Bevista Do DETUA, Vo, 40 N7 4 Margo 2005

403

Using High-level Languages for Hardware Modeling and
Implementation

Nelson Ferreira, Filipe Teixeira,

Nuno Lau, Arnaldo Oliveira, Orlando Moreira

Abstract - This paper describes the use of high-
level languages in hardware modeling and imple-
mentation. The purpose of the article is to describe
a methodology that can be used in the design of a
new system. First we will describe the main phases
of hardware design flow, namely: modeling, vali-
dation, synthesis, implementation, prototyping and
testing. We will also give a brief overview of some
high-level languages. Afterwards, we will propose
a methodology, where a new system is designed
using successively a subset of C+4, SystemC and
VHDL using some guidelines to provide a smooth
transition between languages and levels of abstrac-
tion. We will present a case study where an UART
has been designed using this methodology. We will
report the advantages and disadvantages of each
language. This methodology provided a clear re-
finement flow from a functional sequential model
to a RTL synthesizable model, although it created
some consistency problems. The UART was imple-
mented together with a MIPS32 processor within
a FPGA for prototyping and testing purposes.

Resumo — Este artigo descreve a utilizagao de
linguagens de alto nivel na modelagao e imple-
mentagao de hardware. O objectivo deste artigo é
apresentar uma metodologia que pode ser usada no
projecto de novos modelos de sistemas. Primeiro
iremos descrever as principais fases no Huxo de
projecto de hardware, nomeadamente: modelagao,
validagao, sintese, implementagio, prototipagem e
teste. Também iremos apresentar uma breve des-
crigio de algumas linguagem de alto nivel. Poste-
riormente, iremos propor uma metodologia usando
algumas regras gque permitem obter uma transicao
suave entre diferentes linguagens e niveis de abs-
tracgio, quando um sistema é modelado usando
sequencialmente um subconjunto das linguagens
C++, SystemC e VHDL nas diferentes fases do pro-
Jecto. Sera apresentado um case study do projecto
de uma UART utilizando a metodologia proposta.
Iremos expor as vantagens e desvantagens de cada
linguagem. Esta metodologia permitiu obter uma
passagem suave do modelo funcional até ao modclo
RTL sintetizével, no entanto cricu alguns proble-
mas de inconsisténcia. A UART foi implementada
para teste e propotipagem conjuntamente com um
processador MIPS32,

1

Keywords — System Specification, Hardware De-
sign Flow, Modeling, Synthesis, VHDL, SystemC,
FPGA Prototyping, UART Design

Palavras chave — Especificagao de um sistema,
Fluxo de projecto de hardware, Modelagao, Sintese,
VHDL, SystemC, Prototipagem em FPGA, Pro-
jecto de uma UART

I. INTRODUCTION

The first design stage of a digital svstem is the speci-
fication of its global functionality, the definition of the
main interfaces and all other relevant characteristics
and constraints. When designing a trivial system, nat-
ural languages are often used to build the respective
specification. However, with the increase of system
coimplexity. formal specifications are preferred because
they can be verified. analyzed, simulated and synthe-
sized with Computer Aided Design (CAD) tools.
Ideally. for complex systems, the specification must
be the first step of a well defined desisn methodol-
ogy. Models can be produced in a variety of high-level
languages. such as C based languages or Hardware De-
seription Languages (HDLs). Software engineers prefer
software programming languages that provide a great
level of abstraction. On the other hand, hardware engi-
neers prefer HDLs, that provide adequate abstractions
for hardware modeling. Furthermore when designing
a svstem there is always the question of what should
be implemented in software and what should be f-
plemented in hardware. The ideal would be a tool
that could, from a deseription in svstem level model-
ing language, separate what to implement in software
and what to imnplement in hardware. Currently such
tools are relatively inunature. not widely available and
mainly application domain specific [1].

After creating a model the developer must consider
the validation, the svnthesis, the implementation. the
prototyping and finally the tests,

There are many methods to specify a digital systen,
namely boolean equations, schematic diagrams, graph-
ical languages, HDLs, and systemn level modeling lan-
guages, depending ou the abstraction level. We pro-
pose in this paper a methodology that starts by moclel-
ing the system i a C++ subset, and refines the model
using SystemC 2] and VHDL {3]. This work has the
following objectives:

EPhilips Resvoarel Laboratories - Eindboven

a0

e Understand the suitability of different languages
to each design phase.

¢ Establish the guidelines required to provide a
smooth transition between different phases in the
desten flow using different languages.

¢ Create a methodology that implements those
guidelines,

e Evaluare the methodology using a real world ex-
aniple,

‘This paper contains four more sections. In section 11
we explain the major steps in hardware developinent
detailing the languages and the requiremoents of each
one. In section III we present the proposed method-
ology. Section IV presents the development of an
UART as a case study of the proposed methodology
and present the results and the discussion. Finallv. in
section ¥V we draw the conelusions.

II. HARDWARE DEVELOPMENT
A, Modeling

The result of spectfication i a model, ie., a rep-
resentation that shows the relevant characteristies
without the associated details, It must incorporate
all functional characteristics of the svstem without
considering any implementation details such as spe-
cific components used or particular hardware/software
partitions of the system implementation. Functional
madels are often used, at carly design stages, to
validatre the algorithm that is going to be used in the
systenl. The models can be produced in a variety
of high-level languages, but in this casc we used
languages based on C and HDLs. In the section 11-A.1
we describe some of these languages.

A.f High-tevel Languages

C based languages

The C++ language is used in complex systenws to
write an executable specification and to develop soft-
ware. The great advantage of the vse of C--+ for
hardware modeling comes from its wide adoption and
large programmers basc. However, C++, in its origi-
nal form, has some limitations to be used for hardware
specification namely:

» Lack of appropriate data types;

» Absence of concurrency, reactivity and notion
time:

o Great degree of freedom.

These can be considered the disadvantazes of the use
of C++ for hardware specification.

The SystemC' 2] language was created to overcome
the limitations of C++ in hardware modeling. Sys-
tem(is a set of class librarles implemented on top of
C-++. that supports hardware modeling concepts like
concurrency, reactivity and latency. SystemC provides
constructs that describe concepts that are familiar to
hardware desighers such as signals, modules and povts.

REVIZTA O DETUA Vor, 0 N7 4 AMAargo 2005

In other words with SystemC we can define hardware
and sofrware components. SystemC also provides a
simulation kernel that allows the designer to simulate
the executahble specification using just an ordinary
C+=+ compiler. With SystemC the stop-by-step
refinement. of a system design down to the RTL for
synthesis is simplified.

Hardware Deseription Languages

VHDL [$ is a hardware description language where
we can describe the model of an hardware svsten.
The goal of VHDL ereators was to create an unam-
bigious, portable and general language. However, be-
cause VHDL is a strongly typed langnage. the syntax of
VHDL becowes verbose (e.g. additional code is often
needed to explicitly couvert one duta type to another).
On the other hand, the strongly type feature can be
beneficial to detect errors at early design stages,

B. Validation

The validation of a model can be made in two differ-
ent ways: formal verification and validation through
simulation. In the design of a system the validation
st be executed at several stages in order to validate
the results obtalned in the stages that precode it and
to detect crrors as soon as possible.

The validation through simnlation is the most 1sed
wlien it is intended to make a validation of a system.
The objective is to execute a logical verification aid
make an analysis of the performance. Generally, the
use of restbenches is convenient to execute a logical
verification. They apply stimulus to the svstein in-
pnts. This type of verification has the disadvantage of
being nsufficient for complex systems. because it isn't
an exhaustive method. In most complex projects it is
impossible for test vectors to cover all the cases.

The formal verification is based ou the use of mathe-
matical methods to verify the functionality of the sys-
tem. It has the advautage of not needing test vectors
and supplics an exhausting verification. It can be used
as a complement of the previous method.

C. Synthesis and ITmplementation

The synthesis is the process used to obtain. from the
behaviorial description. a structural description in a
lower abstraction level. Generally the svnthesis is the
partition in modules of the belavioral description. De-
pending on the abstraction level we can have different
kinds of synthesis, such as system synthesis and logie
synthesis. With system synthesis it is possible to de-
compose an abstract specification of the system in a
softwarce implementation and a hardware implementa-
tion. One objective of the svstem synthesis can be the
reuse of predefined components, e.g., Intellectual Prop-
erty blocks. Logic svnthesis generates the circuit that
implements & given logic specification, e.g.. generate
circuits with finite state machines through connection
of flip-flops. Synthesis can be realized manually, or
automatically using CAD tools, although the manual

REvisTa po DETUA. VoL, 4. N9 4. Margo 2005

process is slow and error prone. The final result of syu-
tliesis is a cirenit described in a4 the form of a netlist,

Finally, the implementation is the process of map-
ping. placement and routing. Aapping is the adap-
tation of our netlist to the components available in a
given technology. Placement is the positioning of each
compoenent in the available arca of the implementa-
tion. Routing determines the path of the signals that
connect the component interfaces.

D. Prototyping and Testing

After implementation of the design the developer
cowes across with the necessity to foresee the real be-
havior of its design.

Prototyping consists in the creation of a functioning
version of the final system without some of the deploy-
ment characteristics. Soime constraints related to area,
cost and power consumption may be relaxed in this
phase.

IIT. Proprosen METHODOLOGY

Our methodology proposes the guidelines required to
provide a smooth transition from behavioral abstrac-
tion level to RTL synthetisable leve] using different lan-
guages at different stages. It uses C++ to create the
executable specification, then SystemC to create the
hardware/software models and finally VHDL to obtain
a svuthetisable model. C4+4 was chosen due to its en-
capsulation capabilities and because it is the SystemC
base language. In figure 1 we present a dingram with
the transition between the different stages.

We start by defining the specification of the system,
i.e, the interfaces and the behavior. To guarantee a
smooth transition, we propose some coding guidelines,
thiat must be taken into account while building the
functional nmodel:

» Each coniponent must be implemented as a C++
class.

e Use fow data types and avoid the use of pointers.

o Hardware ports are modeled as class constructor
parameters and port bindings arc implemented us-
ing external shared variables.

¢ Asynchronous and synchronous events are hmple-
mented as independent Tunctions.

* Becanse of the lack of concwrrency support, the
order of function invecation must be considercd,
for a correct simulation progress.

If these guidelines are followed the transition to Sys-

temC is smooth and with very little changes from the
C++ model. The funetions used in the C++4 model
to simulate synelironous ad asynchronous events are
translated to signals of SystemnC method sensitivity
list. The use of HDLs at the (inal stage of develop-
ment is justified by the fact that the svaothesis tools
are more developed for these languages, the syntheti-
sable language subset is well documented and for its
stroug checking capabilities.

501

1
Starl| 0 1 2 3 4 5 [7 |Panty| Stop

0

Figure 2 - Fraoue forinay

St,atus - — frmEr parkr avrEr rxRdy Ry =Ept
Register
St 7 BitD
Coqtrol cori | coes) | cors) | cord) fpadtyoddl parityen | stopBits | dataBis
Register

Bit ¥ BitD

Figure 3 - UART Control and Siatus Registers

The innovation of this methodology isn't the succes-
sive use of C++, SystemC and VHDL at the different
design stages [[5 but it is the application of the
guidelines that provide a smooth transition from he-
havieral abstraction level to hardware syuthesis.

IV. A REAL WORLD EXAMPLE
A. The R5232 Protocol

The R5232 Protocol is an asyuchronous serial com-
munication (6] method used in point to point inter-
faces. The protocol describes a communication method
where transactionus of information are made character
by character. In an asynclironous communication link
there is no separate clock line, thus the data must
he syvnchronized using others methods, such as special
svnchronization bits within the data frame,

Another important consideration is the transmission
baud rate. The transmitter and receiver must be pro-
grammed to use the same bit frequency.

Figure 2 shows the frame in RS232 Protocol composed
by o Start Bit, Datoa Bits, Parity Bit and Stop Bits.
The Start Bif is used for synchronization purposes. Be-
canse the line s in marking state {on state) when idle,
the Start Bit (off state) is easily recognized by the re-
ceiver. The Duate Bits are sent immediately following
the Start Bit and the least significant bit is always the
first bit sent. The Parity Bit exists for detocting er-
rors. The parity can be calculated in Even parity or in
Odd parity. The Stop Bits identify the end of a data
frame, in other words we can say that the stop bit is the
minimal interval between two consecutive characters.

B. UART Interface

An UART is a hardware component used to hmple-
ment R5232 protocol. OQur implementation provides
a synchronous memory-like bus interface for applica-
tions that communicate over R5232. The UART has
a control register where the transmission parameters
can be defined and a status register where somce Hags
are stored. Besides the control and the status register
the UART also has two data registers: a transmission
buffer and a reception buffer. Al registers are eight
bits wide. The status register {see figure 3) has infor-
mation about the status of transmission and reception
buffers and also if errors have been detected. As we
can see in figure 3 the status register is composed by:

2 REVIsTA DO DETUA, VoL, 4, N7 4 MaRrQo 2003

—»{_ C++ Modeling :sing guidelines _)
C++ Mode! |
(Simulation)
NO
. QK
YES
- e ¥
a . ™
- Manual convertion to SystemC
AN . "
SysternC Modet ‘
(Simulation ;\‘f
MO
oK
YES

. !

- —(SystemC adjustments to Cocentric Compiler) —h-(Manual convertion to VHDL)
{ Cocentric Compiler _:\} ‘ Manual VHDL Modeat |
i ;\utomatic VHOL Model_‘ Q Simut\tion D
-
L Simulation } NO OK
YES
NO
OK C Synthesis using ISE 6.2i from Xiiinx j‘

YES l

(Synthesis using ISE 8.2i from Xilinx

L

FPGA Implementation

FPGA Implementaticn

Figure 1 - Methodology diagram
JrmEr - is set to 717 to indicate an invalid Stop Bits

fleld due to noise, synchronization errors or con-
figuration mismatches.

no character in the transmitting shift register.

The control register (see figure 3) is a programable
register where the user can define some parameters

porEr - this bit is set to "1” to indicate that there is
a parity error,

ovrEr — this bit is set to 17 when new data has been
received and the previous data has not been read
from reception buffer.

reRdy - this bit is set to 717 to indicate that reception
buffer has received a new character.

feRdy - this bit isset to "1 to indicate that the trans
mission buffer is ready to accept u new character.

fxEpt - this bit is set to 17 to indicate that there is

such as:

CDF these 4 bits define the value of the clock di-
vider.

parityOdd - define the parity {odd or even).

parityEn - determines the use (or not) of a parity bit.

stopBits - defines the number of stop bits. The bit set
to "1" indicates 2 stop bits, otherwise 1 stop bit
is used.

dateBits - defines the nunber of data bits to transmit.
The bit set to "17 indicates 8 data bits, otherwise

REvisTa po DETUA. VoL, 4. N7 40 ALARGo 2005

[chipSel

statReg

B
coreClk »
ioClk —» ctriReg

reset —

UART
enable —»

o | wite —
Q
g| come T
£ | dataQut — RXD | &
S /, e
£ | datain ¢> ™D g
© [starReg_|

Tigure 4 - UART Schematic

7 data bits are used.

In figure 4, we can sce the ports that provide the inter-
face with CPU, and the interface with the RS232 line.
The dataln and dataQOut are eight bits wide buses, the
remaining ports are used for control purposes. The
values at each port are shown in table I. The interface
with protocol is made with the lines RAD and TXD.

. UART Specification

Before starting to build any model we have to define
precisely what we pretend to obtain in the end. With
this in mind we defined the specifications of our model,
these specifications are done without the details of the
implementation. We only describe what we pretend to
obtain.

With this in mind we chosed to have two clock sig-
nals, one clock implements the svnchronous interface
between the CPU and the UART {i0Clk), the second
one is used to obtain the baud rates necessary for trans-
tission and reception using a clock divider (coreClk).

To set the baud rates we use the four MSE of control
register. In practise we can define values between 16
and 192 for clock divider then the baud rates varied
between 9600 and 115200 for a frequency of 1.8437Thz
to coreClh.

The UARL must be able to transmit and receive at
the same time, i.e., full duplex communication must be
provided.

Cof Cpr
.2 Modeling

The modeling in T4+ consisted in the construction of
a class (figure 5) that allowed us to obtain a functional
model of the UART.

The data types used to specify the variables were bool
for single bit variables and unsigned char for eight
bit variables. Regarding interface ports access, the
shared variables that model the ports are passed as ar-
guments to the class constructors (figure 5). The same
shared variable can be used to connect multiple com-
ponents, e.g.. these variables may be shared between
the CPU and the UART or between two UARTs. In

UART

+UART(enable, write, config, dataln, dataQut, rxd, td)(}
+~UART()

+Reset() : void

+ioClk() : void

+coreClk(} : void

#CPUInterface() : void

#ClkDivider() : void

#TxStateMachineg() : void

#SetTX0() : void

#RxStateMachine() : void

Figure 5 - CLASS UART

ioClk() » CPUlnterface{)
e _— Se[TXDO
------ - RxStateMachine()
CoreClk()
_ S » TxStateMachineO
M ClkDivider()

Figure 6 - Functions dependency

the definition of the constructor we declare the param-
cters that are used to siinulate the input ports of the
UART interface as const. this way functions inside
the class eannot set values to these parameters. Be-
cause C-+ -+ doesn’t support the notion of time, we had
to inplement two functions, ioClk{) and coreClk().
that simulate the synchrouous events generated by the
clocks, In hardware the functions that are triggered
by ait event are executed in parallel and in C++ they
are executed sequentially, hence we had to take some
cautions in the order of invoking the functions that
implement the functionality of the design.

The functions that implement both clocks where sub-
divided in others functions as shown in figure 6, these
funetions are responsible for the implementation of the
UART internal operations.

Function CPUlnterface(} implements the syn-
chronous communication between the CPU and the
UART.

D

Hevista po DETUA, Voo L NT 4. Manpgo 2005

I I

Operation

| Signals [I Initialization]| No Operation

[WR Ctil Reg] RD Stat Reg || WR Ix Buf | RD Rx Bl |

| reset 1 0 0 0 0 0 0
chipSel X 0 b 1 1 1 1
enable X X 0 1 1 i 1
config X X X 1 1 0 0
write X X X 1 0 1 0
dataln XNAXNNNNX NXNXXNXX || XXXXNXNX otrl reg val XXXXXXEX char to tx HAXXNANXNK

dataQut Z2ZEILLE ZLZRRITY LLLLZITE PLLLILLE stat rog val ZL7LLZTT. rx char

Table 1
FPorT VALLES Folt EACH UART INTERFACE, QPERATION

void UART::CPUlnterface(} {
if ({m.enable == 1) && (m_chipSel == 1)} {
if {m_config == ¢} {
if {m_write == 1){
m_txBuifer = m_dataln;

m_statReg.m_bits.txRdy = 0;
} else {
m_datalut = m_rxBuffer;
n_statReg.o_bits.rxfRdy = 0;
13
} else {
if (m_write == 1) {
m_ctrlReg.m_byte = m_dataln;
} else {
w_datalur = m_statReg.m_byte;
m_statReg.m_bits.ovrEr = ¢,
m_statBeg.m_bits.parEr = @;
m_statReg.m bits.frmEr = 0;
¥

i3

Figure 7 - C4++ hmplementation of the function CPUInterface!)

To provide the full duplex capability, we had to
have two separate modules. one for transmission
and one for reception. The module that imple-
ments the transmission is composed by two func-
tious. TxStateMachine(), represents the trausmitting
state machine. The function SetTxd(), implements
a multiplexer that. using the information provided by
TxStateMachine (), drives the XD line.

The module that implements the reception is con
posed by one function, RxStateMachine (), this func-
tien represents a state machine that is in charge with
the reception of a character.

It is also necessary to implement a clock divider,
Function ClkDivider () generates the standard baud
rates that are used in the protocol communication.
The asynchronous reset interface is modeled with the
independent function Reset (). this function initializes
the internal variables of the UART.

To demonstrate the different implementations and
changes in the languages used in our case study we
will use the function CPUInterface{). In the C4+—+
design the function has the code showed in figure 7.
‘This function implements a synchronous interface be-
tween the CPU and the UART, four operations can be

performed by the CPU on the UART:

» Write to the control register

s Write to the transmission buffer
e Read from the status register

* Read from the reception buffor

The signals enable and ehipSel, activate the CPU inter-
face. When they are active. the signals wrife and config
are tested to select the operation to perform, Depend-
ing o the operation. this function also perforns the
reset of some status bits.

C.3 Sitmadation

The simulation in C++ was based on the commu-
nication between two UARTs (figure 8). UART1 is
responsible for transmitting the character pressed on
the kevboard to UART2 and UART2 is responsible for
the reception of the character and for sending it to
the display. With this siinple simulation we test both
transindssion and reception of the TART. To imple-
ment this simulation we created a main function that
performs the following tasks: writes into the UART1
trausmission buffer all characters pressed in the key-
board, polls the UART?2 to detect new received char-
acters and sends them to the display. The VART iu-
terface signals are driven accordingly to the eperation
performed.

We also created a class that manipulates Value
Change Dump {(VCD) files. This class was responsi-
ble to create and maintain one VCD file that stores
the evolution in time of variables values. To visual-
17¢ these files we used the application GTRKWave [7].
This simulation allowed us to test the external inter-
face of the CART. using the functional testbench. and
the internal details, using the VCD file.

D. SystemC
D.1 Modeling

The transition from C++ to SystemC was done with
very little changes in terms of the code to implement
the functions. Changes occurred mainly in the decla-
ration of the functions and the type of variables. In

RevisTa DO DETUA. VoL, 4. N2 4, Manago 2005

chipSelt —— UART

enable! ——
write 1 ———»

configl — txd
ioClk1 ————
coreClk1 =———s
reset| —— rxd

Keyboard

UART2 k—— chipsel2

+— enable2
p——— write?
txd j——— config2
p——— coreClk2

b iOC k2
xd l— reset?

Aeydsig

C_"t dataOut2
ﬁ’:} datain2
8

Figure & - Stmulation setup

SystemC the UART class became a SC_MODULE, and
some of the functions were implemented ax SC_METHODs
witl a sensitive list of the signals that can trigger the
method.

Unlike C++. SystemC provides concurrency and re-
active behavior, so the functions that implemented the
clocks, and the asynchronous events are no longer uec-
essary. Event handling is transparently managed by
the System{ simulation kernel using the sensitivity list
of the methods. Hence. in the SystemC model we don’t
have the function Reset (3, all methods are sensitive to
the signal reset and theyv perform the reset to the sig-
nals that they are respousible to drive. The addition
of the reser capability to the former C+4 functions
implied some modifications in the code. _

All the variables were converted to SystemC data
types, variables declared as unsigned char were de-
clared as sc_1v<8> or as sc_uint. All variables were
declared as se_signal.

The code showed in figure 9 implements the CPUln-
terface method using SystemC:

The modifications from C++, are mainly related with
the infegration of the reset functionality in the model.
The other modifications are only related with the ac-
cess to the SvstemC data types,

D.2 Simulation

The simulation in SvstemC was done with a test-
bench. To implement it we created a new module.
The testbench module was specified with a process of
tvpe SC_THREAD. In that process we provided the values
that must be assigned to the interface of the UART in
a sequential form and after each modification we adid
the function wait (),

Functions to manipulate VCD files are already sup-
plied by the System(C library. To visualize the files
produced we used the application GTKWave.

D.3 Synthesis and Implementation

To perform the System(’ synthesis we used the apli-
cation CoCentric SystemC Compiler [&].

Although the code produced so far simulated cor-
rectly, to be able to convert it to VHDL using the Co-
Centric compiler we had to make some changes because

void UART::CPUInterface(} {
if {reset == 1) {
s_ctrlReg = (xF0;
} else {
if ({ioCilk.event(})
&8 {(ioClk.read(} == 1))} {
if ({enable.read(} == 1}
& (chipSel.read{} == 1)} {
if {config.read(} == ¢} {
if (write.read{} == 1) {
s_txBuffer = dataln.read();
s_statReg(1] = 0; }
else {
datafut.write(s_rxBuffer);
s _statReg(2) = 0; }
} else {
if {write.read(} == 1) {
s_ctrlReg = dataln.read(};
3¢_1¥<8> aux = dataln.read({).range(7,4)};
s_clkDivFactor.range(7,4) = aux; }
else {
datalut.write{s_statReg};
s_statReg = (s_statReg & 0x07}; }

Fizure 9 - Systemn(implementation of the function CPUlnter-
face(}

the application has the following restrictions:

s Does not support multi-source signals, ie., al-
though signals can be read by multiple methods
they can only be changed by one method.

s For single bit variables the use of the data type
bool is advised.

o Does not support the function event () inside the
methods to test witch signal generated the event.

¢ Scnsitivity lists that mix level and edge sensitivi-
ties are not allowed.

The signal that was causing multi-source prob-
lems was the status register, because we had to
change its bits in the mcthods used for the state
machines and in the method that implemented
CPUInterface (). The bits that were causing multi-
source problems were the frRdy because it is set in
the method TxStateMachine() and is reset in the

Bl

Hevisra po DETUA. VoL, L N® 4. Manco 2005

VHDL by Cocentric
55.108Mbz
152 out of 3U72
112 out of 6144

Manaal VL
55,4080 hz
122 out of 3072
102 ot of 614

Max, Frequency
slices used
slica Flip Flops

Tabte IF
DEVICE (SParTaxy [-XC2S300E) CTILIZATION OBTAINED USING
SYNTHESIS TOOLS

method CPUInterface(), the bit 7wRdy because ir is
set in the method RxStateMachine() and is reset in
CPUInterface(), and the bits ovrEr, frinkr and parEr
because they are set in the method RxStateMachine ()
and the reset in CPUInterface().

The solution adopted consisted in creating addirional
methods that generate a reset signal that is added to
the sensitive list of the methods RxStateMachine ()
and TxStateMachine (), this way only the later meth-
ods change the bits from the Status Register.

After resolving these problems we were able to obtain
a VHDL code, the code was synthesized using the ap-
plication Xilinx ISE 6§ and the Spartan [L-E FPGA as
target device. The resnlts are presented in table TI.

E. VHDL

In order to assess the quality of the VHDL code pro-
duced by the CoCentric SystemC Compiler, we per-
formed the manual translation of the SvstemC code
into VHDL. The hand coded VHDL was then syntle-
sized and the results were compared. This translation
also allowed us to evaluate the involved effort, validat-
ing the proposed methodology.

E 1 Maodeling

The manual conversion to VHDL consisted in trans-
forming the SystemC methods into processes, convert
the data types to VHDL data types and make the nec-
essary changes in the syntax of the languages.

The VHDL code that implements the CPUInterface
process is showed in figure 10.

E 2 Simulation

The simulation in VHDL was made using ModelSim®
with a testhench that is similar to the one implemented
in SystemC with correct adjustments to the VHDL lan-

guage.

E.3 Synthesis and Implementaution

The VHDL module was synthesized with the applica-
tion Xilinx ISE 6 [9] to be used in the device Spartan
[I-E FPGA. the synthesis senerated the device utiliza-
tion summary pregsented in table 11

F. Comparing Methods
F.1 Modeling

Comparing the three methods we used we can con-
clude that C'4-+ is certainly adequate for modeling the

cpu_taterface : process{reset, ioClk) begin
if {reset = ’1'} then
s_ctrlReg <= "11110000";
elsif (rising_edge(ioClk}} then
if {(chip3el = 1’} and (enable = '1')) then
if (config = ’0G’) then

if (write = ’1') then
s_txBuffer <= daraln;
else
s _datalut <= s_rxBuffer;
end if,;
else

if (write = '1'} then
s_ctrlReg <= dataln;
alse
s_datalut <= s_statReg;
end if;
end if;
end if;
end if;
end process;

Figure 10 - VHDL implementation of the function CPUInter-
face()

software components of a system and to test the al-
gorithm, but when it comes to niodeling the hardware
behavior it lacks some functionality.

SystemC, even if it i3 hased on C++, has some func-
tionalities that are more hardware like, and it benefits
from a higher level of abstraction than conventional
VHDL design.

The VHDL model is the most close to the hardware
specification, however we think that the constraints
imposed by the hardware description languages would
be fuconvenient in the early development stages. In our
opinion the quality of the final VHDL code resulting
from the proposed methodology heneficiated from the
iterative refinciment process,

F.2 Simulation

The simulation in C++ is more efficient at early stages
of development to validate the algorithms and the se-
quence of operations without worrying about clocks
and precise timings, It also helps in the functional de-
compaosition of the systom.

SystemC provides the concepts of concurrency and
parallel execution of processes. Using SystemC mod-
ules run conceptually in parallel which may allow the
detection of hidden data dependencies that were not
visible in the C++ simulatien. SystemC directly Sup-
ports the generation of VOD files, which facilitates the
visualization of the simulation results.

Two models of the same circuit, one written in Sys-
ternC and the other in VHDL niust produce the same
simulation output. However, the simulation of the Sys-
tem(’ model can be done with the SystemnC library
and a standard C++ compiler. which are both freely
available. On the other hand the simulation in VHDL
requires a specifie simulator.

RrEvisTa DO DETUA Vor. 4. N7 4 AManrcgo 2005

void UARTSetup (TBaudRate baudRate, TDataBits
dataBits, TParity parity, TStopBits stopBits);

This function programs the transmission parameters
of the UART.

void UARTTxChr ({char chr);
This function sends a character to the TART to be
transmitted.

bool UARTExChr (chars chr);
This function rcads a recetved cliaracter from the

UART.

void UARTTxStr (com=t char* str};
This functions sends a string to the UART to be
transmitted.

Table I
UART APL DESCRIPTION

PC running larminal emutator

CPU echogs all received
characters

Figure 11 - Test selup

F.3 Synthesis and Implementotion

The synthaesis of the UART was made in two different
ways: directly from the SystemC code using the Co-
centric SystemiC compiler and from hand-coded VHDL
model using the Xilinx X8T synthesis engine incorpo-
rated within Xilinx ISE Design environment.

The Coceniric SystemC compiler constraints foree a
non natural coding style. To obtain the SysteinC syn-
thesizable code we had to analyze how different Svs-
temC constructions swere synthesized in order to make
the corapiler generate synthesis friendly VHDL code.
The results of both synthesis flows are sununarized
into table IL Comparing results we can conclude that
direer VHDL synthesis provides better results in terms
of aren.

G. Testing

The test of the UART was made in a FPGA {De-
velopient Board model TE-XC25E from ‘Irensz [10})
integrated with a MIPS32 processor [11].

The test consisted in the simulation of the communi-
cation hetween two computers. The progran imple-

307

mented in the NMIPS32 just echoes all the characters
received hy the UART back to the computer. Using
a terminal emulator we established a conmumunication
between the computer amd the development board as
seen in figure 11,

G.1 The UART APT

To test the UART with the MIPS32 processor, we had
to create an interface library, The library is deseribed
in table III.

V. CoONCLUSION

The discussion on the utilization of C++4, SystemC
and VHDL af different stages of development presents
a clear view of the advantages and disadvantages of
cach langnage.

The proposed methodology does not solve the consis-

tency problems when translating the model manually.
We also came across with the lack of support for this

methodology of some of the tools that were used.
With our example we have shown that it s possible
to have a smooth transition from the various phases of
designing a system, using different design languages,
when we follow the proposed guidelines.

REFERENCES

(1} Wavne Wolf. A decade of hardware/software codesign”,
TEER Computer, vol. 36, no. 4. pp. 38-43, April 2003,

2] Open Spstem(Inffiatice, hitp:/fwww.systemeorg,

30 IEEL, [EEL Standard VHDL Language Reference Manual

2000 edition.

[+ Fike Grimpe and Frank Oppenheimer, “Extending the sys-
teme synthesis subsel by object-oriented features™. i Pro-
ceedings of the Ist IKEE/ACM/TRIP international confer-
enee on Hardware/software codesign and system synihesis
2003, pp. 25 30, ACM Press.

5] Yuval Ronen IL.R. Armstrong. “Modeling with svstemec: A
case study™, 2001,

6] Electronic Industries Association, FEIA232F - Interface
Between Data Terminal Egquipment and Data Circuit-
Terminating Eguipment Bmploying Serial Binary Data In-
terchange. 1991

(7] CTKWave
workshop.com/bybell /ver/wave,

Homepage, htep:/ fwww linx-

8] LDeseribing Syntheszable RTL in System€, Version 1.2,
November 2002, hitp://www synopsys.com,

O X, dnc bttp:/Swww xilinx .com.

1100 Trenz Electronic, http://www trenz-electronic.de. Sportan-
HE Development Platform Overview, 2004,

iL1] Arpalde §. It Oliveira Anlénio B. Ferrari

., Valery A, Skl-
varny, “Arpa - an open source system-on-chip for real-time
applications™, ERTSI - Eimbedded Real-Time Systewns Iin-
plementation Workshop, 2004,

