
REVISTA DO DETUA, VOL. 4, N◦ 6, MARÇO 2006 1

Medical Data Visualization:
A Simple Approach Based on the Visualization Toolkit ∗

Samuel Silva, Paulo Dias

Abstract – Data visualization is an important subject. In or-
der to provide a greater insight on data, visualization systems
are built which allow the user to manipulate, explore and anal-
yse it.
Building a visualization system may be a difficult task spe-
cially for those who are not graphical experts. The Visualiza-
tion Toolkit (VTK) is an open source library which provides
several classes and objects that can be used to build visualiza-
tion systems for different kinds of data.
The presented work shows how it is possible to build a simple
visualization system for medical data using only the VTK stan-
dard functionalities and how it is possible to integrate VTK
with an interface development library in order to provide a
more user-friendly interface.

Keywords – Data Visualization, Visualization Toolkit, Medical
Data.

I. INTRODUCTION

Data visualization is a subject of great importance. With
the constant advances in technology and measuring devices,
more and more data is generated/measured and has to be
analysed. The advances in technology, and in computer
systems in particular, also brought the chance of having vi-
sualization tools in a common desktop computer.
In Medical Imaging, the amount of data generated from ex-
ams (e.g., CT, fMRI, etc.) requires, nowadays, more than a
simple slice by slice visualization. One must also provide
ways of gathering the data and rebuilding the analysed vol-
ume thus giving a better context to the data being analysed.
The question is which tool may be used to process and vi-
sualize this data.
Several tools have appeared in the literature for the purpose
of data (or information) visualization. IRIS Explorer [1]
and IBM’s OpenDX [2] are tools which provide a set of
modules that can be linked using visual programming to
create the visualization pipeline [3]. A library called Visu-
alization Toolkit (VTK) [4]-[7] provides an enormous of-
the-shelf quantity of functionalities (through hundreds of
objects and classes) which enable fast development of vi-
sualization systems for several kinds of data. It is a widely
used library (see the works of Kanellopoulos et al. [8] and
Sadleir et al. [9] for examples) developed in C++ with sev-
eral interpreted interface layers including Tcl/Tk, Java and
Python, which allows the development of applications di-
rectly in any of these languages. Its possible integration

∗Work developed as the final project for the Computer Graphics Inte-
grated Lab. course, part of the MSc in Electronics and Telecommunica-
tions.

with the Insight Toolkit (ITK) [10] (for image segmenta-
tion and registration) is also an advantage in Medical Imag-
ing scenarios. A recent effort in enhancing the combination
between these two libraries is the Medical Imaging Interac-
tion Toolkit (MITK) [11], [12] which adds more complex
interaction capabilities to them. Do not confuse with the
Medical Imaging Toolkit [13] (curiously also MITK) which
tries to provide an alternative to the joint usage of VTK and
ITK.
The work presented on this article tries to explore the
functionalities of VTK in order to build a simple system
for medical data visualization. On the following sections
the main objectives of this work are presented. Then,
the application pipeline is explained and some details are
given about its development. After this, the integration of
VTK functionalities in a user interface developed using Fox
Toolkit is described. Throughout the article some applica-
tion examples are presented by visualizing medical data us-
ing the developed environments. The article finishes with
some conclusions and ideas for future work.

II. OBJECTIVES

This work, developed as the final project for the Computer
Graphics Integrated Lab. course (part of the MSc in Elec-
tronics and Telecommunications) had two main objectives:

1. To use VTK functionalities to develop a simple vi-
sualization environment which allowed the visualiza-
tion/exploration of medical data – this required an un-
derstanding of VTK’s main architecture and pipeline
and the exploration of its standard capabilities as ex-
plained on section III. Is was also intended to experi-
ment with some kind of pseudo-haptic feedback tech-
nique applied to the user interaction with the data.

2. To integrate VTK with an interface development li-
brary in order to provide a better way of using the de-
veloped features – this required searching for means
of integrating widgets such as the rendering window
provided by VTK on the developed interface and un-
derstand how VTK allows manipulating data inside its
data structures in order, for example, to convert it to a
suitable format for integration, as explained on section
IV.

III. QUICK PROTOTYPING:
THE USE OF VTK STANDARD FUNCTIONALITIES

On this section a visualization system for medical data de-
veloped with VTK is presented and it is shown how it was
used to view lung and bubble data (although the system can

2 REVISTA DO DETUA, VOL. 4, N◦ 6, MARÇO 2006

read other kinds of medical data as it will be shown ahead).

A. Application Pipeline

There are several classes and widgets provided by VTK
that can be used to rapidly develop a visualization system
prototype with many interaction and visualization capabil-
ities. Figure 1 shows the simplified functional pipeline of
the developed prototype which will be explained next.

• Data Reading and Conversion – In this module data
can be read from a particular format and then con-
verted to a raw image data format which is a format un-
derstandable by vtkImageReader2. This function
then receives the file and parameters regarding data di-
mensions and scaling factors (in x, y and z) and gen-
erates a vtkImageData structure containing all the
data.

• Data Exploration – In order to provide better data ex-
ploration, three vtkImagePlaneWidgets are used
which allow sectioning the data along the three axes
(axial, sagital and coronal). As input, each one of these
widgets receives the vtkImageData object contain-
ing all the read data. On the pipeline the comment 3D
means that all data slices are present. Each of the wid-
gets returns a vtkImageData object (through the
getResliceOutput()method) containing the in-
formation regarding the sectioning of the data. The
comment 2D means that only one data slice is re-
turned.

• Volume Rendering – This module is the re-
sponsible for processing the read data present
in the vtkImageData object creating a 3D
volume that can be viewed by the user. The
pipeline of figure 1 shows the usage of a
vtkVolumeTextureMapper object to do the
volume rendering of the data. With this mapper
it is possible to associate color (through the def-
inition of a vtkColorTransferFunction)
and opacity (through the definition of a
vtkPiecewiseFunction) to the grayscale
levels present on the data used for the volume
rendering. These functions are concatenated on a
vtkVolumeProperty object and, along with the
data coming from the mapper, a vtkVolume is
created containing the obtained volume.
There are other options for the volume rendering like
the vtkVolumeRayCastMapper which provides
a ray cast method.

• Visualization and Interaction – This module
is responsible for providing the user with the
visualization results and means of interacting
with them. The vtkVolume and the three
vtkImagePlaneWidgets are associated with
a vtkRenderer object and a vtkRenderWindow
is used to show both the rendered volume and
the vtkImagePlaneWidgets. Notice that the
vtkRenderWindowInteractor defined is com-
mon to the render window and to the image planes,
thus allowing full interaction with both. There are

particularities which, for the sake of simplicity, are
not depicted in the pipeline of figure 1:

1. The three vtkImagePlaneWidgets were all de-
fined with a common vtkPicker. This allows a
correct selection and manipulation of each widget
when they are simultaneously presented on screen.

2. By adding an observer to each
vtkImagePlaneWidget, triggered by the
interaction events and sharing the same callback, it
was possible to synchronize all the three widgets,
i.e., picking a point in one of the widgets changes
the position of the others, thus making all the planes
pass through that point.

Notice that, apart from a possible data conversion to a
raw data format understandable by vtkImageReader2
and defining the callback which allows the widgets syn-
chronization, all the environment was created using off-the-
shelf VTK classes.
On the following section the developed environment is
shown and used to visualize/examine simple lung and bub-
ble data.

B. Visualization of Lung and Bubble Data

In order to test the developed environment some lung and
bubble data were used. These data were provided in sepa-
rate text files containing the active voxels for each structure
(lungs and bubbles). Because the purpose was to visualize
the lungs with a degree of transparency and the bubbles in-
side, in a different color, and due to the fact that the data for-
mat was not suitable to be read by vtkImageReader2,
lung and bubble information had to be joined and converted
to a proper format. A different level of gray was associated
with the lung (128 level) and bubble (255 level) active vox-
els which allowed a distinction between them during the
volume rendering.

Figure 3 - Picking over a vtkImagePlaneWidget: The other two widgets
are moved to the slice where the picked point is.

The developed environment can be seen on figure 2 (on
the next page) with the image viewers on the left and the
render window on the right showing the lungs and bubbles.
Figure 3 shows how the picking of a point on one of the

REVISTA DO DETUA, VOL. 4, N◦ 6, MARÇO 2006 3

vtkImageReader2

Raw Image
Data

vtkImageData * (3D)

vtkImagePlaneWidget
(Coronal)

vtkImageData* (3D)

vtkImageViewer

vtkImageData * (2D)

vtkVolumeTextureMapper

vtkVolume

vtkRenderer

vtkRenderWindow

vtkVolumeProperty

vtkRenderWindowInteractor

vtkPiecewiseFunction

vtkColorTransferFunction

vtkImagePlaneWidget
(Sagital)

vtkImageViewer

vtkImageData * (2D)

vtkImagePlaneWidget
(Axial)

vtkImageViewer

vtkImageData * (2D)

Volume RenderingData Exploration

Visualization and Interaction

Data ConversionOther Data (e.g., voxel data)

Data Reading and Conversion

Figure 1 - Functional pipeline of the developed visualization environment.

Figure 2 - Developed environment showing the lungs with bubbles inside, the three ImagePlaneWidgets, and the images corresponding to the three sections
(axial, sagital and coronal).

planeWidgets results in the other two being moved to the
slice where the picked point is.

C. Pseudo-haptic Feedback: A First Attempt

Haptic interfaces [14] can be used to simulate texture
in many applications. However, due to their high price
and complexity they are not widely used. It is possible to
develop an interacion technique which, by combining a
passive input device (e.g., a mouse) and visual feedback of
a computer screen can be used to simulate textures. This is
what is called pseudo-haptic feedback [15], [16].

This concept can be applied to the visualization of medical
data by providing the user with some sort of pseudo-haptic
feedback based on the kind of tissue the mouse pointer
is on. An attempt was made based on the gray level
of that point varying the mouse speed accordingly. To
change the mouse speed a Windows API exists, called
SystemParametersInfo() (see MSDN Library [17]
for more details) which must be used with the following
arguments:

4 REVISTA DO DETUA, VOL. 4, N◦ 6, MARÇO 2006

SystemParametersInfo}(SPI_SETMOUSESPEED,
NULL,
(void*)speed,
SPIF_SENDCHANGE)

where speed is an integer variable containing the desired
speed. There is a particularly important detail: notice how
the third parameter passed to the function is (strangely) an
integer with a cast to a pointer to void. This information
is not given in the MSDN library (and even the example
they present is wrong) and resulted in many failed attempts
of using this function. The mouse speed parameter can be
changed in a range between 1 and 20.
Using the lung data, a speed was established for each of
the greyscale levels present (0, 128 and 255), making the
mouse go faster out of the lungs and really slow when on a
bubble. This allows the user to have more precision when
moving the mouse on a bubble area.
It was noticed that, if the mouse movement is fast, the
mouse speed is not changed at the precise moment the
mouse enters a slower speed region. This can have some-
thing to do with the way VTK catches events and particu-
larly with situations where the mouse pointer moves faster
than the “picking cross” which appears over the plane wid-
gets due, for example, to the volume display refresh.

IV. USER INTERFACE DEVELOPMENT:
INTEGRATING VTK WITH FOX TOOLKIT

The second part of this work consisted in trying to integrate
elements of the environment described above in a user in-
terface which would then allow, for example, choosing the
file to load or the volume rendering method.
Many options could be made at this point: among them
were, for example, Microsoft Foundation Classes (MFC),
Fox Toolkit [18], Qt [19], etc. It was considered that Fox
Toolkit would be a good option due to its multi-platform na-
ture and due to the author’s greater experience with it than
with any of the other.
On the following section a brief description of the integra-
tion process is provided.

A. Integration

Two main widgets add to be integrated in the interface:
the render window and the image viewers. A library called
vtkFOX [20], developed by Doug Henry, provides a mod-
ified FOX Toolkit canvas which contains an interactor ob-
ject. This enabled VTK to draw on the FOX environment
and input events to be redirected to VTK. This allowed an
easy integration of the render window on the FOX environ-
ment but some issues did not allow maintaining full inter-
action capabilities: when the vtkImagePlaneWidgets
were associated with the interactor, a VTK render window
started to appear on the taskbar as a “ghost” window with
no content refresh. The full scene was still rendered in the
FOX environment and interaction with the plane widgets
was possible. Figure 4 shows a VTK render window inte-
grated in a FOX interface allowing full interaction capabil-
ities with the volume and with the plane widgets. In order
to avoid the appearance of this “ghost” window the inter-

Figure 4 - VTK render window integrated in a FOX Tollkit interface, al-
lowing full interaction capabilities.

actor associated with the render window had to be different
than the one used in the image planes, which resulted in the
impossibility of direct manipulation of the planes on the
render window. To manipulate the planes position a con-
trol window was created which allows their activation and
movement (through a slider) (see the right side of figure 6).
This was an easy task because VTK provides methods for
enabling/disabling the planes and moving them to particu-
lar slices of the data.
Integrating the vtkImageViewer objects was also possi-
ble using the modified canvas provided by vtkFOX but the
same problem of “ghost” windows appeared. In this situa-
tion, in order to avoid the ghost windows, the option was to
convert the image data contained in the vtkImageData
objects returned by the image planes and show it on a FOX
Toolkit widget. The data conversion was accomplished
by obtaining a pointer to the scalar data vector using the
method GetScalarPointer() and obtaining the size
of the data through GetDimensions().

B. fMRI Data Visualization

To test the developed visualization tool fMRI data of a
head was used. To load the data, a dialog box is provided
(see figure 5) which allows the user to choose a data file
and specify its dimensions and applicable scale factors. It
is also possible, in this dialog box, to define the type of
data (VTK supports a larger number of types but, at the
moment, only unsigned char and unsigned short are avail-
able). After loading the data, the cutting planes are po-
sitioned automatically at the middle slice in each dimen-
sion (although they have to be enabled to obtain a valid
getResliceOutput() to fill the image windows, they
are then disabled) and the image windows show the result.
Figure 6 shows the developed interface. On the left the im-

REVISTA DO DETUA, VOL. 4, N◦ 6, MARÇO 2006 5

Figure 5 - File loading dialog box: the user can browse for a data file and then define several parameters regarding the data characteristics.

Figure 6 - Fox interface showing fMRI data.

age windows showing the cutting planes content. These
windows allow, by using the right mouse button, to save
their content to a image file in BMP format. On the middle,
the result of applying a volume rendering method (using a
vtkVolumeTextureMapper) to the data. It is also pos-
sible to view the active cutting planes. On the right, the wid-
get containing the controls which allow enabling/disabling
the cutting planes and control their position. All these win-
dows are undockable and can be closed or positioned where
the user wishes.
The result of using a ray caster (vtkRayCastMapper) to
perform the volume rendering is shown on figure 7.

V. CONCLUSIONS AND FUTURE WORK

The presented work allowed to develop a simple visualiza-
tion system capable of providing a basic analysis of med-
ical data. It allows volume visualization and axial, sagital
and coronal cuts, thus providing several degrees of freedom

Figure 7 - Volume obtained from the fMRI data using a vtkRayCastMapper
(ray cast method).

6 REVISTA DO DETUA, VOL. 4, N◦ 6, MARÇO 2006

in data exploration. The Visualization Toolkit allowed the
development of the presented functionalities in a more or
less easy way. The only problem found was the large num-
ber of classes and functionalities provided by this library,
a situation that does not always help on a first time explo-
ration. The environment developed using only VTK pro-
vided a reasonable analysis/exploration of the data showing
that VTK can be used to perform fast visualization system
prototyping. The first attempt of using pseudo-haptic feed-
back resulted in finding a “natural” (to the user) method of
varying the mouse speed which gives, according to some
qualitative testing, a kind of “haptic feedback” when ex-
ploring the data.
The visualization environment developed by integrating
VTK with FOX Toolkit, although with losses regarding
some interaction capabilities of VTK, allowed a more ver-
satile system gathering, in one window, all the functional-
ities (which now included loading data files and changing
the volume rendering method in run-time).
But, the developed visualization system (using VTK and
FOX) still only provides basic data exploration/analysis.
So, much more can be done to enhance it:

• Provide the possibility of picking a point in one of the
images and move the other cutting planes in order for
them to cross on that point;

• Allow the user to define the designation for each sec-
tion (sagital, coronal or axial) or change data orienta-
tion during the loading process;

• Add a window containing information about the data:
dimensions, scaling factors, scalar type, etc.;

• Add a dialog box which allows the user to custom
properties of the volume rendering method, e.g., the
color transfer function;

• Continue to explore the idea of adding pseudo-haptic
feedback to user interaction with the data, namely by
testing its applicability on images with a greater num-
ber of grey levels distributed erratically (i.e., there
isn’t, in general, a succession of regions with common
grey levels) like fMRI data. The use of this pseudo-
haptic techniques must also be evaluated in order to
understand if it can provide useful information.

The developed environment is very simple but offers a plat-
form that can be expanded in order to allow more spe-
cific data visualization, e.g., electrode information associ-
ated with fMRI exams.

ACKNOWLEDGMENTS

The author would like to thank to José Silva for providing
the lung data and to José Maria Fernandes for providing the
fMRI data used to test the developed systems.

REFERENCES

[1] J. Walton, NAG’s IRIS Explorer, in Visualization Handbook, Charles

D. Mansen, Chris R. Johnson (eds.), Academic Press, 2004.

[2] D. Thompson, J. Braun, and R. Ford, OpenDX: Paths to Visualiza-

tion, VIS Inc., 2000.

[3] M. B. Carmo, J. D. Cunha, and A. P. Claudio, “Ivprototype-an in-

formation visualization prototype”, in Proc. 6th International Con-

ference on Information Visualization, pp. 159-164, 2002.

[4] W. Schroeder, L. Avila, and W. Hoffman, “Vtk tutorial”, IEEE

Computer Graphics & Applications, vol. 20, no. 5, pp. 20–27, 2000.

[5] W. Schroeder, K. Martin, and W. Lorensen, The Visualization

Toolkit: An Object-Oriented Approach to 3D Graphics, Kitware

Inc., 3rd edition, 2004.

[6] THE VISUALIZATION TOOLKIT, “http://public.kitware.com/vtk/”,

online Feb. 2005.

[7] Kitware Inc., The VTK User’s Guide, Kitware Inc., version 4.4

edition, 2004.

[8] I. Kanellopoulos, A. Stein, and M. Turatti, “Visualisation of geo-

graphic information in a dynamic 3-dimensional environment”, in

Proc. Geoscience and Remote Sensing Symposium 2001 (IGARSS

’01), pp. 201-203, 2001.

[9] R. Sadleir, P. Whelan, P. MacMathuna, and H. Fenlon, “Informatics

in radiology: Portable toolkit for providing straightforward access

to medical image data”, in RadioGraphics 2004, vol. 24, pp. 1193–

1202, 2004.

[10] ITK - INSIGHT SEGMENTATION AND REGISTRATION TOOLKIT,

“http://www.itk.org/”, online Feb. 2005.

[11] I. Wolf, M. Vetter, I. Wegner, M. Nolden, T. Bottger, M. Hasten-

teufel, M. Schobinger, T. Kunert, and H.P. Meinzer, “The medical

imaging interaction toolkit (mitk): a toolkit facilitating the creation

of interactive software by extending vtk and itk”, in Proc. SPIE Med-

ical Imaging 2004: Visualization, Image-Guided Procedures, and

Display, vol. 5367, pp. 16-27, 2004.

[12] I. Wolf, M. Vetter, I. Wegner, T. Böttger, M. Nolden, M. Schöbinger,

M. Hastenteufel, T. Kunert, and H.P. Meinzer, “The medical imaging

interaction toolkit”, Medical Image Analysis, vol. 9, no. 6, pp. 594–

604, 2005.

[13] M. Zhao, J. Tian, X. Zhu, J. Xue, Z. Cheng, and H. Zhao, “The

design and implementation of a c++ toolkit for integrated medical

image processing and analyzing”, in Proc. of SPIE Medical Imaging

2004: Visualization, Image-Guided Procedures, and Display, vol.

5367, pp. 39-47, 2004.

[14] G. Burdea, Force and Touch Feedback for Virtual Reality, John

Willey & Sons, New York, 1996.

[15] A. Lécuyer, J.M. Burkhardt, and L. Etienne, “Feeling bumps and

holes without a haptic interface: the perception of pseudo-haptic

textures”, in Proc. of the SIGCHI conference on Human factors in

computing systems, pp.239-246, 2004.

[16] A. Paljic, J.M. Burkhardt, and S. Coquillart, “Evaluation of pseudo-

haptic feedback for simulating torque: a comparison between iso-

metric and elastic input devices”, in Proc. 12th International Sym-

posium on Haptic Interfaces for Virtual Environment and Teleoper-

ator Systems (HAPTICS’04), pp. 216-223, 2004.

[17] MSDN Library, “http://msdn.microsoft.com/library”, online Feb.

2005.

[18] J. van der Zijp, “FOX TOOLKIT”, online Feb. 2005.

[19] QT, “http://www.trolltech.com/products/qt/index.html”, online Feb.

2005.

[20] D. Henry, “VTKFOX, http://www.brilligent.com/wikka.php?wakka=

vtkfox”, online Feb. 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [595.276 841.890]
>> setpagedevice

