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Computing π(x): the combinatorial method

Tomás Oliveira e Silva

Abstract – This article presents a self-contained description
of the method proposed by Deléglise and Rivat — which has
roots on earlier work by Meissel, by Lehmer, and by Lagarias,
Miller and Odlyzko — to compute π(x), which is the number
of primes not larger than x.
To make life easier to programmers, the major parts of the

computation of π(x) are also presented in algorithmic form.
The more interesting low-level computational details are pre-
sented in the form of of C code snippets.

Resumo – Este artigo descreve detalhadamente o método pro-
posto por Deléglise e Rivat — que é baseado em trabalhos
anteriores de Meissel, de Lehmer, e de Lagarias, Miller e
Odlyzko — para calcular π(x), que é o número de números
primos até x.

I. INTRODUCTION

The problem of the computation of π(x), which is the
number of primes not larger than x, has been drawing the at-
tention of countless mathematicians for a long time. Gauss,
based on empirical evidence garnered from tables of primes
compiled by hand, conjectured that

lim
x→∞

π(x)∫ x

2
du

log u

= lim
x→∞

π(x)
x

log x

= 1.

This fundamental result, known as the prime number the-
orem, was first proved in 1896 almost simultaneously by
Hadamard and de la Vallée-Poussin [1].
The computation of π(x) for a given value of x was done

at first using tables of prime numbers made using the sieve
of Eratosthenes or one of its variants. Legendre was the
first to show that the computation of π(x) does not require
the explicit determination of all primes up to x. His for-
mula, which is based on the inclusion-exclusion principle
and only requires the knowledge of the primes up to

√
x [2],

has a number of non-zero terms which grows asymptoti-
cally like x. This represents a modest improvement on the
direct enumeration of all primes up to x done using the
sieve of Eratosthenes or one of its variants, which requires
an amount of time1 which grows like x log log x.
In the last quarter of the XIX century, Meissel [2] found a

more efficient way to compute π(x). In 1959, Lehmer [3],
[2] systematized and simplified Meissel’s method, and
made what was probably the first computer program able
to compute π(x) without using a sieve. Lehmer’s method
requires an amount of time which grows like x log−4 x

1One unit of time – one step – corresponds to one single word elemen-
tary arithmetic operation (addition, subtraction, multiplication, or divi-
sion), or to one decision (branch), or to one single word data movement
(load or store). One unit of storage space corresponds to one word. It is
assumed that +x and −x can be stored without error in a single word.

(a small improvement over Legendre’s formula), and an
amount of space which grows like x1/3 log−1 x (a signif-
icant improvement over Legendre’s formula). In 1963,
Mapes [2] found a way to compute π(x) that requires
amounts of time and space which grow like x7/10 (this exor-
bitant space requirement precludes the utilization of Mapes’
method for large values of x).
In 1985, Lagarias, Miller, and Odlyzko, based on the work

of Meissel and Lehmer, found a much better way to com-
pute π(x). Their method requires an amount of time which
grows like x2/3 log−1 x, and uses an amount of space which
grows like x1/3 log2 x [4], [5]. In 1996, Deléglise and Ri-
vat [6] found a way to save a factor of log x in the amount
of time required to compute π(x) using the Lagarias-Miller-
Odlyzko method, at the expense of an increase by a simi-
lar factor in the amount of space used in the computation.
In 2001, Gourdon [7] found a way to save constant fac-
tors in the computational complexity of the Deléglise-Rivat
method.
Over the years the record of computation of π(x) has been

steadily growing. The present record appears to be the com-
putation of π(4 · 1022), performed in 2001 by Gourdon.
All previously mentioned methods use combinatorial ideas

to compute π(x). In 1987, Lagarias and Odlyzko [8], [5]
found an analytical way to compute π(x) which has a better
asymptotic computational complexity than the Deléglise-
Rivat method. Nonetheless, so far no one was able to use it
in record-breaking computations of π(x).
The rest of this paper is organized as follows. Section II

describes the improvements made by Deléglise and Rivat,
by Lagarias, Miller, and Odlyzko, and by Lehmer on the
Meissel method of computation of π(x); the description of
the data structure [9] used to sieve efficiently an interval is
relegated to appendix A. Section III presents tables with
values of π(x) for some powers of two and some powers
of ten (these last are in perfect agreement with Gourdon’s
computations). Table I presents some of the notation used
in the paper; the symbols there defined are not defined else-
where in the paper.
This paper does not describe the improvements on the

combinatorial method made by Gourdon, not does it de-
scribe how to parallelize the computation of π(x). These
are left to another publication.

II. COMPUTATION OF π(x)

For an integer a � 0 and a real number x � 1, let φ(x, a)
be the number of positive integers, not larger than x, which
are co-prime to each of the first a primes, i.e.,

φ(x, a) =
�x�∑
n=1

[pmin(n) > pa].



760 REVISTA DO DETUA, VOL. 4, N◦ 6, MARÇO 2006

TABLE I

NOTATION USED

notation short description

[C] equal to 1 if condition C is true and equal to 0 otherwise
[x, y[ interval of the real line, closed at x and open at y

�x� greatest integer � x

�x� smallest integer � x(a
2

)
equal to a(a − 1)/2

gcd(a, b) greatest common divisor of the two integers a and b

ϕ(n) (Euler’s totient function) number of integers between 0
and n that are co-prime to n

pk the k-th prime number, i.e., p1 = 2, p2 = 3, p3 = 5, and
so on; by convention p0 = 1

pmin(n) smallest prime factor of n; by convention pmin(1) = +∞
pmax(n) largest prime factor of n; by convention pmax(1) = 1

ω(n) number of distinct prime factors of n; by convention,
ω(1) = 0

Ω(n) number of prime factors (counting repetitions) of n; by
convention, Ω(1) = 0

µ(n) (Möbius function) equal to (−1)ω(n)
[
ω(n) = Ω(n)

]
O(f) g(x) = O(

f(x)
)

if there exists a positive constant C and
a x0 such that

∣∣g(x)
∣∣ � Cf(x) for all x > x0

li(x) (logarithmic integral) principal value of
∫ x
0

du
log u

Also, let φk(x, a) be the number of positive integers, not
larger than x, which have exactly k prime factors (counting
repetitions), each one of which larger than pa, i.e.,

φk(x, a) =
�x�∑
n=1

[pmin(n) > pa] [Ω(n) = k].

Since φk(x, a) = 0 when x < pk
a+1, i.e., when a � π( k

√
x),

the fundamental theorem of arithmetic implies that

φ(x, a) =

⌊
log x

log pa+1

⌋
∑
k=0

φk(x, a). (1)

For x � 1 it is obvious that

φ0(x, a) = 1.

In addition, for a � π(x) it is also obvious that

φ1(x, a) = π(x) − a.

Consequently, for x � 1 and a � π(x), it follows from (1)
that

π(x) = φ(x, a) + a − 1 −

⌊
log x

log pa+1

⌋
∑
k=2

φk(x, a). (2)

All methods of the Meissel type (combinatorial methods)
are based on this equation. The computation of φ(x, a) will
be addressed in detail in subsection II-B. Depending on the
value of a, it may also be necessary to compute φ2(x, a),
φ3(x, a), and so on. The Lagarias-Miller-Odlyzko and the
Deléglise-Rivat methods use a = π(α 3

√
x), 1 � α � 6

√
x,

with α growing slower that any power of x, i.e., α = O(xε).
Thus, they require the computation of φ2(x, a), a task that
will be addressed in detail in subsection II-A. It is worth-
while to mention here that a = π(

√
x) is used in Legen-

dre’s formula (in this case all φk(x, a) vanish), and that
a = π( 4

√
x) was used by Lehmer in [3] (in this case

φ2(x, a) and φ3(x, a) must be computed).

A. Computation of φ2(x, a)

Let a = π(α 3
√

x), with 1 � α � 6
√

x. Thus, a � π(
√

x).
When a = π(

√
x) it can be verified that φ2(x, a) vanishes.

When π( 3
√

x) � a < π(
√

x) it can be verified that

φ2(x, a) =
π(x)∑

b=a+1

π(x)∑
c=b

[pbpc � x] =
π(

√
x)∑

b=a+1

π(x/pb)∑
c=b

1

does not vanish. Since the number of terms in the inner
summation is π(x/pb) − (b − 1), it follows that

φ2(x, a) =
(

a

2

)
−

(
π(
√

x)
2

)
+

π(
√

x)∑
b=a+1

π
( x

pb

)
. (3)

By convention [10, exercise 2.1],
∑i−1

j=i f(j) = 0; hence,
(3) also gives the correct result for a = π(

√
x).

Let

z =
x2/3

α
. (4)

Since pa � α 3
√

x < pa+1 it follows, for a < b � π(
√

x),
that √

x � x

pb
� x

pa+1
<

x

α 3
√

x
= z.

Moreover, since z � α3z < p2
a+1, it follows from (2) that

π
( x

pb

)
= φ

( x

pb
, a

)
+ a − 1.

As will be seen in the next subsection, the computation of
φ(x, a) requires sieving the interval [1, z[, i.e., removing
from it all multiples of the first a primes. After this is ac-
complished, each of the O(x1/2log−1 x) values of φ

(
x
pb

, a
)

can be computed in O(log z) steps using the method de-
scribed in appendix A. Disregarding the cost of this sieve
(accounted for latter on), it turns out that the computation of
φ2(x, a) requires O(x1/2 log log x) steps (because it is nec-
essary to generate all primes up to x1/2 using a segmented
Eratosthenes sieve).

B. Computation of φ(x, a)

Because gcd(n, p1 · · · pc) is, when c is fixed, a periodic
function with period p1 · · · pc, the computation of φ(x, c)
can be done using the formula

φ(x, c) =
⌊

x

p1 · · · pc

⌋
φ(p1 · · · pc, c)

+ φ
(�x� mod p1 · · · pc, c

)
, (5)

in which

φ(p1 · · · pc, c) = ϕ(p1 · · · pc) = (p1 − 1) · · · (pc − 1).

To use (5) in an efficient way it is necessary to precompute a
table of values of φ(n, c) for 0 � n < p1 · · · pc. Obviously,
this way of computing φ(x, c) can only be used when c is
very small (say, when c � 7).
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x
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Fig. 1 - The first two levels of the computational tree of φ(x, a).

For a > 0 the computation of φ(x, a) can also be done
recursively, using the formula

φ(x, a) =
�x�∑
n=1

(
[pmin(n) � pa] − [pmin(n) = pa]

)

= φ(x, a − 1) −
�x/pa�∑

n=1

[pmin(n) � pa]

= φ(x, a − 1) − φ(x/pa, a − 1). (6)

The recursive application of this formula in the computation
of φ(x, a) can be depicted as a binary tree (see figure 1),
with φ(x, a) at its root. The nodes at level k of this tree
(with level 0 on top) have the values µ(n)φ

(
x
n , a−k

)
, with

pmax(n) � pa and pmin(n) > pa−k. Since φ(x, 0) = �x�,
growing the tree as much as possible yields

φ(x, a) =
∑

1�n�x
pmax(n)�pa

µ(n)
⌊x

n

⌋
.

It is not necessary to apply (6) when x < pa+1, in which
case φ(x, a) = 1 if x � 1 and φ(x, a) = 0 if x < 1.
This last case does not occur if the recursion is terminated
as soon as x < pa+1. These observations, coupled with (2)
and a = π(

√
x), are used in the incomplete C program pre-

sented in table II; it computes π(x) in O(x log−1 x) steps
and uses O(

√
x log−1 x) space.

To reduce as much as possible the number of leaves in
the computation of φ(x, a), in [4] Lagarias, Miller, and
Odlyzko set a = π(α 3

√
x), with α � 1 carefully chosen,

and use the following rule to continue to apply (6): split a
node labeled ±φ(y, b) if b > c and y � z, with z given
by (4). This rule is equivalent to the following termination
rule: do not split a node labeled ±φ(y, b) = µ(n)φ

(
x
n , b

)
if

either

(i) b = c and y � z, i.e., b = c and n � α 3
√

x, or

(ii) y < z, i.e., n > α 3
√

x (if this happens then b � c).

Following [4], leaves of type (i) will be called ordinary
leaves, and those of type (ii) will be called special leaves.
For the sake of clarity, the contribution of these two kinds
of leaves to the value of φ(x, a) will be treated separately.

B.1 Computation of the contribution of the ordinary leaves
to the value of φ(x, a)

In an ordinary leaf the conditions n � α 3
√

x, µ(n) �= 0,
and pmin(n) > pc must be satisfied. The contribution of

TABLE II

COMPUTATION OF π(x) USING LEGENDRE’S FORMULA

static int sum,np,*p;

static void init_p(int x)
{

// compute np=pi(sqrt(x)) and initialize
// the array p[0..np] with 2,3,5,7,...,0
...

}

static void phi(int x,int a,int sign)
{
loop:

if(a == 0)
sum += sign * x;

else if(x < p[a])
sum += sign;

else
{

--a;
phi(x / p[a],a,-sign);
goto loop;

}
}

int pi(int x)
{

init_p(x);
sum = np - 1;
phi(x,np,1);
return sum;

}

the ordinary leaves to the value of φ(x, a) is then given by

S0 =
∑

1�n�α 3√x
pmin(n)>pc

µ(n)φ
(x

n
, c

)
.

It is quite simple to identify the values of n that satisfy the
three conditions stated above. One possible way to do this
requires the computation of the value of µ(n)pmin(n) for
1 � n � α 3

√
x, which can be done using a simple modifi-

cation of the sieve of Eratosthenes (see C code in table III),
followed by the determination of the values of n for which∣∣µ(n)pmin(n)

∣∣ > pc. For each such n it is possible to com-
pute φ

(
x
n , c

)
quickly using (5).

It is obvious that the number of ordinary leaves cannot
be larger than α 3

√
x. Thus, the work required to compute

S0 takes no more than O(αx1/3) steps, to which must be
added the O(αx1/3 log log x) steps required to compute
µ(n)pmin(n).

B.2 Computation of the contribution of the special leaves
to the value of φ(x, a)

In a special leaf the conditions n > α 3
√

x, µ(n) �= 0,
pmin(n) > pc and pmax(n) � α 3

√
x must be satisfied.
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TABLE III

COMPUTATION OF µ(n)pmin(n) FOR 1 � n � N

void init_mu(int *mu,int N)
{
int i,j;

for(i = 1;i <= N;i++)
mu[i] = 1;

for(j = 2;j <= N;j++)
if(mu[j] == 1)

for(i = j;i <= N;i += j)
mu[i] = (mu[i] == 1) ? -j : -mu[i];

for(j = 2;j * j <= N;j++)
if(mu[j] == -j)

for(i = j * j;i <= N;i += j * j)
mu[i] = 0;

}

Moreover, its parent cannot be a special leaf, nor can it
be an ordinary leaf, which implies that the special leaf
was reached via the second term of (6). More precisely,
if the parent node has the value µ(m)φ

(
x
m , b + 1

)
, with

b+1 > c and m � α 3
√

x, then the special leaf has the value
−µ(m)φ

(
x

mpb+1
, b

)
, with mpb+1 > α 3

√
x; by construction,

pmax(mpb+1) � α 3
√

x is automatically ensured. The con-
tribution of the special leaves to the value of φ(x, a) is then
given by

S = −
∑

c<b+1<a

∑
m�α 3√x<mpb+1
pmin(m)>pb+1

µ(m)φ
( x

mpb+1
, b

)
.

(The case b + 1 = a cannot occur.) Since mpb+1 > α 3
√

x,
the computation of S does not require values of φ(y, b) for
y � z.
For a given value of b such that c � b < a − 1, the values

of m that enter in the computation of S satisfy both

max
(α 3

√
x

pb+1
, pb+1

)
< m � α 3

√
x (7)

and
∣∣µ(m)pmin(m)

∣∣ > pb+1. Equipped with this way of
identifying all special leaves, the computation of S can be
organized in the following way. First, the contribution of
the special leaves with b = c is computed using (5). Next,
the multiples of the primes p1, . . . , pc are removed from the
interval [1, z[. Finally, the computation of the contribution
of the rest of the special leaves is done by removing in suc-
cession from the interval [1, z[ the multiples of the primes
pc+1, . . . , pa, extracting in between the required values of
φ(y, b). After this the primes up to pa may be added back to
the interval [1, z[, which simplifies slightly the computation
of φ2(x, a).
Since the number of special leaves is large, the computa-

tion of the values of φ(y, b) should be done as quickly as
possible; the data structure used for this purpose, first used
in a slightly modified form in arithmetic coders [9], [11], is
described in detail in appendix A (the data structure used
in [4] uses 50% more space and its update is slower, on
average, by a factor of almost 2). With this data structure
each value of φ(y, b) can be evaluated in O(log z) steps,
(not counting the work required to perform the sieve opera-
tions).

B.3 Improved computation of the contribution of the spe-
cial leaves to the value of φ(x, a)

The lower bound of (7) can take two distinct forms, ac-
cording to whether p2

b+1 � α 3
√

x or whether p2
b+1 > α 3

√
x.

The first occurs when pb+1 � pa∗ , where a∗ = π(
√

α 6
√

x),
with a∗ < a, and the second occurs when pb+1 > pa∗ .
The contribution of the leaves that fall in the first case is

S1 =
∑

c<b+1�a∗
S1b,

with

S1b = −
∑

α 3√x
pb+1

<m�α 3√x

pmin(m)>pb+1

µ(m)φ
( x

mpb+1
, b

)
.

From these formulas it follows that the computation of
S1 takes at most O(α3/2x1/2) steps (without counting the
sieve work).
The contribution of the leaves that fall in the second case

is
S2 =

∑
a∗<b+1<a

S2b, (8)

with
S2b =

∑
b+1<d�a

φ
( x

pb+1pd
, b

)
, (9)

because pmin(m) > pb+1 coupled with m � α 3
√

x < p2
b+1

forces m to be a prime number. The number of terms in S 2

is exactly
(

a−a∗
2

)
. When α > 1 part of the computation of

S2 can be performed without resorting to the full machinery
of appendix A [4]. Indeed, when

max
( x

p2
b+1

, pb+1

)
< pd � α 3

√
x (10)

the contribution of the special leaf is given by

φ
( x

pb+1pd
, b

)
= 1 (11)

(this is a consequence of the fact that φ(y, b) = 1 when
1 � y < pb+1), and when

max
( x

p3
b+1

, pb+1

)
< pd � min

( x

p2
b+1

, α 3
√

x
)

the contribution of the special leaf is given by

φ
( x

pb+1pd
, b

)
= π

( x

pb+1pd

)
− b + 1 (12)

(this is a consequence of the fact that φ(y, b) = π(y)−b+1
when pb+1 � y < p2

b+1). In order to use (12) efficiently it
is necessary to precompute a table of values of π(y). To
avoid using an excessive amount of space, this table will
only store values of π(y) for y � α 3

√
x. (For the present

purpose it is convenient to exclude the case y = α 3
√

x.)
The condition y < α 3

√
x forces pd to be larger than z/pb+1.

Since z/pb+1 > x/p3
b+1 when p2

b+1 > α 3
√

x, it follows
that (12) can be used for the values of d that satisfy

max
( z

pb+1
, pb+1

)
< pd � min

( x

p2
b+1

, α 3
√

x
)
. (13)
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It is convenient to give names to the different kinds of
leaves that contribute to S2; those that satisfy (10) will be
called trivial leaves, those that satisfy (13) will be called
easy leaves, and the rest will be called hard leaves. (This
terminology is similar to the one used in [4].)
According to (11), the contribution of the trivial leaves is

their number. From (10), it follows that the number of triv-
ial leaves, for each value of b, is given by a + 1− tb, where

tb =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b + 2, if x
p2

b+1
� pb+1,

π
( x

p2
b+1

)
+ 1, if pb+1 < x

p2
b+1

< α 3
√

x,

a + 1, if α 3
√

x � x
p2

b+1
.

Note that there are no trivial leaves when pb+1 � √
z, and

that all leaves are trivial when pb+1 � 3
√

x. With the help of
the table of values of π(y) mentioned previously, the con-
tribution of the trivial leaves corresponding to a given value
of b can be computed in constant time. The contribution of
all trivial leaves can then be computed in O(αx1/3 log−1 x)
steps.
The contribution of the easy leaves can be split in two

parts [6], according to whether pd >
√

x/pb+1 or whether
pd �

√
x/pb+1. In the first case the value of (12) has a

tendency to be the same for consecutive values of d, while
this does not happen in the second case. For this reason, the
leaves that fall in the first case will be called clustered easy
leaves, and those that fall in the second case will be called
sparse easy leaves. Instead of computing the contribution
of each clustered easy leaf individually, it is faster to de-
termine the number of leaves for which (12) takes a given
value, say l, and then compute their joint contribution in a
single step. Note that l � a − b + 1; this result follows
easily from the fact that (13) can only be satisfied when
3
√

x/α2 < pb+1 < 3
√

x, coupled with pd >
√

x/pb+1. The
values of d for which (12) is equal to l satisfy

pb+l−1 � x

pb+1pd
< pb+l,

which is equivalent to

x

pb+1pb+l
< pd � x

pb+1pb+l−1
.

(Note that pa+1 may be needed to compute the lower
bound.) Keeping in mind that (13) and pd >

√
x/pb+1

must also be satisfied, it follows that the number of valid
values of d can be computed in constant time, again with
the help of the table of values of π(y) mentioned previ-
ously. (In practice the distinction between clustered and
sparse easy leaves does not need to be as rigid as presented
here, which simplifies somewhat the algorithm implemen-
tation; see subsection II-D for details.)

C. Choice of the value of α

In order to compute π(x) using the method outlined above,
the first thing that must be decided is the value of α, which
must satisfy 1 � α � 6

√
x. To deal with the non-linear

effects of the processor’s data caches, this is best done by
experimenting with an actual program, adjusting the value

w0

w0
w1 w2

w2

w3

w3

w4

w4

u

v

Hard

Easy
(clustered)

Easy
(sparse)

Trivial

v = x/u2

v =
√

x/u

v = z/u

w4 = α 3√x

w3 = 3√x

w2 = 3√x/
√

α

w1 = 3√x/α2

w0 =
√

α 6√x

Fig. 2 - Classification of the special leaves for x = 1012 and α = 2. The
u coordinate represents values of pb+1, and the v coordinate represents
values of pd. When w1 < w0, i.e., when α > 15√x, the shape of the easy
and hard regions is slightly different; since, by assumption, α = O(xε),
there is no need to discuss this case.

of α until the execution time reaches a minimum for a given
test value of x. (In the author’s program, changes of ±25%
around the optimal value of α did not increase the execu-
tion time by more than 3%.) The value of α found in this
way will be close to optimal for values of x close to the test
value. After doing this for several test values it will be pos-
sible to use some kind of curve fit to obtain a good value of
α for a general x. The following asymptotic study shows
that the best α should grow like log3 x.
To obtain accurate estimates of the number of easy and

hard leaves π(x) will be approximated by li(x). This will
be achieved by replacing summations in which p b+1 or pd

belongs to a given interval by integrals, over the same inter-
val, with pb+1 or pd replaced respectively by u or v, and us-
ing du

log u or dv
log v as the measure of integration. The follow-

ing definitions will be useful: w0 =
√

α 6
√

x, w1 = 3
√

x/α2,
w2 =

√
z, w3 = 3

√
x, and w4 = α 3

√
x. Moreover, it will be

implicitly assumed that α = O(xε).
The shapes of the trivial, easy, and hard regions of the u-v

plane can be determined from the following facts:

• w0 < u < w4, see (8);
• u < v � w4, see (9);
• the transition between trivial and easy leaves occurs

when x/(pb+1pd) ≈ pb+1, i.e., when v = x/u2;
• the transition between the two kinds of easy leaves oc-

curs when pd ≈ √
x/pb+1, i.e., when v =

√
x/u;

• the transition between easy and hard leaves occurs
when x/(pb+1pd) ≈ α 3

√
x, i.e., when v = z/u.

The shape of these regions is illustrated in figure 2 for the
case x = 1012 and α = 2. As mentioned above, the inte-
gral of 1/(log u log v) over one of these regions is a good
estimate of the number of leaves it contains.
Let Ws be the amount of work required to compute the

contribution of all sparse easy leaves, Ns the number of
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sparse easy leaves, and As the area of the sparse easy leaves
region. According to subsection II-B.3 the contribution of
each sparse easy leaf can be computed in a constant number
of steps. Thus Ws is proportional to Ns. But

Ns ≈
∫ w2

w1

du

log u

∫ √
x/u

zu−1

dv

log v
+

∫ w3

w2

du

log u

∫ √
x/u

u

dv

log v
.

Since w1 � u � w3 and w2 � v � w4, it follows that

As

log w3 log w4
� Ns � As

log w1 log w2
.

Because As = O(x2/3) and α = O(xε), it follows that

Ws = O(x2/3 log−2 x).

According to subsection II-B.3, the work required to com-
pute the contribution of the clustered easy leaves to the
value of S2b is proportional to the number of values of l.
It follows that the work required to compute the contribu-
tion of all clustered easy leaves, denoted by Wc, can be
approximated, up to a multiplicative constant, by

∫ w2

w1

du

log u

(
π
( x

u
√

x/u

)
− π

( x

uw4

))

+
∫ w3

w2

du

log u

(
π
( x

u
√

x/u

)
− π

( x

u(x/u2)

))
≈ Ns.

Hence, Wc grows at the same rate as Ws. (This is not a co-
incidence. Gourdon [7] found a way to merge the compu-
tation of the contributions of the two types of easy leaves.)
Let Wh be the amount of work required to compute the

contribution of all hard leaves, Nh the number of hard
leaves, and Ah the area of the hard leaves region. Accord-
ing to appendix A, the work required to compute the con-
tribution of each hard leaf takes O(log z) steps. Hence, Wh

will be proportional to Nh log z. Since Ah = O(z log α) it
follows that Nh = O(z log−2 x log α), and that

Wh = O
(

log α

α

x2/3

log x

)
.

The only other significant part of the computation is
to sieve the interval [1, z[ using the method described
in appendix A, which requires O(z log z) steps (and not
O(z log z log log z) steps as reported in [6]). The entire
amount of work required to compute π(x) is then

W = O
(

log α

α

x2/3

log x
+

x2/3

log2 x
+

x2/3

α
log x

)
.

The choice α = β log3 x balances the sieve work with
the work required to evaluate the contribution of the easy
leaves, giving a total work of O(x2/3 log−2 x) steps. The
constant β depends on the actual implementation of the al-
gorithm; it should be determined empirically.

D. Subdivision of the interval [1, z[

Dealing with the whole interval [1, z[ at once is impractical
for large values of x. It is thus usually necessary to subdi-
vide it. This will be done at the integers zk, which must

satisfy the conditions 1 = z0 < z1 < · · · < zK = �z�,
giving rise to the intervals Bk = [zk−1, zk[, k = 1, . . . , K .
It is obvious that [1, z[ and

⋃K
k=1 Bk contain the same inte-

gers.
The intervals Bk must be processed sequentially, starting

with B1. To compute φ(y, b) for y ∈ Bk and for c � b < a
it is necessary to remove the multiples of each prime up to
pb from this interval. In order to be able to count quickly
the number of surviving integers, zk − zk−1 should be a
power of 2. The value of φ(y, b) will then be the value of
the sum of the appropriate counters (see appendix A) plus
the value of φ(zk−1 − 1, b).
When the length of each interval is O(α 3

√
x) or less,

the method to compute π(x) described in this paper will
use O(x1/3 log3 x) words of storage. This goal can be
achieved using O(x1/3 log−6 x) or more intervals of equal
length. (In an actual program the interval length should
be adapted dynamically, in order to make the program as
fast as possible.) Since the amount of work spent in over-
heads while processing an interval is proportional to the
number of primes used in the sieve (see below), to keep
the total amount of work at O(x2/3 log−2 x) no more than
O(x1/3 log1/2 x) intervals can be used.
There are three tasks that must be performed while the in-

terval Bk is being processed, namely, update of the value
of S1b for c < b + 1 � a∗, update of the contribution of
the hard leaves to the value of S2b for a∗ < b + 1 < a, and
update of the value of φ2(x, a). To accomplish the first two
it is necessary to determine the value of φ(y, b) for some
y ∈ Bk and c < b + 1 < a. To accomplish the third is is
necessary to evaluate π(y) for some y ∈ Bk.
For each b, the values of m (or of pd) which need to be con-

sidered when the interval Bk is being processed are those
for which x/(mpb+1) ∈ Bk and

∣∣µ(m)pmin(m)
∣∣ > pb+1.

Since in a special leaf (7) must also be enforced, it follows
that

max
(α 3

√
x

pb+1
, pb+1,

x

pb+1zk

)
< m � min

(
α 3
√

x,
x

pb+1zk−1

)
.

(14)
For this condition to be satisfiable it is necessary that

max
(
pc,

z

zk

)
< pb+1 < min

(
α 3
√

x,

√
x

zk−1

)
.

It is possible to infer from this result that the range of ac-
tive values of pb+1 is larger when zk is small than when zk

is large (see figure 3). Thus, the work required to process
constant-length intervals is highly skewed; intervals close
to x1/3 require much more computational effort than inter-
vals close to x2/3.
There is no need to resort to (14) to identify the special

leaves that contribute to S1b or S2b when the interval Bk is
being processed. The computation of S1b, with c � b < a∗,
can be done using the following algorithm, which uses the
variable m1b to keep track of the largest value of m not yet
taken in consideration.

Algorithm 1. [Computation of S1b for a given b]

Step 1. Set m1b = �α 3
√

x�, S1b = 0, and k = 1.
Step 2. Remove the multiples of p1, . . . , pb from Bk.
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16 18 20 22 24 26 28 30 32
0

2

4

6

8

10

12

14

16

log2 zk

lo
g
2

p
b
+

1

Fig. 3 - Lower and upper bounds of pb+1 while sieving the interval [1, z[
(descending lines), and the prime sieve limit

√
zk (ascending line), for the

case x = 248 , α = 1, c = 0, and zk−1 = zk − 216. (To make the figure
easier to understand, zk is treated as a continuous variable.) Due to the
vertical logarithmic scale, the range of values of pb+1 is larger when zk is
small than when it is large.

Step 3. If m1bpb+1 � α 3
√

x then terminate the algorithm.
Step 4. Set y = x/(m1bpb+1). If y � zk then increment k

and go to step 2.
Step 5. If pmin(m1b) > pb+1 then subtract µ(m1b)φ(y, b)

from S1b. Decrement m1b and go to step 3.

(Because the computation of S1 requires a comparatively
small amount of work, it is not necessary to use the method
described in section 5 of [4] to find the special leaves.)
The computation of S2b, with a∗ � b < a − 1, can be

done using the following algorithm, which uses the variable
d2b to keep track of the largest value of d not yet taken in
consideration. (When t = 0 the algorithm is evaluating
clustered easy leaves, when t = 1 it is evaluating sparse
easy leaves, and when t = 2 it is evaluating hard leaves.)

Algorithm 2. [Computation of S2b for a given b]

Step 1. Set d2b = tb − 1, S2b = a− d2b, k = 1, and t = 0.
Step 2. If d2b = b + 1 then terminate the algorithm. Other-

wise, set y = x/(pb+1pd2b
) and go to step 3 + 2t.

Step 3. If y � α 3
√

x then set t = 2 and go to step 9. Other-
wise, set l = π(y) − b + 1 and d′ = π

(
x/(pb+1pb+l)

)
.

Note that d′ + 1 is the smallest value of d for which (12)
is equal to l.

Step 4. If pd′+1 �
√

x/pb+1 or if d′ � b then set t = 1
and go to step 6. Otherwise, add l(d2b − d′) to S2b, set
(afterwards) d2b = d′, and go to step 2.

Step 5. If y � α 3
√

x then set t = 2 and go to step 9. Other-
wise, set l = π(y) − b + 1.

Step 6. Add l to S2b, decrement d2b, and go to step 2.
Step 7. If y � zk then increment k and go to step 9.
Step 8. Add φ(y, b) to S2b, decrement d2b, and go to step 2.
Step 9. Remove the multiples of p1, . . . , pb from Bk. Go

to step 7.

The update of the value of φ2(x, a) can be done using the
following algorithm, which uses the variable u to keep track
of the largest value of pb not yet taken in consideration, the
variable v to count the number of primes up to

√
x, and the

variable w to keep track of the first integer represented in

an auxiliary sieve.

Algorithm 3. [Computation of φ2(x, a)]

Step 1. Set φ2 = a(a−1)/2, u = �√x�, v = a, w = u+1,
and k = 1.

Step 2. Remove the multiples of p1, . . . , pa from Bk.
Step 3. If u � α 3

√
x then subtract v(v − 1)/2 from φ2 and

terminate the algorithm.
Step 4. If u < w then set w = max

(
2, u − �α 3

√
x�) and

sieve completely the interval [w, u + 1[.
Step 5. Using the sieve of step 3, test if u is prime. If not

then decrement u and go to step 3.
Step 6. Set y = x/u. If y � zk then increase k and go to

step 2.
Step 7. Add φ(y, a)− a + 1 to φ2, increment v, decrement

u and go to step 3.

The overheads introduced in these algorithms by the sub-
division of the interval [1, z[ are exactly the overheads in-
troduced by a segmented sieve of Eratosthenes.

E. Outline of the algorithm used to compute π(x)

The following algorithm presents a high-level overview of
the entire algorithm used to compute π(x).

Algorithm 4. [Computation of π(x)]

Step 1. Choose a value for α using the guide-lines pre-
sented at the beginning of section II-C.

Step 2. Make a list of the primes up to α 3
√

x, and compute
the values of µ(n)pmin(n) and of π(n) for all odd n up
to that limit. The values of µ(n)pmin(n) can be com-
puted efficiently using a simple adaptation (to deal only
with odd numbers) of the code presented in table III.
The primes can then be identified easily using the test
µ(n)pmin(n) = −n. Compute a, a∗, and pa+1.

Step 3. Set c = 7 (or any other reasonably small value).
Compute and store in a table the values of φ(n, c) for
0 � n < p1 · · · pc. Next, compute S0 and S1c, using (5)
to evaluate φ(·, c). At this point the table of values of
φ(n, c) is not needed any more. However, as described
in appendix A, the counter initialization can be improved
when the values of f(n, kc) = φ(n, c) − φ(n − 1, c) are
known. To take advantage of this possibility, transform
the table of values of φ(n, c) into a table of values of
f(n, kc). (In practice, only odd values of n are used.)

Step 4. For each b = c + 1, . . . , a∗ − 1, perform step 1 of
algorithm 1. For each b = a∗, . . . , a− 2, run algorithm 2
until either it terminates or step 9 is reached. Perform
step 1 of algorithm 3. For each b = c + 1, . . . , a, set
φ(z0 − 1, b) = 0. Set k = 1.

Step 5. Initialize the sieve counters using code similar to
that of table VII, and using the f(n, kc) values (repeated
periodically) computed previously. Discard the multi-
ples of pc+1, . . . , pa from Bk using the machinery of ap-
pendix A. In between, use the the appropriate parts of
algorithms 1 and 2 to update the values of S1b and S2b,
computing φ(·, b) as described in appendix A, and re-
place the value of φ(zk−1 − 1, b) by that of φ(zk − 1, b).
Once all the primes have been processed, use the appro-
priate parts of algorithm 3 to update the value of φ2(x, a).
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If one of the algorithms did not terminate, increment k
and repeat this step.

Step 6. Compute φ(x, a) = S0+
∑a∗−1

b=c S1b +
∑a−2

b=a∗ S2b.
Compute π(x) = φ(x, a)+a−1−φ2(x, a) and terminate
the algorithm.

In practice, there is no need to store S0, the several S1b and
S2b, and φ2(x, a) in separate variables (see the last step of
the previous algorithm).

III. SOME VALUES OF π(x)

The algorithm described in the previous section can be
adapted to compute simultaneously π(x) for several val-
ues of x. Since the sieve work can be shared among the
different computations, this way of doing things speeds up
the preparation of extensive tables of values of π(x). The
author of this article implemented the algorithm in this way.

The first values of π(x), and of li(x)−π(x), for x a power
of 10, or a power of 2, are presented in tables IV and V, re-
spectively. The logarithmic-integral function was computed
using the equality li(x) = Ei(log x), where

Ei(x) =
∫ x

−∞
et dt

t
= γ + log x +

∞∑
k=1

1
k

xk

k!

(γ = 0.5772156649 . . . is Euler’s constant). More exten-
sive tables of values of π(x) can be found in the web page
http://www.ieeta.pt/˜tos/primes.html.

It is obvious from tables IV and V that li(x) is a good ap-
proximation of π(x). The last column of these tables sug-
gest that li(x) > π(x) for 2 � x � 1022. Note, however,
that Littlewood proved in the first quarter of the XX cen-
tury that li(x) − π(x) changes sign infinitely often. It is
known that the least x for which π(x) > li(x) is smaller
that 1.4 · 10316 [12].

TABLE IV

VALUES OF π(x) AND OF li(x) − π(x) FOR POWERS OF TEN

x π(x) li(x) − π(x)

101 4 2.165 . . .
102 25 5.126 . . .
103 168 9.609 . . .
104 1229 17.137 . . .
105 9592 37.809 . . .
106 78498 129.549 . . .
107 6 64579 339.405 . . .
108 57 61455 754.375 . . .
109 508 47534 1700.957 . . .
1010 4550 52511 3103.586 . . .
1011 41180 54813 11587.621 . . .
1012 3 76079 12018 38262.804 . . .
1013 34 60655 36839 1 08971.050 . . .
1014 320 49417 50802 3 14889.953 . . .
1015 2984 45704 22669 10 52618.581 . . .
1016 27923 83410 33925 32 14631.792 . . .
1017 2 62355 71576 54233 79 56588.778 . . .
1018 24 73995 42877 40860 219 49555.022 . . .
1019 234 05766 72763 44607 998 77775.223 . . .
1020 2220 81960 25609 18840 2227 44643.548 . . .
1021 21127 26948 60187 31928 5973 94254.333 . . .
1022 2 01467 28668 93159 06290 19323 55208.150 . . .

TABLE V

VALUES OF π(x) AND OF li(x) − π(x) FOR POWERS OF TWO

x π(x) li(x) − π(x)

21 1 0.045 . . .
22 2 0.967 . . .
23 4 1.253 . . .
24 6 2.519 . . .
25 11 2.605 . . .
26 18 3.934 . . .
27 31 5.042 . . .
28 54 6.513 . . .
29 97 6.721 . . .
210 172 9.078 . . .
211 309 12.114 . . .
212 564 12.922 . . .
213 1028 19.751 . . .
214 1900 19.888 . . .
215 3512 32.244 . . .
216 6542 41.986 . . .
217 12251 45.067 . . .
218 23000 69.193 . . .
219 43390 63.811 . . .
220 82025 112.527 . . .
221 1 55611 128.964 . . .
222 2 95947 166.838 . . .
223 5 64163 248.512 . . .
224 10 77871 350.700 . . .
225 20 63689 295.678 . . .
226 39 57809 540.548 . . .
227 76 03553 830.150 . . .
228 146 30843 934.673 . . .
229 281 92750 1555.428 . . .
230 544 00028 1447.618 . . .
231 1050 97565 2665.676 . . .
232 2032 80221 3860.999 . . .
233 3936 15806 3586.424 . . .
234 7629 39111 5334.930 . . .
235 14802 06279 10663.828 . . .
236 28743 98515 13544.223 . . .
237 55865 02348 15994.979 . . .
238 1 08662 66172 22830.503 . . .
239 2 11519 07950 25740.119 . . .
240 4 12030 88796 41644.933 . . .
241 8 03165 71436 69688.200 . . .
242 15 66610 34233 59035.208 . . .
243 30 57617 13237 1 14792.833 . . .
244 59 71163 81732 1 32860.781 . . .
245 116 67467 86182 2 62854.070 . . .
246 228 09987 53949 1 66928.337 . . .
247 446 16329 79717 2 19714.955 . . .
248 873 11888 63470 6 63697.853 . . .
249 1709 44325 76778 9 17028.068 . . .
250 3348 33796 03407 10 68422.765 . . .
251 6561 28999 15304 18 09320.253 . . .
252 12862 55036 10475 14 56904.811 . . .
253 25225 27041 48404 18 67813.455 . . .
254 49489 02049 04784 54 25756.994 . . .
255 97126 99452 45201 58 55761.639 . . .
256 1 90687 93810 28850 67 38674.599 . . .
257 3 74501 11847 13964 133 83939.057 . . .
258 7 35740 02678 43990 149 17783.914 . . .
259 14 45879 28953 01660 172 04097.042 . . .
260 28 42309 44969 53330 224 77599.971 . . .
261 55 89048 40450 84135 455 08690.025 . . .
262 109 93280 75854 69973 394 12395.209 . . .
263 216 28961 18534 39384 875 75308.033 . . .
264 425 65628 40352 17743 805 00871.808 . . .
265 837 90314 54666 07212 1567 46489.268 . . .
266 1649 81970 04647 85589 2035 82959.080 . . .
267 3249 25438 70525 57215 1768 00774.267 . . .
268 6400 77159 75449 37806 4414 08683.778 . . .
269 12611 86461 87603 52880 4663 70512.942 . . .
270 24855 45536 33626 85793 9353 50265.789 . . .
271 48995 57160 01294 58363 8613 64388.234 . . .
272 96601 07519 50751 86855 13159 80554.314 . . .
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APPENDIX

I. EFFICIENT SIEVE IMPLEMENTATION

The algorithm described in section II requires frequent
evaluations of the function φ(x, a). The binary tree data
structure of [4] can be used to do this efficiently. The author
of this paper was able to eliminate the redundancy present
in this data structure, with the result that its space require-
ments were reduced by 33% and its update speed was in-
creased by a factor of almost 2. Later, he found out that
a similar data structure, which does not require a power
of two length but treats its first data element in a differ-
ent way, was proposed by Fenwick [9] to perform updates
and queries of the cumulative frequency tables used in arith-
metic coders [11].
Suppose that the interval [B, B + 2L[ is to be sieved, and

that it is necessary to evaluate φ(x, a) for “random” values
of x ∈ [B, B + 2L[ and non-decreasing values of a. Let
f(n, k), for n = 0, . . . , 2L − 1 and k = 0, 1, . . ., represent
the status of the integer B+n after k elementary sieve oper-
ations. Each elementary sieve operation amounts to mark a
previously unmarked multiple of some prime; f(n, k) will
be equal to one if B + n remains unmarked after k such
operations and will be equal to zero otherwise. After the
multiples of the primes up to pa have been marked, a task
requiring ka elementary sieve operations, it will be possible
to compute the value of

φ(x, a) = φ(B − 1, a) +
�x−B�∑

n=0

f(n, ka) (15)

for any x ∈ [B, B + 2L[. The direct use of this formula
is obviously very inefficient (average and worst amount of
work proportional to 2L), although the elementary sieve op-
erations will be very efficient (constant amount of work).
It is possible to make both the elementary sieve operations

and the evaluation of φ(x, a) very efficient using only 2L

counters. Each counter accumulates the values of f(n, k)
in a certain range, as depicted in figure 4 for L = 3. In
practice, since it is also necessary to ascertain if a given
integer has already been marked, it is possible to use one
of the otherwise unused bits of its corresponding counter to
store this information; the most significant bit (sign bit for
signed integer data types) is a particularly good choice.
The initialization of the counters to match the situation in

which no number has been marked, i.e., f(n, 0) = 1, is
very simple: the number of consecutive least significant bits
equal to one of each counter index determines the base 2
logarithm of the initial value of its corresponding counter
(see C code and example in table VI). The entire initializa-
tion is done in linear time.
Since the values of φ(x, a) can be computed with (5) when

a if small (i.e., a = c), it is a waste of time to initialize the

0 2 4 6
1 5

3
7

Fig. 4 - Fractal-like organization of the counters for the case L = 3. Each
counter keeps track of the sum of values of f(n, k) in its area on influence
(rectangles). For example, counter 5 contains the value f(4, k)+f(5, k).

TABLE VI

COUNTER INITIALIZATION

void cnt_init(int *cnt,int L)
{

int i;

for(i = 0;i < (1 << L);i++)
cnt[i] = (i + 1) & ˜i;

}

Indices (in decimal and in base 2) and the base 2 initial values of
the counters for the case L = 3.

0 1 2 3 4 5 6 7
0002 0012 0102 0112 1002 1012 1102 1112

00012 00102 00012 01002 00012 00102 00012 10002

TABLE VII

COUNTER INITIALIZATION FROM f(n, k)

void cnt_finit(int *f,int *cnt,int L)
{

int i,j,k;

for(i = 0;i < (1 << L);i++)
{

cnt[j = i] = f[i];
for(k = (i + 1) & ˜i;k >>= 1;j &= j - 1)
cnt[i] += cnt[j - 1];

}
}

Indices plus one (in base 2) of the counters that must be summed to
initialize the tree data structure from f(n, k) for the case L = 3.
These summations proceed from the left to the right, always using
the most recent value of each counter.

0 1 2 3 4 5 6 7
00012 00102 00112 01002 01012 01102 01112 10002

00012 00112 01012 01112

00102 01102

01002

counters using the code of table VI and then mark the mul-
tiples of the primes p � pc which belong to the interval
[B, B + 2L[. It is much faster to initialize the counters di-
rectly from the values of f(n, kc), which is a function with
period p1 · · · pc. This can be done using only 2L − 1 addi-
tions (see C code and example in table VII).
Each elementary sieve operation requires the update of at

most L counters. Working in base 2, it is very easy to find
the indices of the counters that must be decremented: the
first corresponds to the integer that was marked, and the
rest can be obtained by replacing each zero bit of the index
by one, starting from the least significant bit, until all L bits
become equal to one (see C code and example in table VIII).
Assuming that the integers to be marked follow an uniform
distribution, it can be shown that the average number of
counters that need to be updated is 1 + L/2.
After an elementary sieve operation it is possible to com-

pute the value of
∑�x−B�

n=0 f(n, k) by summing the values
of at most L counters. Working again in base 2, the indices
plus one of the counters that need to be summed can be
found easily: the first is equal to 1+�x−B�, and the others
are obtained by successively changing each bit that is equal
to one to zero, starting from the least significant bit, until
zero is obtained (see C code and example in table IX). As-
suming that the numbers x follow an uniform distribution,
it can be shown that the computation of φ(x, a) requires an
average number of L/2 + 2−L summations.
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TABLE VIII

COUNTER UPDATE

void cnt_update(int pos,int *cnt,int L)
{
do
{

cnt[pos]--;
pos |= pos + 1;

}
while(pos < (1 << L));

}

Indices (in base 2) of the counters that must be decremented then
an integer is marked for the case L = 3.

0 1 2 3 4 5 6 7
0002 0012 0102 0112 1002 1012 1102 1112

0012 0112 0112 1112 1012 1112 1112

0112 1112 1112 1112

1112

TABLE IX

COUNTER QUERY

int cnt_query(int pos,int *cnt)
{
int sum;

sum = cnt[pos++];
while(pos &= pos - 1)

sum += cnt[pos - 1];
return sum;

}

Indices plus one (in base 2) of the counters that must be summed

to compute
∑�x−b�

n=0 f(n, k) for the case L = 3.
0 1 2 3 4 5 6 7

00012 00102 00112 01002 01012 01102 01112 10002

00102 01002 01002 01102

01002

When there are many values of φ(x, a) to be computed for
the same value of a it may be advantageous to replace the
binary tree structure of the counters by a linear list structure,
from which the values of φ(x, a)−φ(B − 1, a) can be read
directly. This conversion, called flattening the counters, can
be done using 2L − 1 − L summations (see C code and
example in table X). Reversing this operation (deflattening)
is equally simple.
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