486

Revista oo DETUA, Var, 4. W7 4, AMaggo 2005

CLAN - A CAN 2.0B Protocol Controller for Research Purposes

Arnaldo S. R. Oliveira, Nelson L. Arqueiro, Pedro N. Fonseca

Abstract — The CLAN intellectual property core is a CAN
2.0 controller developed at the Electronics and Telecommu-
nications Department of the University of Aveiro, for research
and educational purposes and in particular with the aim of
providing the adequate hardware support to implement and
validate higher layer protocols such as TTCAN or FTT-CAN,
It was modclled at RTL level using the VHDL hardware de-
seription language, synthesized, implemented and tested on
Xilinx FPGAs. However, the model is technology independent
and can be synthestzed for different implementation technolo-
gies from FPGAs to ASICs, The CLAN IP core fully imgple-
ments the CAN 2.0B specification and it includes also a syn-
chronous parallel microprocessor interface, interrupl genera-
tior logic and some advanced fealures, such as message filter-
ing, single shot transmission and extended error and statistics
togs. The data bus width can be 8, 16 or 32 bits wide. For ap-
plications where a microprocessor interface is not needed or
a different interface is required, the core internal module that
implements the protevol can be used separately. The CLAN
controller with microprocessor interface logic oceupies about
30% of a Xilinx Spartan-TIE XC28300E FPGA, correspond-
ing to 100,000 equivalent logic gates, approximately, It was
tested with other CAN controllers operating at 1Mbit/seg.

Resumo - O modulo CLAN é um controlador CAN
208 desenvolvido no Departaments de Electrdnica e
Telecomunicagies da Universidade de Aveiro para fins
académivos e em particular com o ohjectivo de conceber um
controlador que proporcione o suporte de hardware adequado
4 implementagio de protocolos de alte-nivel, tais como o TT-
CAN ou o FIT-CAN. O controlador CLAN foi modelado
1o nivel RTL com a linguagem de descrigio de hardware
VHDL, implementado e testado em FPGAs da Xilinx. No
entanto, é importante referir que o modelo é completamente
independente da tecnologia podendo ser sintetizado para di-
ferentes tecnologias, desde FPGAs a ASICs. O controfador
CLAN implementa completamente a especificagio 2.0B do
protocolo CAN e inclui também um interface sincrono para-
telo para ligagdo a um microprocessador, circuity perador de
interrupgies, filtros de mensagens e vdrios contadores erros
¢ registos de estatisticas. O barramento de dados pode ser
de 8, 16 cu 32 bits, Para aplica¢ies que ndo necessitern de
um interface com processador ou requeiram outre tipo de in-
terface. o bloco interno que implementa o protocolo pode ser
usado separadamente. O controlader CLAN ocopa cerca de
309 de uma FPGA Spartan-1IE XC28300E da Xilinx, corres-
pondendo a cerca de 140,000 portas logicas equivalentes e fui
testado com outros controladores CAN a operar a 1Mbit/seg.

Keywards — CAN, TTCAN, FTT-CAN, Protocol controller

Palavras chave ~ CAN, TTCAN, FI'T-CAN, Controlador de
protocolo

[INTRODUCTION

Defined in the late 80's, CAN (Controller Area Network)
[1] found wide-spread acceptance in embedded distributed
control systems, from automaotive 10 industrial applications.
A CAN overview is out of the scope of this paper. The
CAN specification available on the web [1] provides a clear
description of the protocol.

In spite of its popularity. the application of CAN in safety-
critical systems s, nevertheless, impaired by the event-
triggered characteristics of the original definition. [n CAN,
a node can send a message at any time, provided there is
stlence on the bus (CSMA): the Medium Access Control
mechanisms will handle the resulting collisions. As a con-
sequence, a node sending a message has no guarantee in
whal concerns the delivery time of that message: depending
on the message priority, it may loose contention for several
consccutive times, thus postponing the clfeetive sending of
the message,

For critical applications. time-triggered systems are pre-
ferzed, duc 10 their scalability, composability and depend-
ability properties [2]. The last few vears saw the outcome of
some proposals (o improve the time characteristics of CAN
(e.g., TICAN [3]), FTT-CAN [4]). These take advanlage of
the fact that Bosch's and ISO specifications define only lay-
ers 2 and (partially) | of the [SO OSI model. With major
or minor changes on the original definition. these new pro-
posals impose some determinism in the message exchange
behavior. namely by allowing a node 10 send its message
at well defined instants in time. This is achieved by prop-
erly defining mechanisms in the layers above the original
delinition,

TTCAN (Time-Triggered Communication on CAN)
started in ICC'98. the International CAN Conference,
where an expert group, including CiA (CAN in Automa-
tion). chip providers. users and academia, joined the 1SQ
TC2USCIWGI/TE6. The result was [SO 11898-4, part
4 of the ISO 11898 standard, that specifies time triggered
communication on CAN [5].

FTT-CAN (Flexible Time-Triggered Communication on
CAN) has been proposed at the University of Aveiro as a
mean to merge flexibility and timeliness in CAN sysiems.
The aim is 1o achieve a communication paradigm that al-
lows systems to be both timely, delivering the messages un-
der the specified time constraints, and flexible, by not re-
quiring the message set to be statically defined during sys-
tern operation.

I MOTIvaTioN anD OBIECTIVES

Both proposals for time triggered operation of CAN are
huilt on top of the existing protocel with litde or no mod-

Revista 0o DETUA, Vo 4, N 4, Magcn 2005

ifications {the aim of FTT-CAN 1is also to provide timely
behavior with standard CAN controllers),

The development of & new communication protocol re-
guires its validation. Although simulation and formal val-
idation play an important role here, they are not, on their
own, sufficient. The last step in validation is always ficld
tests, and these have to be performed with hardware de-
vices. These tests should also involve the verification that
the adopted solution ts better than the alternatives. Ideally,
we should have a flexible communication controller that
can be programmed to follow some specification and that
can be modificd. Another issue to test is the robustness of
the new protocols. mainly in what concerns fault tolerance.
To do this, faults have to be introduced in the system in a
controlled and predictable way. Again, we meet the need
for a controtler that we can modify to our desire.

The above requirements cannot be casily [ulfilled with the
CAN products commercially available [6] because they are
hardwired ASIC products or fiexible but expensive synthe-
sizable cores. Thus. a CAN controller was developed based
on the CANSim simulator [7]. The initial requirements for
the CLLAN project were the following:

s Complete CAN 2.0B implementation,

o Internal statws fully visible to effectively support the
implementation of higher layer protocols;

» Enhanced logging capabilities {individual error coun-
ters and flags) and statistics logs (message counters):

s Flexible message filtering capabilitics:

s Customizable interface -
(a)synchronous. (deymultiplexcd buses.

parallel/scrial,

III. ARCHITECTURE

The developed CAN contretler fully implements the CAN
2.0B specification. The developed Intelectual Property (IP)
block was split in two modules, 1o scparate the logic that
implements the protocol from the interface:

e The CLAN Core module which implements the CAN
2.0B protocol;

o The CLAN Controfler module which provides a
synchronous parallel interface with non-multiplexed
huses.

The interface provided is adequate for integration of the
CLAN Controller with a processor core into a single FPGA
or a System-on-Chip.

A CLAN Core Module

The CLAN Core module contains all the cireutts required
to implement the Mediem Access Control (MAC) and the
Logical Link Control (LLC) layers of the CAN 2.0B spec-
tication. Tt can be used separately direelly connecting o
sensors andfor actuaters in a CAN node without a micro-
processor, Allernatively. it can also be used as a building
block to create a controller with a customized interface.

A} Interface Ports

The external interface of the CLAN Core module 15 shown
on Figure 1. The ports are divided into the following

487

= = .
timeSegt z B sampleRx B
timeSepl = o
. - mag TxStaned
synefumpWidih 4
2 msgTxOk

baudRPScaler .
msgTxFailed

configEmor

mMlsgReady
eset
i :Z\ crror WarnFiag
clk .
clkEnzble dataQ\'en'unP.rrnar

exixMode
busFrameState

manitoriode

singleShotTx L
& arhitrationLost

reghisgTx A A
drE arbutlostBitlds

cancelTxRey

releaseR«Bufter fauhConfinsiae

ey VA4 4 Yoy Yyvwvry vuy fVEYY
YV VYVVVY VY vvvvvr vV ¥o¥Y vy vyvy v

clrMsgCounters fauh ConfStEvent
ernoryy aml.amit CLAN e ..
bitkrmrFiag
txhsaldExt COI'e stutfEerorFlap
txMsgld crcErrorFlag
txMsgRTR formErrotFlag
txMsgDILC ackErorFlag
txMszData errorDetecied
rxhlsutdExr txErrorCount
reMsgld exErmorCount
MseRTR

rRrse bitErorCount

raMspDLC A
stuffErmorCount

rallsgData)
creBrmorCount
aceMskToBoeund formErorCoung
accldbipBound ackErtorCount
rangeFiltering = - taMsaCount
multiSampling 4 z rxMsgCount

I z

Figure § - CLAN Core module interface.

functional groups: Synchronization and Iniriglizarion (Ta-
ble I}, Timing Configuration (Table 11} Mode Serup (Table
LI}, General Status and Statistics (Table [V), Transmission
and Reception Data (Table V), Transmission and Recep-
tion Configuration (Table V). Error and Faildt Confinement
(Table VII), Message Filrering Setup {Table VII) and Bus
interface (Table IX). A short description of each port is
given into the tables below.

All interface control and status signals arc sampled or
switched at the falling edge of the c/k synchronization
clack. The sampleReBir port (Table T) provides a clock sig-
nal synchronous with the Sample Poine. This signal com-
bined with the frame state available on the busFrameState
port is usefu! for clock synchronization on TTCAN imple-
mentations. The single shot transmission capability pro-
vided is useful for disabling automatic message retransmis-
sion in case of an error within TTCAN and FIT-CAN syo-
chrenous windows. The values applied to the Timing Con-
figuration ports (Table 11} must be stable to ensure a correct
operation of the core.

438

RiEvisia o DETUA, Vor, 4, N7 40 Margo 20035

| Name | Type| Description | | Name | Type| Description |
reset In Asynchronous reset input rxtxMode Out | Current RX/TX mode |
clk In Main synchronization signal {None, Rx. Tx. Arbitration)
clkEnable In Enable input for the corc busFrameState Out | Current state of the frame
“elk” signal present on the bus
samplcRxBit Out | Clock signal synchronous arbitrationLost Out | Activated during one CAN
with the Sample Point bit time in casc of arbitration
Table 1 lost
SYNCHROXIZATION AND INITEALIZATHIN PORTS. urbilLostBiIIdx ()Ut When “Elrhilra[iﬂnLOS[“ =1
this output indicates the bit
where arbitration was lost
[Name [Type[Description] xMsgCount Out Number —of - successfully
tmeSeg!l In “Length - 1™ of Time Sce- lr‘ansm]llcd Messages
ment | (in time quanta) rxMsgCount Out hgmbcr of successlully re-
timeSeg2 In “Length - 17 of Time Seg- . c%wud messages
ment 2 (in time quanta) clriMsgCounters | in f&hen acuvul::d clu_:.ars the
synclumpWidth | In Synchronization Jump IXMS;%COMI z‘md rxMsg-
Width value €in time quanta) - - Cnym counters _
baudRPScaler Tn Baud Ratc Pre_Scaler value busActivityFlag Out Indllc_atcs the presence of bus
used for “elk™ frequency di- activity
vision Table IV
Tuble 11 GENERAEL STATUS AND STATISTICS PORTS,

TEMING CONEGURATION PORTS.

[Name [Type| Description |
[Name | Type| Description | txMsgldExt In Tx message extended identi-
singleShotTx In When active disables auto- fier flag
matic mMessave retransmis- txMseld In Tx message identificr
sion It case of crror lxM‘-;gRTR In Tx message RTR ﬂag
multiSample In Sampling made for im- Ms¢gDLC In Tx message DLC value
proved noise imunity ! 1xMsgData In Tx message data bytes
monitorMode In When active sets the output rxMsgldExt Out | Rx message exiended identi-
driver permanently to “re- fier flag
cessive” level raxMsgld Out | Rx message identifier
Table 111 rxMsaRTR Out | Rx message RTR flag
MODE SETCP PORTS rMsgbDLC Out | Rx message DLC value
o N rxMsgData Out | Rx message data bytes
Table ¥

A2 fnternal Structure

The internal structure of the CLAN Core module is shown
on Figure 2. A short description of each block is given into
the following subsections.

Bit Stuffing Unir

The Bir Stuffing Unir is used to:

& insert stuft bits on the fransmirted bit streany;
o check and remove stuff bits from the received bit
stream.

The Bir Stuffing Unit is shared by the transmission and
reception patts of the core. because unless an error has
occurred or the transmitter looses arbitration. within the
stuffed fields the ransmitted and the received bits should
match.

CRC Unit
The CRC Unir calculates and checks the CRC sequence
included in the frame. Similarly to the Bit Sruffing Unit,

TRANSMISSION AND RECEFPTION [2ATA PORTS.

1t is shared among the transmission and reception parts ot
the controlter. In transmit mode. it calculates the CRC se-
gquence during the Start of Frame, Arbitration, Cantrol and
Duta fields. During the CRC Sequence ticld, the calculated
sequence is shifted into the bus. In reception mode it com-
pares the received sequence with the locally computed se-
quence in order to detect errors on the received bit stream.
Receprion Unir

The Reception Unit latches the bus bit at the Sample Point
and performs the de-serialization of ihe reception bitstream.
It also acknowledges a correctly received frame during the
Acknowledge Slot tield.

Transmission Unit

The Fransmission Unit pecforms the serialization of the
message (o send. determining the bit 10 be transmitted by

Rivista 00 DETUA. Vo 4, N 4, Marco 2003 489
Higher Layer / Application Interface
CLAN
Core Message Buffers
Bit . .
Stuff CRC Rx Frame Tx Error
Control Unit Unit Unit Sequencer Unit Handler
Unit
Synchronization Unit Cl'oc.k
Uniit
Physical Interface / Line Driver
Figure 2 - CLAN Core internal block diagran.
. e L . Lo s N
the node and setting it at the beginning of the bit time. The Frame Sequencer Rx/Tx Mode

sources for the transmitted bit are the following:

+ A message bit from ihe 1D RTR, DLC or DATA fields;
A stuff bit;

A CRC bit:

A fixed polarity bit {recessive or dominant);

An acknowledge bit generated by the Reception Unit;
An error frame bit produced by the Error Handler.

* 2 & & 2

Frame Sequencer

The Frame Sequencer plays a central role within the con-
troller, performing the following tasks:

Arbitration;

Accepting requests to ransmil Iessages;

Detecting a Start of Frame ficld on the bus;

Sequencing fields in Data, Overload and Remore

Transmission Request frames;

» Signaling the successful transmission of a message
and the end of a message reception:

» Responding to Overlogd frames.

Figure 3 shows a partial behavioral specification of the
Frame Sequencer. It consists of two parallel state ma-
chines: the Rx/Tx Mode State Machine and the Frame State
Machine. The former defines the operating mode of the
controller, The last establishes the sequence of fields for
all frame types except Error frames, which are gencrated
directly by the Ervor Handler and applied to the Transmis-
ston Unit,

Error Handler

The Error Handler performs all activities related to fauht
confinement, error detection, counting and signaling. Inter-
nally it implements the mechanisms to detect the different
crror types and the error counters specificd on the standard.

100 and AONF

3 NN uun.ml ' m
ARBITRATION

arbntr.mon]x | aehilraniconin

Frame State

INTERMISSION e

h g

Figure 3 - Partial behavioral specitication of the Frume Sequencer module.

When an Error frame has to be sent, the transmission is
performed through the Transmission Unir and the Frame
Sequencer is disabled until the end of the Error frame.

Message Buffers .

As the name implics, the Message Buffers are used to store
messages. Two buffers are accessible from the outside of
the module: one for transmission and the other for recep-
tien. However, internally the Transmission and Reception
units coentain shift registers for message serialization and
de-serialization that act as temporary butfers.

Clock Unit

The Cinek Unit generates all the clocks required to control
and synchronize the activities of the other core components.

Behavioral modelling of the CAN controller has shown
that two clock signals are required for such purposes [7]:
a Synchronizarion Clock with frequency foy ae and Con-
rrol Clock with frequency forpe:

1

favne = o
To

4490

REvisty o DETUA, Vo, 4 N 3L Marco 2005

I Name | Type' Description | Name | Type1 Description
regMsgTx In When activated, requests the configError Out | Activated when the timing
transmission of the message parameters are invalid
applied to the txMsg(IdExt, faultConfinState | Out | Current fault confinement
Id, RTR. DLC, Data) ports state (“Error Active”. “Error
cancelTxReq In When activated, cancels the Passive™. "Bus OIT)
previous transmission ro- faultConfStEvent | Out | Activated during one CAN
quest, if stilf pending bit time after a change on the
msgTxStarted Out | Activated during one CAN fault confinement state
bit time at the start of a mes- bitErrorblag Out § Active during onc CAN bit
sage ransmission litne in case of a bit error
msg TxOk Out | Activated during one CAN stultErrorFlag Out | Active during one CAN bil
bit time at the end of a suc- time in case of a stuft error
cessful message transmis- creErrorFlag Out | Active during one CAN bil
sion time in case of a CRC crror
msgTxFailed Out | Activated during one CAN tormErrorFlag Out | Active during one CAN bil
bit time when a message trne in case of a form error
transmission fails ackErrorFlag Out | Active during one CAN bit
rxMsgReady Out | Activated during onc CAN time in case of a acknowl-
bit time at the end of a suc- edge error
cessful message reception errorDetected Out | Active during one CAN bit
releaseRxBuffer | In When activated. releases the time in case of a bit, stufl,
Rx buffer, allowing the core CRC. form or acknowledec
to write a new received mes- error
sage on the buffer accessible txErrorCount Out | Tx Error Count as defined
trough the rxMsg(IdExt. Id, on the CAN specification
RTR. DLC, Data} ports rxErcorCount Out | Rx Error Count as defined
dataOverrunError | Out | Activated when a new mes- on the CAN specification
sage was received hefore an errorWarnLimit In Threshold value used o flag
external release of the Rx a disturbed bus
buffer containing the previ- errorWarnFlag Oul | Activated when one of the
ous received message. The error counters is greater than
newly message received s the “errorWarnLimit™ value
discarded bitErcorCount Qut | Number of bit crrors oc-
Table VI curred
TRANSMISSION AND RECEPTHON CONFIGURATION PURTS, stuffErrorCount Out | Number of swlf crrors oc-
curred
creErrorCount Out | Number of CRC errors oc-
curred
foren =2 fsyae formErrorCount | Out | Number ol form errors oc-
forr = baud P Scoler + 1) - fonri curred

where Ty is the Time Quantum period and feep g is the ofk
frequency. It means that for a given Time Quantum value.
an input clock with only twice the frequency is needed.
Control Unir

The Control Unir generates all signals that control the
other units, mainly enable and reset signals. Figure 4 shows
a simplified view of the core internal control sequence
within a CAN bit time. The frequency divider that gener-
ates the Controf Clock signal is triggered by the failing edge
of the clk input. The majority of the units are triggered by
the rising edge of the Contro! Clock and during the Time
Segmenr 2, Le. after the Sample Poimt. This imposes some
restrictions on the duration of the Time Segment 2, namely
its minimum duration must be 2 Time Quanta. This con-
straint is required to decrease the number of internally gen-
erated clock signals and to limit the frequency of the clock

ackErrorCount Out | Number of acknowledge er-

rors occurred

Table ¥II
EREOR AND FAULT CONFINEMENT PORTS.

applied to the core for a given transmission rate. However,
it is important to nole that this restriction 15 compliant with
the maximum duration of the Information Processing Time
defined an CAN specification.

Synchronization Unit

The Synchronization Unir generates the sampleRxBir and
the serTuBir clocks used to latch the reception and trans-
mission signals at the correct time instants, based on bus
transitions and on the timing parameters of the node. The
period of the CAN bit is given by the following expression:

Ruvista 0o DETUA, Voir. 4, N® 4, Marco 2005

Bit
Segments

setTxBn |

CAN Bit Time

491

F

Sync
Seg

i Time Seg 1

sampleRxBit

syncClk

ctrlClk

]

ULy

(Prop Seg + Phase Buf Segi)
i

»l

|
H T | it =
i 1}'l'ime Seg Zi Sync
| Seg

(Ph;ﬁsc Buf Se% 2}

Sample point

t

UL

P4

(w} (B ()
Control Unit TToTTTTTTT R -
‘ Wail Ph1|Ph2|Ph3 Wait
Sate o ____ — _
@ Edges responsible for control unit state iransitions
{a) - Frame sequencer update phase; Error handler detection phase
Rx butfer write; CRC unit enable; Bit stulf uait enable:
® - Eimes N . .
rame sequencer execution phase; Error handler update phase
{c) - Tx buffer read: Error handler reaction phase
Figure 4 - CLAN Care internal control sequence.
[Name | Type| Description | | Name | Type] Description ‘
rangeFiltering In When activated, filtering busBit In Current bus level detected
is performed based on the by the input transceiver
tower and upper bound of rxBit Out | Bus level at the previous
message identifiers specified sample point
by the next two ports; when 1xBit Out | Current level applied to the
deactivated, filtering s oulput transceiver
based on identifier patterns
- : - . Table [X
accMskLoBound | In Specifies the identifier lower BUS TNTEREACE
. . . US INTERFACE PORTS.
bound or don’t care bits of
the identifier used for mes-
sage filtering
accldUpBound In Specifies the identifier upper
bound or significant bit val- where T, g is the period of the external clock applied to
ues of the identifier used for the core. The period Tor g of the control clock is:
message filtering
T e Scaler
Table VI oTrt = Tepw - (haud BPSealer 4+ 1)

MESSAGE FIETERING SETUP PORTS.

Tair = Tepp -2 (bandRPScaler+1)- (EmeSeql +time Seg2 +3)

The values of the timing parameters must respect the tol-

lowing relation:

timeSegl > timeSeg? > syncJumpWidth

402

addiuss +
dariain e
dataOut +

- coreClk intRequest -
- oClk busActivily |
CLAN
Controller
- iobnable resct -l
- chipSet writy -

~lf— it
— bl

Figure 5 - CLAN Controfler module interface.

otherwise the configError output will be active and the
core will remain in the reset state.

B. CLAN Microprocessor Interface Module

Based on the CLAN Core module, different interfaces can
be created. The first interface built was a synchronous par-
allel interface with a data bus of 8, 16 or 32 bits.

B.! Inteiface Ports

The external interface of the CLAN Contreller module is
shown on Figure 5. A short description of cach port is given
on Table X, The coreClk is the efk synchronizalion signal of
the CLAN Core module (Tabic 1). Figure 6 shows examples
of read and write cycles. The microprocessor changes the
signals at the falling edge of the ieClk signal. The CLAN
Conrofler validates the signals at the rising edge of the
same clock. Thus, if the ioClk frequency is adequate for
internal core synchronization, the coreClk and ioClk clock
signals can be connected together to the same elock source.

B.2 Configuration Registers

The configuration registers map into a space of 128 ad-
dresses all the input and output ports of the CLAN Core
madule. All registers are at a fixed offset location indepen-
dently on the bus width (Table XI). The complete descrip-
tion of the configuration registers can be found at the CLAN
Project Web Page []].

IV, MODELLING AND SIMULATION

The CLAN IP block was modelled with the VHDL hard-
ware description language because VHDL provides the ad-
equate abstractions to model the CAN controiler building
blocks. such as multiplexors, registers, state machines. cte.
The moded created contains about 3700 lines of code and
it is completely independent of the implementation tech-

Revesta po DETUA, Viro 4, N7 40 Moaecn 2005

| Name | Type| Description]

resct in Asynchronous reset input

coreClk In Core internal synchroniza-
tion signal

ioClk In Interface synchronization
signal

chipScl In Global interface enable sig-
nal

ioEnable In Enable signals for individual
byles of a multi byte daia
bus interface

write In Write enable signal

address fn Address bus

dataln In Data input bus

dataOut Out | Data cuiput bus

intRequest Out | Interrupt request output for
microcontrolier

busActivity Out | Flag that indicates activity
on the bus

busBit In Port for connection to the
reception transceiver (line-
driver)

xBit Out | Port for conncction to the
transmission transceiver
{hine-driver)

Table X
CLAN Comrroller PORTS.

nology. It was successtully validated with the ModelSim
VHDL simulator.

V. SYNTHESIS, [MPLEMENTATION AND TEST

The CLAN IP block was synthesized and implemented on

a Xilinx XC28300 Spartan-1IE low cost FPGA. The syn-
thesis report 1s shown on Figure 8. The complete circuit
occupies about 30% of the available stices (logic cells) cor-
responding to 100,000 logic gates. The core internal logic
can operate up 10 42MHz. Fizure 7 shows the compleie
project hicrarchy. To usc the CLAN IP block as a black box
in a project three components must be included:

The file containing the synthesized netlist;

¢ The file CAN.VHD containing a package with generic
CAN delinitions;

e The file CLANPublic.vhd comaining a puckage with
CLAN specific definitions.

The CLAN Core was tested within a bus with other com-
mercial CAN controllers operating at 1Mbivseg. The test
setup is depicted on Figure 9. The main purpose of this
sctup is o perform a simple functional validation of the
controller that must retransmit all received messages.

The CLAN Controller module was also integrated on the
ARPA System-on-Chip with a MIPS32 processor opti-
mized for real-time systems [9]. An API library was de-
veloped that allows the configuration and communication
with the CLAN Controfler from a program in C language.

REVISTA DO DETUA. Vo, 4 NT 4, Margo 2005

4913

»r
“ON1" =g timeScy Z é sampleRxBit
o i S | —
SO0 =g synchunpWidih 4 1RE ‘ _[_H (L)k
HOO0000™ baudRPScaler e
configError g A ratle
Startup Reset —{ resel N
16MHz Osc K errorWarnklag
#IRe e CILF N dataOverrunErrar
—1 clkEnable
rxtxMaode
() —1 monitorMode . ¢
" ——pael sitnaleShoIT busFrameState
singles L
m ‘3“111&-- TO' x artntranonlLosg
o e ;; ; arbitLostBitldx
—— cancelTxReq
refeascRxBufler lachtContinState
SO — I clrMsgCounters CLANf:tuIlConI‘SlE\-'cm
ST :reorWarnLimit -,
+ errentarnLim hitEtrrorFlap
— sz [kt Core stufftrrorklag
[E4SEN] crebrrorFlag
] (xMszRTR FormErrortlag
Pt 1xMsgDLC wwkErorFlag
] (xMsgData ermorDetected
rxMsgldExt rxErrorCount
rabsgld rxErrorCount
rxMsgRTR A
X MsaDLC bitErrorCount
|x\1:[)'ala stuffErrorCount
IR creErvarCount
00,007 =——je] aceMskloBound formErrorCount
N + accldUpBound ackErrorCount
U1 — rangetiltering - = txMsgCount
“(F" —m» multiSampling é z rehIsgCount
R
CAN Transceiver

CAN Bus

Figure 9 - CIAN Care foop-back test setup.

Yi. CONCLUSION

A tull CAN 2.0B controller with synchronous parallel mi-
croprocessor inlerface was presented o this paper. The
IP core was developed for educational and research pur-
poses. It communicates correctly with other commercal
conirollers operating up to IMbit/seg. However, it is tm-
portant to refer that it was not validated with the CAN con-
formance tests. The web page of the CLAN project with
detailed and updated information can be found at |8].

REFERENCES

{1} Robent Bosch GmbH,
chupafwww.can bosch.com)”, 1991,

“CAN Specificadon Version 2.0

{21 Hermann Kopelz, Reaf-Time Svstems: Design Principles for Dis-
trituted Embedded Applications. Klower International Series in Engi-
neering and Computer Science. Klower Academic Publishers, 1. edi-
tion, 1997

[3} Thomas Fuhrer, Bernd Muller, Werner Dieterle, Florian Hartwich,
Rohert Hugel, and Michagl Walther, “Time tiggered communication
on CAN {Tinwe Triggered CAN - TTCANY', in fCC 2000 - 7ih Inter-
national CAN Conference. Getober 2000, CiA - CAN in Automation,

[4] Luis Almeida. Paulo Pedreiras, and JTosd Alberto Fonseca, “The I'TT-
CAN protovol: Why and how™, JEEE Transaciions un Induserial Elec-
tronfes. vol. 49 no. 6, pp. 1189-1201. December 2002,

{3] ISOfTC 2H5C WG 1. “Road Vehicles — Controller Area Net-
work (CAN} Part 4: Time Triggered Commumicaction™. Tech. Rep.
1SO/WD 11898-4, 150, December 2000

[6] CAN in Awomation, "CAN products web page (hitp/hwww.can-
cla.org)”, 2005,

[7] Arnaldo Oliveira, Pedro Fonseca. Valery Sklvarov, and Antonio Fer-
rari. “An object-oriented tramework for can protocol modeling and
simubation”™, in FET 2003 - The 5th [FAC International Conference
on Fieldbus Systems and their Applicetions, July 2003, pp. 243-248.

454

REvISTA Doy DETUA, Vo, 40 N5 30 Margo 2005

Write Cycle - Offset | Register Name Access
(Hex) Type
addressIn Address Valid >< 00h Command W
\ U0k Status 0 R
chipSel N 04h | Status | R
Data ¥Writton ta CLAN O%h Control RW
iaClk AN Writing Edge % OCh Rx/Tx Status R
10h Arbitration Lost Capture R
ioknable v’ Byte Enables 14h Error Status R
I18h Bus Timing RW
write 4 N 1Ch fnterrupt Enable i RW
20h Interrupt Identification R
datalp ——— Duata Valid P 24h 'RX Error (;()l.ll’lt R
28h I'x Error Count R
CPU Drives Data Bus 2Ch Error Warning Limit RW
30h Bit Error Count R
Read Cycle 33h | Swif Error Count R
addressIn % Address Vatid >§ 38h CRC Error Count R
3Ch Form Error Count R
chipSel S, 40h Acknowledge Error Count R
CFU 50h Acceptance Mask/Lower Bound RW
Ok Reading Edge ';::_:’* 54h Acceptance Identifier/Upper Bound | RW
58h Rx Message Count R
. 5Ch Tx Message Count R
oRable Brte Ensbles N— 60h Rx Message Control R
write 64h Rx Message Identifier R
68h Rx Message Data (3 R
6Ch Rx Message Data 47 R
dataGut Data Valid 70h Tx Message Control RW
CLAN Drives Data Bus 74h Tx Message Identifier RW
78h Tx Message Data 03 RW
Figure 6 - CLAN Controffer write and read bus cveles. 7Ch Tx Messacc Data 47 RW
Tuble X!
Souces in Project: !L CLAN Controfler REGISTER NAMES AND OFUSETS,

R cLan]
-2 x02s3UDe EH256
can [CAN vhd)
clanprivate (CLANPrivate vid)
clanpublic {CLANPublic. vhd)
phiit (PHLib. vhd)
clancontraller-hybind [CLANCaontraller vivd)
V] clancore structural (CLANCore. vhd)
] bitstufturit-ntl (BitStuftUnit viv]
= [¥) clockunit-hybrid (ClockUnit vhd}
W globalelk bulfer-strustural_xiir £GlobalCkBufier, vhd]
E controlumit-rtl (Cortrollinit vhd)
- VM creuritrtl (CRCU it vhd)
!] enorhandlet-ti (E rodH andler. vhd)
_’] framesequencer-l [FrameSequencer vhd)
& neunitrtl [ReUnit vhd)
W) spncunit-hpbrid [SyneUnit.vhd)
N} globalclkbuifer-stuctural_sxlnx (GlobalskBubfer.vhd)
21 teuriit=rt] {T el nit vhdl -

12 Modie View [I Srapshot view -) Lirary View |

 SEEEE

H

Figure 7 - CLAN Project hierarchy.

{8] Amaide S. R. Oliveira, “CLAN project web page
thttp:#www ieeta.pt/” amaldo/projectsiclansy”. 2005,

{91 Armaldo 5. R. Oliveira, Valery A, SKlyarov, and Antonio Ferrari, “The
ARPA project - creating an open source real-lime system-on-chip”™,

SURMATY
2g30Cei I%6-4

Davice vbilizan
Selested Dovice

N oof Slices: 531 of
B of Hlif“e Faip-Flops: 8531 our of
b LUTs: 1ELL gut of
N 32 ous of
2 Z ous of

Timing 5w
Speed Grade: -5

Min. period: 23.3ns {Max, Frequency:
Min, puz arrival time before slock:
Max . ouipub Ie‘iu;:ei Lime afzeyr clock:

Maximum combinational patsh delay:

Figure 8 - Summary of CLAN Contredler synthesis report.

Electrinica e Telecommicagdes. vol. 4. no. 3, pp. 389-392, Septem-
ber 2004,

