478

REVISTA DO DETUA, Voo, 4, N73, MARCO 2003

Architecture and basic skills of the FC Portugal 3D simulation team

Flugo Marques, Nuno Lau, Luis Paulo Reis

Resumo - A liga de simulagio do RoboCup, iniciou em 2004
uma nova competicio que utiliza um simulador de futebel em
que o ambiente virtual tem 3 dimens@es. Este arfigo descreve
a arquitectura dos agentes da equipa FC Portugal 3D que
concorreram 2o campeonato mundial de RoboCup 2004 em
Lisboa. Serio descritas as caracteristicas do novo simulador
3D ¢ os aspectos principais da arquitectura da equipa FC
Portugal e do desenvolvimento dos comportamentos bisicos
dos agentes. A equipa FC Portugal classificou-se em 8° lugar
da competicio 3D do campeonato mundial de 2004 do
RoboCup.

Abstract — The RoboCup Simulation League introduced in
2004 a new competition based on a soccer simulator which
implements a 3D virtual environment. This paper presents
the architecture of the agents made by the FC Portugal 3D
team in order to participate in the RoboCup 2004 World
Championship competition which happened in Lisbon. We
will describie the new 3D simulator and the most important
characteristics of the architecture, basic behaviour and skills
of the agents developed agents. The FC Portugal 3D team
achieved 8™ place in the RoboCup 2004 World
Championship.

1 INTRODUCTION

The first version of the 3D simulation league simulator
was made available to the RoboCup community during
January 2004, The proposal of a new simulator had the
following objectives:

s Replace the 2D environment of previcus simulator
with a 3D environment

¢ New, more realistic, physics model

» Simulation results should not be dependent on
available computational power or on the quality of
network resources

The first version of the simulator was very immature.
Still it allowed us to contact with some of the new models
of robots, of their sensors and actuators, and some of the
new features related with the physics model and
synchronization of agents with simulator.

The differences between the new 3D simulator [1] and
the 2D simulator [2] used in previous RoboCup
competitions, and in our previous research, are very
significant. These differences led us to the decision of
starting to develop from scratch a new agent for the new
3D simulator. Of course, we intended to apply, with
proper adaptations, most of the methodologies we had

previously develeped for the 213 simulator [3-5]. However
the code of the new agent is almost completely new and
did not result from the adaptation of our 2D agent code.
The following sections describe the architecture and some
of the algorithms that are used by the new FC Portugal 3D
agent,

[E, SIMULATION ENVIRONMENT FOR 3D SOCCER

The simulation environment of the RoboCup 3D
Simulation League is based on a client-server model. The
simulator is the server and agents and visualization tools
are the clients. The simulator creates the virtual
environmeni (soccer field, markers, goals, etc...) where
agents live, sends sensory information to the agents,
receives their actions and applies the virtual physics model
in order to resolve positions, collisions and interactions
with the ball. Each team plays with 11 agents that must
cooperate to score as much goals as possible while not
allowing the other team to score.

The development of the 3D simulator used available
open-source tools extensively. It uses the SPADES [6,7]
framework for the management of agent-world
communication and synchronization, ODE [8] for the
physical model, expat [9] for XML processing, Ruby [10]
for scripting language support and boost [11] for several
utilities.

A SPADES

The 31} simulation server is implemented above a
platferm called SPADES (System for Parallel Agent
Discrete Agent Simulation) [6]. SPADES is a middleware
system for agent-based distributed simulation. It aims to
provide a generic platform to run in multi-computer
systems. [t implements the basic structure to allow the
interaction between agents and a simulated world so that
the users do not have to worry about communication and
synchronization mechanisms such as sockets, addresses,
ete,

SPADES’ main features are:

* Agent based execution - support to implement
sensations, thinking and actions.

¢ Distributed processing — support to run the agents
applications on many computers.

» Resuits unaffected by network delays or load
variations among the machines — SPADES ensure

REVISTA DO DETEIA, VoL 4, N4, MARLO 2005

that the events are processed in the appropriate

order.
s Agents can be programmed independently from the
programming language — the agents can be

programmed in any language once it provides
methods to write/read to/from Pipes.

+ Actions do not need to be synchronized in the
domain — the actions of the agents can take effect at
varying times during the simulation.

A.1 Compenents organization

SPADES components are organized in a client-server
architecture (Fig. 1). The Simulation Engine and the
Communication Server are provided by SPADES; while
the Agents and the World Model are built by the user and
run upon the formers,

The Simulation Engine is a generic piece of software that
provides abstractions to create specific world models upon
it. Agents may run in the same computer of the Simulation
Engine on in remote computers linked to the network, in
this case a Communication Server must be running in the
remote computer. The Weorld Model module must be
running in the same computer of the Simulation
Engine. This module specifies the characteristics of the
envircnment where the agent will live.

Server
World Model Ag. Ag.
i

Simulation "
Engine © .

Client !

Communication
Server

/] \
Ag.l Ag2 .. AgN

Fig. 1 - SPADES Componenits diagram.

A.2 Sense-Think-Act Cycle

SPADES implements what it calls the sense-think-act
cvcle in which each agent receives sensations and replies
with actions. That means that an agent is only able to react
after receiving a scnsation message. The agent is also
capable of requesting its own sensations, but the principle
remains - a sensation must always precede an action. In
order to allow actions between “normal™ sensations,
SPADES provides an action called request time notify that
returns an empty sensation and after receiving it the agent
is able to respond with actions. For example, if an agent
received a sensation at cycle 100 and wants to produce an
action at cycle 110, and if the next scnsation will only
arrive at cycle 120, the agent can ask to receive a time
notify messuye at cyele 110 and just reply with the desired
action after receiving it.

Fig. 2 depicts the sense-think-act ¢ycle and the time
where cach of its compenents run. From A to B a

479

sensaticn is sent to the agent. After receiving the sensation
(from B to C) the agent decides which actions will be
exgcuted; then from (C to D) the actions are sent do the
server.

A B c D tme

! Sense [Think [Acat |

[Sense| Thnk | Act |

| Sense | Think [Ac]

Fig. 2 - SPADES Scnse-Think-Act Cyele.

In many agents, the sense, think and act components may
be overlapped in time (like in Fig. 2), There is just one
restriction: The thinking cycles for one agent cannot be
overlapped. This constraint makes sense, since just a
single processing unit is used per agent, and thus, just one
sensation at time can be processed.

B. SIMULATION SERVER

As stated before the simulator runs upon the SPADES,
and uses ODE 1o calculate the physical interactions
between the objects of the world. The graphical interface
is implemented using OpenGL.

Fig 3 - Snapshot of the 3D Simutator.

The 3D simulation server (Fig. 3) [1] allows twenty two
agents (eleven from each team) to interact with the server
in order to play a simulated robotic soccer game. Each
agent receives sensations about the relative position of the
other players and field goals and other information
concerned with the game state and conditions. At this time
the information about the positioning of the objects in the
world is given by an awkward omnivision that allows the
agent to receive visual information in 360 degrees. The
agents have the shape of a sphere. Replying each sensation
an agent sends actions like drive or kick. Driving implies
applying a force on the body with a given direction and
kicking implies applyving a force on the ball radially to the
agent. Each sensation is received on every 20 cycles of the
server and each cycle takes 10 ms.

480

B.1 Sensations

There are already several sensations that an agent is able
to receive. Every sensation starts with the character 'S
followed by two integers (zime). The first is the cycle in
which the message was sent and the second is the cycle in
which the message arrived to the agent. A sensation
message has the format;

Stime time data

where dara is the string with the information related with
the sensation itself’.

Vision. The vision sensation gives the agent the spatial
arrangement of the world objects in the field. World
objects are the players, the ball, the goals and flags in the
corners. The wvision is, on the 0.3d version, omni-
directional and the objects are considered transparent (at
least for the vision sense). The position of the objects is
given in polar coordinates relative to the respective agent.
The coordinates are given by the distance, the horizontal
angle - theta — and the elevation angle — phi.

Stime time (Vision
{Flag (id id) (pol d theta phi)) ..
{Goal (id id) (pol d theta phi)) ..
{Ball {(pol d theta phi))
(teamname (id id) (pol d theta phil) ..
]

GameState. The game state sensation gives the agent all
the information concerned with the game properties. It
gives information about the dimensions of the field, the
goals, the ball and the agents. It also gives information
about the mass of the objects in the world and other
aspects of the game like: time, play mode agent number,
and if the agent’s team is the right or the left one. Here is
the format of the given information:

Stime time (GameState
{team side)
fuhum number)
fFieldLength length)
{BallMass mass)
{playmode playmede)
w}

AgentState. The agent state gives the agent information

about its internal state. For now, just information
regarding the battery cendition and the temperature are
given.

Stime time (Agentstate
fhattery battery}
{cemp temp}
}

' Note that onc sensation message can have more than one
sensation.

REVISTA DO DETUA, Vol 4, N° 4. AaRrC0 2005

B.2 Actions

As well as sensations, several actions are implemented
that allow an agent to interact with the world. Every action
message starts with the “A’° character and it is followed by
a string,

Adata

where dara contains the information about the action
itself.

Create. The first action that an agent must send is the
create action, This action allows the server to register an
agent and thus establish the communication with it, The
action create as the form:

Af{create)

fnir. The init message allows the server to receive
essential information about the agent, namely its number
and its team. If the number is passed as 0, the server
automatically attributes a number to the agent. The init
action has the format;

Afinit {unum number) (teamname name))

Beam. The beamn action allows an agent to move to a
given point. It may only be executed before game kickofT
and it does not obey to any physical law. Its structure is
the following: '

Afbeam x y z)

Drive. The drive action allows an agent to move. [t
applies a force vector (x, y,) to the center of the agent’s
body with the maximum length of 100.0 units. It has the
format:

Afdrive x y =)

Kick, The kick action follows the laws of gravity and
movement of physics and allows an agent to kick the ball
with a given force intensity and a given vertical direction
(see 3.4 Physics — Kick). The vertical direction is passed
as an argument - the elevation angle, The horizontal
direction is radial to the agent’s body. The action must be
sent like:

Afkick angle force)

B.3 Other important communication procedures

The server establishes the communication by sending a
done (‘D) message (Riley er al. 2003). When the agent
receives this message it should execute its initialization
procedures and when it finishes them it must send an
initdone (*1'} message. After that the server starts to send

REVISTA DO DETUA.VQL. 4, N* 4, MARCO 2005

sensations and the agent replying with actions. Every set
of actions must finish with a downe (*D") message (Fig. 4).

Server Agent
o > '
G- | Kl
ST 7
T ALy 77T
200
(YT ¥
<- ALY T
.. \’f

Fig. 4 - Temporal diagram of the communication between the agent and

the server.

A sensation is received in every 20 server cycles, which
means that an agent should only be able to execute actions
within 20 cycles intervals. However, as stated before, an
agent can ask the server to receive a sensation in a given
cycle by sending a request time notify (R) message. The
format of the message is the following:

Rtime

where fime is the time at which the server must reply. This
procedure makes the server reply with an empty sensation
{*T") at the cycle given. As stated before the only reason to
receive an empty sensation is to be able to act in a given
time between two sensations.

An example where the request time notify makes sense is
when an agent wants to kick the ball in given position. In
the 3D server simulator, to kick the ball in a given
direction, an agent must place itself quite accurately. Thus,
because the interval between sensations is too long
{2G0ms), it can happen that an agent that is running to the
kicking point at cycle ¢ is before that point and at cycle ¢ +
I has already passed the point. To surpass this, one can
predict the time that the agent arrives to the desired
position and ask to receive a time notify message at that
time in order to be able to kick at the right moment.

By receiving this sensation the agent is able to respond
with action messages.

Each sensation takes 10 cycles to reach the agent (send
delay) and actions sent by the agent take 10 cycles to reach
the simulator. Hence a sent action starts to take effect at
the time the next sensation is sent by the server as it is
shown in Fig. 5.

48]

_________ 20

Fig. 5 — Communication delays,

B.4 Physics

The physical interactions of the game are made in a
discrete way that is, in every cycle the new forges to be
applied to the bodies, their current positions, velocities,
etc. are calculated. Every cycle is simulated to take
approximately 10 ms

"T_.

X

—_—
Fair

.
Fground
FLLETT ALY

Fdrive

Fig 6 — Forces applied to the body of an agent when the drive effector
is used

During a regular drive, the body of an agent is under the
influence of three forces: the drive force, the drag force
caused by the contact of its body with the ground and the
force caused by the friction of its body with the air,
Additionally a drag torque is also applied. The ground
force is such that the robot rotates without sliding over the
field. The drag force and drag torque are preportional to
the robot’s speed. The drive force is controlled by the
agent through the drive action.

NI FCPORTUGAL 3D AGENT

The FC Portugal 3D was developed from scratch. Any
attempt to use the code of the FC Portugal 2D agents
would run into serious problems, not because of the
addition of an extra coordinate, but because of the huge
difference in the 2D and 3D servers functioning.

A. Agent's Architecture

The agent structure includes six main modules/packages
that cover different parts of its functioning (Fig. 7).

Oeometry I
Luls I \ I / Actians |

WorldSeate | Skills |

Physics '

Fig. 7 - Modular division of FC Portugal 31 Basic Agent.

Worid State. The “World State” package (Fig. 8) is
probably the most complex one. It has all the information
that the FCP Agent needs to decide which action it should
take. There are three kinds of information that the
WorldState needs: information about the objects (like
players, landmarks and the bail), information about the
conditions of the game (like field length, goal width, etc.)
and the state of the game (like the current play mode, the
result, the time, etc).

Fig. 8 - I'C Portugal World State package architecture,

Physics The physics package aims to reproduce the
physical interactions between the bodies in the world using
the same model as the server does. At the present one can
estimate the velocity and the acceleration of an object, the
current forces applied in a given body, the breaking
distance and the time that an agent takes to move from one
position to another applying a given force.

Geometry. The “Geometry” module is used to make
easier the execution of geometrical calculations. [t is used
to compute data concerning distances, vectors, etc.

Skills. The skills are the low-level actions that an agent is
able to perform. Kicking the ball, moving its body,
intercepting the ball, or dribbling are examples of agent’s
skills. These are also the ones implemented at the moment
by FC Portugal team, The scheme of the skills architecture
is in Fig. 9.

Every skill implements the GenericSkill interface. When
a skill is initialized it immediately computes the necessary
calculations to execute itself, However, the initialization
does not execute the skill. Every skill has a method named
Execute() that allows its execution.

REVISTA DO DETUA, VoL 4. N4,

MARGCO 2003

smeraces
GerarieSaill
I [[I
Kick Move DOribbi Interceptice
-t Player + o - Flager rme Flayer -me - Fayer
b - Hall [+ it - 2all whalt Hall il Bail
oAl e 3 lorte - Yo df fowoned - WtlaSme” | flmee Noal
el hact sTPoston - Verodd | PPoston Yeonrd P Wecod 3
Fhitkangle - foa Pesony veoeedf | frhekFowar | fioat
HockFower - feat +orce - Vieatordf
FReleety - Vecgrd HRckACIOn - Vestoe]!
+hickAngle fioe
!

Fig. 9 - Skills™ architecture

Actions. An action is a group of skills that, together,
produce higher lever behaviours. Sample of actions may
be: passing. shooting, making forwards, eic, Not all of the
implemented actions are used in the current version of the
FC Portugal team. However, the architecture of the FCP
Agent supports the implementation of passes, shoots and
forwards.

[{ ok it h

it I L T e L
|

r i]

Fig. 10 - Actions Archilecture,

In order to determine which action should be executed,
four classes are involved: a mediator, an evaluator, a
generater and the action {tself. The generator
{ActionGenerator) is the class that allows the creation of
potential actions that are able be performed. There are 3
classes that extend the ActionGenerator, one per type of
action — pass, shoot and forward. Each class is able to
return a set of actions of its type, adjusted to the current
situation, and that should be considersd for future
evaluation. The actions returned by each generator have
their own properties according with its type and all of
them extend the GenericAction class, The evaluation of
the actions is done by the evaluator (ActionEvaluator).
This is a class that enables the agent to estimate the
usefulness of every generated action. The evaluator has
also 3 classes (one per type of action) which extend the
ActionEvaluator class; each of them has its one evaluation
components that allow them to estimate the usefulness of
every action of its type.

REVISTA Dy DETUA, Vo, 4, N™ 4, marCo 2005

To join everything together the FCP Agent has a
mediator (ActionMediator) which is a class that is able to
call the necessary functions to generate and evaluate every
type of action and to decide which will be the next action
to be performed.

Utils. The package Utifs was made 1o contain classes that
do not have a direct relevance on the agent behaviour but
help to make some tasks easier. Examples of the
operations of these classes are the creation of log files,
communication with the simulator, a message parser and a
message composer to send the actions to the simulator.

B. Localisation system

The agent gets the objects position by the vision
perceptor, which gives the relative position of all objects
in the world in polar coordinates. The absolute position of
the landmarks is set at the time the agent receives the field
dimensions and the goals position. This information is
usually sent by the server in the second or third sensation.

The localization algorithm is quite straightforward. The
agent starts to seek the closer landmark. [f that landmark is
closer than 20,0m the agent determines its position by the
absolute position of that landmark and its relative position
to the agent. If the landmark is farther than 20.0m the
agent combines, using a simple average, the position of the
closer landmark with the position of the second closer one
to determine its position.

Several experiments were conducted by moving the agent
inside the pitch and determining its position using the
algorithm described above. During these experiments the
maximum error of the algorithm was around 20.0cm and
the frequency of errors of this magnitude was very low.

C. Physics

The agent should be able to predict the future state of the
world if he decides to act in a certain way. This knowledge
is essential for making the right decisions. In order to
accomplish this functionality, and as there is no
documentation on these matters for the 3D simulator,
several experiments were conducted to infer which is the
physics model of the simulator, The results of these
cxperiments are presented in this section.

To be able to capture the effect of a given driving force
the agent must know the magnitude of the friction force
and its own velocity. Two distinct methods were used to
obtain these informations.

To calculate the force in the agent caused by the friction
with the air quadratic regression was used. It is given by:

Fair=A*v +B*v+(

where 4 =-0.84, B=1799and C=112.3.

The graphic in Fig. 11 shows the performance of the
formula used during a two step movement — acceleration
using maximum force in the positive direction of the x axis
followed by an acceleration also using maximum force in

483

the opposite direction. One can see that in the first pari of
the movement (accelerating on the direction of the x axis)
the approximation used is very good since the prediction
of the agent is very near the server data. However, the
second part. immediately after the agent starts 1o brake,
one can see that there is a big difference between the
server data and the agent’s approximation, meaning that
the agent’s calculation is clearly not good enough.

Total Foree Applied on an Agent Ouring & Drive Action

530 1
a0

300 £
200
o1t
g0
Y00

rasli]
Relci]
ann n
530 d - e i : . :

144 @3 143177 281 SES 309 353 36T 441 485 509 573 E1T GET DS T49 FIX 437 461 922

Tyclas

[T idhercae
| —— Agent -Sal:ulalur..!

Fig. 11 — Graphic with the forces applied in the agent’s body during a
drive action

The player velocity was estimated based on the previous

three positions of the agent assuming that acceleration was
constant during that period. Analytically this provided the

following equation for the velocity and acceleration:

v = Ap,=3p, - p,
, = ———re F2
2t
P po: 2vt
2

This methedology has been tested and Fig. 12 shows an

example of the incurred errors.

Velocity Lengih Calculation Error

18 " r—

S

Vaincity

gaEnt Ja calaiar

Fig. 12 — Error on the calculation of the length of the velocity vector
between time 26.9s and 3355

To simulate the ball movement in the ground the laws of
physics were applied to the situation of a free running ball
with a drag force. This has led to the following velocity and
position formulzs:

484

K

¢
2
v=e ™ Xy,
_k,
x==2¢ " xv0+2xv0+x0

Where x0 and v0 are the initial position and velocity of the
ball. Fig. 13 shows that the results obtained are very close to
the simulator’s calculations. One cannot distinguish between
the real values and the approximation made.

Velocity estimation

£ 3
3
2 6;

4

2

a ———

1163 337 506 673 B41 100D 1177 1345 1519 1681
Cycles
Fig 13 = Graph showing the velocity difference berween the server
values and the approximation values given by the formula used
D. Skills

Move; The move skill takes three arguments: a pointer to
the world object, a vector containing the point to where
the agent wants to move and the velocity that it wants to
arrive there. To calculate the force that should be applied
at a given moment in order to move, the agent starts by
getting the braking distance to reach a given velocity,
given ifs own current position and velocity. Then it can
estimate the distance that it can accelerate
{(distanceToPoint — brakeDistance). If that distance is
made in more than forty cycles it accelerates, otherwise it
brakes®.

Kick: As already stated a kick action takes two arguments
- the kick power and the kick angie. The FC Portugal kick
skill receives four arguments: a pointer to the world
object, a vector giving the point to where the ball should
be kicked, a boolean informing if maximum power should
be used and another boolean informing if the ball should
be kicked by the air.

The power that an agent applies when kicking, is directly
proportional to the distance to the final point of the kick
plus an extra force. The extra force varies depending on
whether the agent wants to kick the ball by air or not.

Dribble; Dribbling is the skill that allows an agent to run
with the ball near its body. This is achieved by giving

740 cycles = 20 cycles to start the action + 20 cycles to
execute the action. The position where the agent will be at
the time the action is executed must be estimated by the
agent.

REVISTA DO DETUA, VoL 4, N3, MARCO 20035

small kicks to the ball and running in order to catch it
again. It starts by moving the agent to a position which
enables it to kick the ball in the goal point (firalPasition)
direction, Arriving there the agent tries to kick the ball as
farther as possible {maxDistance). If there is an opponent
agent that is able to steal the ball, the FCPagent starts to
reduce the kick distance successively until none of the
opponent players can catch the bali first.

Interception; The interception skill gives the agent the
ability te catch the ball. At the moment just the quicker
interception is calculated, that is, the interception that
enables the agent to catch the ball in the less time possible.
It receives, as arguments, a pointer to the world and the
number and the team of the plaver to whom the
interception will be calculated. The algorithm is the
following: it calculates the position of the ball in each 20
cycles (interval between sensations), calculates the
distance the player is able to run at maximum speed and
the distance from the player to the ball. The agent is able
to intercept the bail when the ball distance is smaller than
the distance that is able to Tun in a given time.

E. Agent behaviour

Case {(Playmode! eguals

BeforeKickOff:
MovedccordingSESP () ;

FlPortugal KickOff:

If (nyMumber == 9}
RunToTheBallandKickIt () ;
Else
MovehccordingSBSP() ;

}

OpponentKickOff or OpponentKickIn or
COpponentCornerkKick or OpponentGoal¥ick:

MoveAccordingSESP () ;

FCPortugalKickIn or FCPortugalCornerkKick
or FCPortugalGoalKick or FlayOn:

If {MyMoveToTheBallAccording3SBsSe{))
RunToTheBallAndKickIt (};

Else
MovelAccording3SBSP{) ;

The agent behaviour is very much tied with the SBPS [3]
originally developed by FC Portugal 2D team. The SBSP,
was successfully used by FC Portugal team on the 2D
simulator and consists in assigning & strategic position to
each agent on the field given the position of the ball and
the current situation. The player that runs to the ball is the
one that has the best interception from its strategic
position to the ball. Each agent is differentiated by its
number [4].

Before the game starts each agent requests the position
that it must occupy on the playing field given its number.

REVISTA DO DETUA, VOL. 4, N* 4 \ARGO 2005

The SBSP has the advantage to make easier for an agent to
know where its teamn mates are without having to calculate
their real position. This is so, because each agent is able to
know the position of its companions simply by running the
SBSP algorithm for all the players of its team.

If the kick-off is assigned to the opposing team the FC
Portugal team places itself according with the SBSP
algorithm until the ball is touched by one of the opposing
players. If the kick-off is assigned to the FC Portugal team,
the agent with the closest distance from the position given
by the SBSP to the ball, starts running to a position that
allows it to kick the ball. Arriving there it kicks the ball.
The other players position themselves according to SBSP
unti} the former touches the ball,

After the ball is touched by one of the agents of the team
which has the kick-off the game state is changed to
“PlayOn™ and the game starts. At this state each player
moves to its strategic position by running the SBPS
algorithm. The only exception is the player with the best
interception time, this player tries to catch the ball and to
kick it. The position to where the ball is kicked depends
on where the ball is situated in the field. If the ball is near
FC Portugal goal then the players try to kick it to the sides,
in order to avoid putting it in a frontal area near the goal
(which would be very dangerous in case an opponent was
present). Otherwise FC Portugal agents try to shoot in the
opponent’s goal direction.

1V. CONCLUSIONS

The FC Portugal 3D team participated in RoboCup 2004
achieving the 8" place. It participated in 9 games having 6
defeats, 2 draws and 1 win. The low level skills of FCP
agents performed ditferently on the competition computers
and in the tests that had been previously performed.
Although the team was able to reach the ball quite fast,
most of the time the agent was not capable of kicking the
ball at all, the time spent in positioning itself properly was
50 long that the opponents could arrive and steal the ball.
Unfortunately, it was not possible to perform tests in the
competition computers and because the problem did not
cccur in the computers used in our tests the source of the
problem could not be found in effective time.

V.FUTURE WORK

A new world state update and move low-level skills must
be developed so that FC Portugal agents can kick the ball

485

confidently. Without this functionality it is impossible to
play soccer efficiently. From this point on the FC Portugal
team wishes to implement more ideas, which have proved
to be successful on the 2D Simulation League, in the 3D
Simulation League, namely, the SBSP, the Low Level
Skills evaluators, and others like the use of intelligent
communication.

ACKNOWLEDGEMENTS

This research 15 supported by FCT-
POSI/ROBO/43910/2002 Project — “FC Portugal New
Coordination Methodologies applied to the Simulation
League™,

REFERENCES

[11 RoboCup Soccer Server 3D Mainienance Group, “The RoboCup
3D Soccer Simulator™ hitp:/sserver.sourceforge net/ 2003

[2] Chen, Mao et al. “RobolCup Soccer
http:/fsserver sourceforge.net/, 2003

13 L.P. Reis. N. Lau, E.C. Oliveira “Situation Based Strategic

Server™,

Paositioning for Coordinating a Team of Homogeneous Agents”,
In: Balancing Reactivity and Social Deliberation in Multi-Agent
Systems. Markus Hanncbauer, Jan Wendler, Enrico Pagello.
editors, LNCS 2103, pp. 175-197, Springer Verlag, Berlin, 2001

[4] L.P. Eeis and M. Lau “FC Portugal Team Description: RoboCup
2000 Simulation League Champion™. In: RoboCup-2000: Robot
Soccer World Cup IV, Peter Stone, Tucker Balcﬁ and Gerhard
Kraetzschmar, editors, LNAIL 2019, pp. 29-40, Springer Verlag,
Berlim., 2001

[ST LP Reis and N. Lau, “COACH UNILANG - A Standard
Language for Coaching a (Robo)Soccer Team”, In: RoboCup-
2001 Robot Soccer World Cup V, Andreas Birk, Silvia
Coradeshi, Satoshi Tadokoro editors, LNAIL 2377, pp. 183-192,
Springer Verlag, Berlim 2002

[6] Patrick Riley. "SPADES: System for Parallel Agent Discrew
Event Simulation™, Al Magazine, 24(2):41-42, 2003

{71 Parick Riley, “SPADES for Parallel Apent Discrete Event
Simulation”, hitp:/spades-sim.sourceforge net/

[8] Smith, Russell. “Open Dynamics Engine v(.039 User Guide™,
http://opende _sourceforge. nev, 2003 '

[9] The Expat XML parser, htp:/expat.sourceforge.net. 2004

[10] Ruby Home Page, hitp//www ruby-lang org, 2004

|11 Boost C++ Libraries, http//www_boost.org, 2004

