-tone Frequency Domain
Stmulation of Nonlingar Circuits in Large and Small Signal
Regimes”, [EEE Trans. on Microwave Theory and Tech., Vol
MTT-46, No. 12, pp.2016-2024, 1998,

[13] C. R. Chang and M. B. Steer, “Trequency-Domain Nonlinear

Microwave Circuit simulation Using the Arithmetic Operator

REVISTA DO DETUA, VOL. 4, N7 4, MARCO 2003

Method™, [EEE Trans. on Microwave Theory and Tech.. Val
MTT-38, No. 8, pp. 1139-1143, 1990,

[14] V. Rizzoli, F. Mastri, E. Turini and A. Costanzo, “A Knvlov-
Subspace Technique For The Global Stability Analyvsis of Large
Nonlinear  Microwave Circuits™, 2001 IEEE  International
Microwave Symposium Dig., pp.433-438, 2001

(15] N. B. Carvalho and J. C. Pedro, “Analysis and Mcasurement of
Multi-tone Intermodulation Distortion of Microwave Frequency
Converters”, 2001 IEFE International Microwave Symposium
[Yig.. pp. 1671-1674, 2001,

[t6] [ Hente and R. H. Jansen, “Frequency Domain Continuation
Method for the Analysis and Stability [nvestigation of Nonlinear
Microwave Cireuits”, IEE Proceedings-t1 Microwaves Antennas
and Propagation, Vol. 133, No. 5, pp. 351-342, 1986

[17} P. 1. Rodrigues, Computer Aided Analysis of Nonlincar Microwave
Circuits, Artech House, Inc., Norwood, MA. 1998,

[18] @ I Zhang and K. C. Gupta, Newral Networks for RF and
Microwave Design, Artech House, Norwood. 2000,

[19] G. Cybenko, “Approximation by Superpositions of a Sigmoidal
Function”, Marh. Centrol Sigrals Systems. vol. 2, pp303-314,
1989.

[20] K. Huomik, M. Stinchcombe and H. White, "Multilaver Feedforward
Networks are Universal Approximators”, Newral Nenworks, vol. 2,
pp.359-366, 1989,

[21] Y. Fang. M. C. Yagoub, F. Wang and . J. Zhanz, “A New
Macromodeling Approach for Nonlinear Microwave Circuits
Rased on Recurrent Neural Networks™, JEEE Trans. on Microwave
Theory and Tech., vol. MTT-48, pp.2335-2344, Dec. 2000

{221 D. Schreurs. N. Tufillaro, J. Wood, I Usikov. L. Barford and 0. E.
Root, “Development of Time Domain Behavioural Non-Lincar
Meodels for Microwave Devices and [Cs from Vectorial Large-
Signal Measurements and Simulations™, Exrep. Gallium Arsenide
and other Semiconductors Applications Symp. Dig. | pp.236-239,
Oct. 2000.

[23] V. Rizzoli. A. Neri, I3, Masotti and A. Lipparini, ~A New Family of
Neural Network-Based Bidirectional and Dispersive Behavioral
Models for Nenlinear RF/Microwave Subsystems™, fnt. Jour. of
RE and Microwave CAE, vol. 12, pp.531-70, 2062

241 1. Xu, M. Yagoub. R. Ding and Q. J. zZhang, “Neural-Based
Dynamic Modeling of Nonlinear Microwave Circuits™, FEEE
Trans. on Microwave Theory and Tech., vol. MTT-30, pp.2769-
2780. Dec. 2002

{251 F. H. Marris, Multicate Signal Processing for Communication
Systems. Prentice Hall PTR, 2004,

[26] A Oppenheim and R. Schafer, Discrete-Time Signal Processing,
Prentice Hall. Englewood Clifts, 1995,

{27] R. Tolimieri, M. An and C. Lu, Mathematics of Multidimensional

Fourier Transform Algorithms. Springer Verlag, New York, 1997,





