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Resumo - Este artigo € focado em assuntos de modelagdo doincreasingly accepted as one of the approaches ctrat

comportamento dinAmico e optimizacdo baseada em meld de
processos industriais de cristalizagdo em lotes. éstratégia das
redes neuronais artificiais foi implementada como d&erramenta
computacional. O objectivo é conduzir o processo aestado
Optimo de maximizag&o do lucro e minimizagdo dos stos. Os
resultados de simulagdo demonstram que o0s objectso
conflituosos, que dizem respeito ao tempo final dwocesso, séo
simultaneamente atingiveis na presenca de restricdefortes
impostos ao processo.

overcome the problem of repeatability and can dtive
process to its optimal state of profit maximizatiamd cost
minimization [1], [2]. However, the crystallisatioaccurs
through the complex mechanisms of particle nuaeati
subsequent particle growth and agglomeration

aggregation, phenomena that are physically not well

understood therefore their reliable modelling idll sa
challenging task [3]. For example many of the régubr
crystallizer models neglect the agglomeration effeat it

Abstract — This paper is focused on issues of dynamic proses leads in general to biased estimation of CV and A

modeling and model-based optimization of batch anfkd-batch
industrial crystallization processes applying the encept of
artificial neural networks as computational tools.The objective
is to drive the process to its optimal state of pifit maximization

and cost minimization. The simulation results demostrate that
the very tight and conflicting end-point objectives are
simultaneously feasible in the presence of hard poess
constrains.

|. INTRODUCTION

The phenomenon of crystallisation occurs in a langaip
of pharmaceutical, biotechnological, food and cloani
processes. These kind of industrial productionsusglly
performed in a batch or fed-batch mode which iatesl with
the formulation of a control problem in terms obeomic or
performance objective at the end of the processlpoint

property contro). The crystallisation quality is evaluated bystages of the process control

the particle size distribution (PSD) at the endhaf process
which is quantified by two parameters - the aver@yenass)
particle size (MA) and the coefficient of partickariation

(CV). The main challenge of the batch productiontbie

large batch to batch variation of the final PSDisTlack of

process repeatability is caused mainly by improgntrol

policy and results in final product recycling andss
increase.

Due to the highly competitive nature of the today's

crystallization industry, model-based optimizatimtomes
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Development of a reliable model facilitates effeely all
subsequent steps in process optimization, controd a
operation monitoring. There are two main modelling
paradigms - analytical (based on the first priresptules)
which has been the traditional way of process nimgel
since many years and data-driven (based on thegsatata)
which became nowadays practically meaningful du¢h&o
rapid growth of computational resources. One of rist
successful data-driven modelling techniques areattiticial
neural networks (ANNSs). Their ability to approxireat
complex non-linear relationships without prior kriedge of
the model structure makes them a very attractiterrative
to the classical modelling techniques [5]- [7].

The purpose of this paper is twofold. On one hamd w
discuss and evaluate the benefits of applying ANNsvo
—dynamic behavioutetting
and model-based optimization. On the other hand &n
attempt to determine a systematic procedure foretfliad
and optimisation of batch crystallization claspafcesses.

Il. CRYSTALIZATION PROCESS MODELLING

A. Analytical prior knowledge approach (white box midde

The traditional way of process modelling for mamass has
been by mathematical equations. Since the andlytiodels
capture physical behaviour they have the potential
extrapolate beyond the regions for which the modat
constructed. The general first principles modedcdibing a
batch crystallization process consists of thre¢s{ét.

Mass balance



The mass of all participating solid and dissolvatissances B. ANN (black box model)

are included in a set of conservation mass balaquetions  pata pased modelling techniques are methods thattde to
extract process knowledge from measured data. ANMs
M = f(M(t),F(),Pl), O0<ts<t,, M(Q)=M, (1) are the most celebrating data driven approach. érahe
network consists of a set of elementary computingsu
q m termed neurons which are combined in a parallel-serial
where M (t)JR"and F(t) DR™are the mass and the flow node  The neuron consists of a set of input signals
rate vectors, witly andm dimensions respectively, artd is  multiplied by respective weights and processedutnoan
Qctivation function to compute the neuron outpuheT
parallel combination of a number of such units $iggdpwith
same inputs is called layer. The most typical ANNicture
consists of tree layers — input, output and hididgers. In
The general energff balance model is case the information (the signgls) move only in dimection
E= f(EQ).M(),F@).P2), O<tst EQ)=E B (from left to right) the network is termddedforwardneural
' ' e 0 network (FFNN). This is in contrast to thecurrentneural
where P2 incorporates the enthalpy terms and specifisetworks (RNN) having feedback connections from the
heat capacities derived as functions of physicatl aroutput layer to the input or hidden layers. Moegails on

the final batch timeP1 is the vector of physical parameter
as density, viscosity, purity, ect.

Energy balance

thermodynamic properties. the ANN concept can be found elsewhere [5].
The topology of the network is defined by the numbé
Population balance network inputs and outputs, the number of layersl an

Mathematical representation of the crystallizatiate can be neurons per layer and the associated number ohteeand
achieved through basic mass transfer considergi@jms by biases. While the particular choice of network ispand
writing a population balance represented by its emm outputs is physically motivated and therefore comatpzely
equations [9]. Employing a population balance isggally straightforward task, the choice of layer numbersl a
preferred since it allows to take into account i@hit neurons per layer is less clear. It depends oratiadable
experimental distributions and, most significantlyp process data, the desired model accuracy and thened
consider complex mechanisms such as those of sim®del complexity. There is no recipe for choosing tight
dispersion and/or particle agglomeration/aggregatitence  ANN topology. In most of the applications the ANNntains
usually one or rarely two hidden layers. In genethe
no=ft@ (t),§O,G,ﬁ'), Ostst,, i=012..7 0) =7, chosen topology is a trial a'nd error compromisevbeh
model accuracy and complexity.

(3)
where 7;is the j-th moment of the mass-size particleanN training

distribution function,B,, G and/ are the kinetic variables The ANN parameters (weights and biases) are idedtdy
an adaptation algorithm known as network trainidgmong

various ANN training algorithms the Backpropagat({@&@®P)
algorithm is the most widely implemented for modgli
purposes. Standard BP is a gradient descent digoriih
which the network parameters are moved in the sttep
MA =n;/n, (4.1) descent direction i.e. along the negative of ttzelignt of the
performance index. This is the direction in whiche t
performance index is decreasing most rapidly. Tément
backpropagatiorrefers to the manner in which the gradients
are computed for nonlinear multilayer networks.starts
Itis difficult to formulate physically based anadgl models computing the gradient of the performance indexhwit
for the kinetic variablegsee Fig. ). Here, the empirical respect to the network parameters in the last @itput)
correlations have a |Ong tradition and there ekxistthe |ayer and Continuing Subsequenﬂy with the previtawrs_
literature a large number of empirical equationstiem [4],  One ) iteration of this algorithm can be written as

nucleation rate, linear growth rate and the agegl@tion
kernel, respectively. The PSD measurel\ (@nd CV) are
derived from (3) as follows

cv = (hon,/n2 -1 4.2)

[10], [11]. The decision which of them provides thest Xert = X~ P,
approximation of the crystallisation process indamvery <%~ 7k Tk¥k g, = v ()
difficult. Xk
aas wherex, is a vector of current network parametejsis the
o[- Population Wass generg) proces current gradient of the performance ind®x X and oy is the
Knee it portiofll i learning rate. The steepest descent algorithm rsufié
model (CSD moments) analytical |——» .
models convergence problems. Though the performance index
Fig 1. Analytical model decreases most rapidly along the negative of tlaelignt,

this does not guarantee the fastest convergence. Th



conjugate gradient algorithm [12] (with many vaoas) and An obvious advantage of the ANN modelling is its
the Newton’s method [13] are alternatives whichroeme universal character in approximating different pbgb
the problem of the optimization speed. The basép sif phenomena with similar computational structuresawes
Newton’s method is time andefforts for identifying parameters, in contrastte
case when an analytical model is designed. Therefd{Ns
—y —H-t _ (aPk)2 6 are nowadays known as powerful computing structfwes
Ko T X T PG P X, X, ©)  gata processing and information storage. Howetiey, have
some remarkable disadvantages. The ANN approdfgrsu

where H, is the Hessian matrix (second derivatives) of thaf the '30k of transparent structure and physu:al
performance index at the current values of the ANNNderstanding of the network parameters. The tagult
parameters. Newton's method often converges fab@mm black-box (input-output) model in general does piatvide
steepest descent and conjugate gradient methotl¥e transparency desired to enhance the process
Unfortunately, it is complex and expensive to cotapine understanding. It relies only on the recorded daid does
Hessian matrix for ANN. In case the performancesintlas not exploit any other source of knowledge availablethe

the form of a sum of squares of the errors (typical process in hand.

training of ANNS)

C. Knowledge-based hybrid modeling (grey box model)

Knowledge-based hybrid modelling (KBHM) is a quite
efficient alternative of the two modelling technégu
where y, t, and e.are the network output, target anddiscussed above [14]. The idea of KBHM is to caenpént
error vectors respectively, then there are solstiown the analytical model with the data-driven approdchthe
also as quasi-Newton methods) to approach secatet-ordesign of such models it is possible to combinetigcal
training speed without having to compute the Hessiatrix. and experimental knowledge as well as processrivgtion

We apply here the Levenberg-Marquardt algorithmrehat  from different sources: theoretical knowledge frphysical
each iteration, instead of direct calculation ofcsel and mass conservation laws; experimental data from

R=¢ g =y -t

derivatives, the Hessian matrix is approximated as laboratory plant experiments; experimental datanfneal
plant experiments; data from regular process ojoerat
H, = ‘]IIJk @) knowledge and experience from qualified processaipes.

The clear advantages of KBHM compared with the -data
based modelling are first with respect to more s
transparency of the model parameters and secomdly |
training data is required [15].

Our solution for a KBHM of crystallization processe

whereJ is the Jacobian matrix that contains first denrest
of the network errors with respect to the netwaakameters

I :ai’ 8) combines a partial analytical model reflecting tmass,
0%y energy and population balances (1-3) with an ANNM fo
modelling the crystal growth, nucleation rate arte t
Then the gradient is computed as agglomeration kernel (see Fig. 2). The ANN paramete

were tuned applying the Levenberg-Marquart optitiosa
©) procedure described above.

Ok = J&
and the Levenberg-Marquardt algorithm updates the  ‘mus e p—
arameters in the following way: ] ANN opmation ittt lebog
P g Y . (CSS r:mmems)_’ azallytical %
models

Xeos = %30 3+ [ (10) -

k+1 = X[ Jk TH k & Fig. 2 KBHM
When the scalap [is zero, this is just Newton’s method,
using the approximate Hessian matrix. Whenlis large, IIl. ANN PARAMETERISED ENBPOINT OPTIMIZATION
this becomes gradient descent with a small step. siz
Newton’s method is faster and more accurate neariam End-point process optimization, i.e. achievementthef

mirlimum, so the gim is to shift tc_)wards Newton'stheel s pest outcome of a finite end-time process through
quickly as possible. Thusy [is decreased after eachgpnropriate manipulation of its input variablestlie main
successful step (reduction in performance functiamdl iS  conrol concern of batch applications. For examiitea
increased only when a tentative step would increthse crystallization process the final time values o thuality

erformance function. In this way, the performahgaection : :
\F/)vill always be reduced at each itgrationpof theosthm parametersMA, and CV are common properties of interest



for optimization.
mathematically formulated as:

ummsr&géumaxh =p(X(ts), P), (11)
subject to:

x= f(x(),u(t),P), 0<tst,, x(0)=x (12.1)
y(t) = h(x(t), P) (12.2)
9;(0=0 j=12...p (13.1)
vi(x)<0, j=12... (13.2)

where (11) is the performance index, (12) is fhvecess
model, functiorf is the state-space description, functibris
the relationship between the output and the stadd as the

parameter vectorx(t) OJR",u(t)JR™ and y(t)ORP are

the state, the manipulated input, also known asctirrol
decision variable, and the control output
respectively. The manipulated inputs, the state &mel
control outputs are subject to the following coaistis,
x®)OX,u)OZ, y®)OY in which X, Z and Y are

convex and closed subsets &", R™and R”. g; and

vjare the equality and inequality constrains withand |

dimensions respectively.

We apply here the practical approach of reformutathe
optimization problem (11) and the process constréli3) in
an unified structure through the use of a penaitcfion in
the performance index. It is a simple and intuitivay to
include the constrains in the optimization procedas an
extra term in the performance function

max J=a;J; ta,

Unmin Su(t)sumax

p ) [ 2
Zl(g ) —as Zl[max(o, Vv )] (14)
j= i=

where g; and v; are the constraints defined in (13) an

The optimization problem can bemultidimensional performance index and good cormecg

approaching the optimum [16], [17].

To relax the numerical procedure the optimization
variables are usually parameterised as peace wisgtant,
linear or polynomial functions. However, it mearssd
freedom in determining their final values and ledds
suboptimal profiles. To deal with this problem wepeess
each optimization variable as a general nonlingare t
function [18]

F(t) = f(a,ay,.....a..t), i={s f}, (15)

wheret is the time anda,,a,,......a, are parameters to

determine. Then employ an ANN with a single layed a
radial-basis functions (RBF) as the activation suntb
approximate (15)

k .
fi(8g,8p,.cty 1) = YW@, i ={s, f} (16)

j=1

where w; are the ANN weights andb; are Gaussian
functions, determining bell shaped relationships:

vectors,

(17)

CDj(t):exp[—(t_zj)zJ :
P

Note thatc is the equidistantly divided time grid for RBF
andg define the shape of RBF.

IV. CASESTUDY — BATCH EVAPORATIVE SUGAR
CRYSTALLIZATION PROCESS

A. Process Operation

Crystallisation occurs through the mechanisms of
nucleation, growth and agglomeration. The process i
characterised by strongly non-linear and non-statip
dynamics and can be divided into several sequerti@tes.

Charging During the first phase the pan is partially fille
with a juice containing dissolved sucrose (ternmgaddr).

Concentration The next phase is the concentration. The

diquor is concentrated by evaporation, under vaguuntil

the supersaturation reaches a predefined valuthig\stage

a;,i =123are weighting factors accounting for the relativeseed crystals are introduced into the pan to indinge

importance of each component of (14).
Several methods can tackle the optimisation prolfleth.

production of crystals. This is the beginning oé tthird
(crystallisation) phase.

The derivative based deterministic methods are erath Crystallisation (main phase)n this phase as evaporation
sensitive to the model initial conditions and dé goarantee gkes place further liquor or water is added to pae in
a global optimum but they are faster than the s8bb orger to guarantee crystal growth at a controlled
methods and are usually more appropriate to on-ling,ersaturation level and to increase total costehsugar

optimisation. Since the aim was to findf-line the optimal
profiles of the manipulated inputs that lead to imésation
of the process performance index at the end optbeess,
the stochastic approach appears to be more effisadution.
In particular, the evolutionary programming was sidered
as the method with less sensitivity to the scalaoigthe

in the pan. In most cases, due to economical reagsbe
liquor is replaced by other juice of lower puritierfmed
syrup).

Tightening.The fourth phase consists of tightening which
is principally controlled by the evaporation capaciThe



pan is filled with a suspension of sugar crystalsheavy

syrup, which is dropped into a storage mixer. At &md of Energy balance

the batch, the final massecuite undergoes cenatifig,

:/ivhere final refined sugar is separated from the tijew %:aJcns*'bFf +CJyp(Fs) +d 22)
quor. dt

The unit contains 15 sensors for the following Emies
and operating variables) inside the pan- massecuite  wherea, b, ¢, d are the components of parameter vector
temperatures at three locations; brix of solutidevel; P1 and J,,, is the evaporation rate which is a function of
massecuite _(?on5|stency; .s.tlrrer current; vacuurssore and the steam supply rate~(), considered as the second process
temperatureii) feed conditions temperature, brix and flow
rate of feed liquor and feed syruii) steam conditions
temperature, pressure and flow rate of steam.

Brix is the concentration of total dissolved sol{dacrose
plus impurities) in the solution. Supersaturatiennot a
measured variable but can be determined from thédaine
measurements. The feed flow rates of sugar liguangsand
the steam supply are considered as process inpusfinal
crystal contents and the end-point PSD charactettise
product quality. More details about the processhmifound -
elsewhere [4], [11]. % -8, _% B (23)

t

input.

Population balance (in volume coordinates)

The kinetics mechanisms of nucleation, crystal ghoand
particle agglomeration are defined by the poputatialance.
The population balance is expressed by the leadimments
of PSD in volume coordinatesji{) since agglomeration

must obey mass conservation low,

B. Knowledge-based hybrid model (analytical+ ANN)

Based on the available process measurements dedetaid i -G.j
first-principles model was developed and identified dt v
following the general structure (1-4). Due to thel of on-
line measurements of the PSD, the states relatédd the %:ZG + B2 (25)
population balance (3) are not estimable and itemake  dt Y !
model not suitable for optimization or control poses. To
overcome this problem a KBHM was obtained according 94 =3G, 1, + 3B fi (26)
the strategy presented in section Il. Short detioripof the  dt Ve 2
model follows below.

(24)

The crystallisation rate is determined as

Mass balance N
The mass of waterM,,), impurities (M;), dissolved ; _, du,
sucrose M) and crystals .) are included in the dt. -
following set of conservation mass balance equation The nucleation rate &), the growth rate G) and the
agglomeration kernelZ) are replaced by a feed-forward
aMm,, _ ANN with 4 inputs, 3 outputs and one hidden layéthv@
dt Feor 0= Br) = duap (18) sigmoid activation functions. The temperature obseguite
(T,), the supersaturatiofS), the purity of the solution

M:Ffpf B, (1- Pur ) (19()Purs_o|) and the volume fra_ction of crystalsu() are
dt considered as the networks inputs because thegffaltt
directly the kinetic parameters.
dM, _
dt Fi 1By PG = Js (20) Hybrid ANN training — sensitivity approach:
The training of an ANN requires that the networkigh¢s
dM, =3 (21) are determined in such a way that the error betwtben

dt network output and the corresponding target oubgebmes
minimal. In the hybrid system, however, the targetputs

where Pur; , B; and p; are the purity (mass fraction of are not available since the kinetic parameters roe

measured. Therefore, a new training procedure was

developed. Our solution was to build a hybrid ANHBiring

structure where the network outputs go through stixesl

feed flowrate considered as the process input. (known) part of the analytical model and to comptis

hybrid model output with the available data (Fip. 3

sucrose in the dissolved solids), brix and the ithems the
incoming feed.J,;; is the crystallisation rate anf; is the



The error for updating the network weights is action of oM be

the observed error and the gradient of the hybratleh Ag = B (32)
output with respect to the ANN output. The massrgétals

is considered as most appropriate to serve agjattautput hb

in the hybrid ANN training. _omg” (33)

According to equations (21), (23), the mass balamice P B
crystals can be rewritten as

The gradients (31-33) can be computed through
integration of the sensitivity equations

hyb
dl\/ljct _ fz(ﬁohyb’Mchyb’GNN)
g _ of, o,

(27) is incorporated in the hybrid training struetibutin -~ dt ~ am ™ °  aG
order to integrate itiyis required. Therefore its balance

A0 =0 (34)

equation is also involved in the network traininage, dA of of. o
B= T2+ 22 (o) K, 0=0 (@3
dt  am_ "™ o’ 0B
s 4 G
| dm,™ ( ) hyb
Pu, =y | Ve _ ¢ o 5 e dA ~ hy
—T A | B S Lo Moy, M Oy )0, (36)
] " —p dt M chyb aﬁohyb aB
T BNN fﬁdot = £,(BVBW)
_" q . . .
b Note, that whileA, can be straightforward obtainedl,
M™ /3G Me : ~
" and A, depend on the gradients @i, with respect toB,
€ =8| OM.”/0B Sensitivity [0 GNN B\ ot . .
aM™ /0B ; Ho ™5 B and 5, respectively. In order to determine them the same
c equations  je— . . . . . .
- strategy is applied leading to integration of tledlofving
— M sensitivity equations with zero initial conditions
Fig.3: Hybrid ANN training procedure
dyg _ of; of;
= =— Xg t—, 0)=0 37
dt a,uo /YB B XB( ) ( )
d/j hyb 1 _ hyb 2
A @8 ax, _of, ot
—E==-Xg+——, X0=0, (38)
dt )]

Superscriptshyb and NN are used to point out variables

obtained during the hybrid network training. Thewerk 1 - _ hyb\2 ofi
outputs give estimates of the growth rate, nuceatind where f, =B ——ﬁNN( 0 j : g =—2, and

. L . 2 0B
agglomeration kinetic parameters. These estimates a ~
propagated through (27-28). The error signal fodaiing Xp :aﬂ_
the network parameters is B
€& =Epsihc Mg )\B]T (29) C. KBHM-based optimization procedure

Process performance indeXhe crystallizer performance
It is obtained by multiplying the observed error index J; (related to the final time objectives) has several

components. The first objective is to achieve teaigswith a
Eps = M 25 M P (30) desired final size, which is quantified by the dyaariable
MA. It is practically more relevant instead of déafg a
with the gradient of the hybrid model output witspect fixed end-setpoint foMA to choose a tight zone around the
to the network outputs desired value. For the process considered these
areMA;, = 055 andMA, ., = 060. Therefore

_ oM

A
FTE

B1) MA,, <MA(t;)<MA, (39)



The second objective is reducing the quality vde&®V as
much as possible but in practiC¥ less than a predefined
maximum value is enough for good performance. Then

with CV,

CV(t) < CVos ax = 30% (40)

To guarantee sufficient efficiency of the produntidhe
crystals should occupy a certain minimum voluméefpan.
This objective is quantified by the crystal cont@nt)

WCin SWC(t¢ ), with we;, =50% (41)
The main process constrains are related to
supersaturation and the volume of the pan duriegbtktch.
In case the supersaturation is below a minimumeyatle
crystals start dissolving and if the supersaturatsoabove a
maximum value, undesired secondary nucleation tpkes.

Therefore

Smin s S(t) s Sma>< (42)
where for the process in hand reasonable limitialyes

are S, =102, S,

determined by the physical dimension of the pamdde
V(t) SV - With V., =35 (43)

The decision variables of the optimisation (thecpess

inputs) are the feeding rat&( and the steam supply rate

=125. The total volume constrain is {r . < (1)<FyuFamn<Fs()<Fs maitoyr)

3= —aymado, AM ., - Am(t ) -
om0, AM (¢ )~ AM o JF -
ata|max{0, V() - CVipg, P -
(44)

o 4[max(o, WCpi, —WC(t ¢ ))]2 -

(15[ma><(0, Sin = S(t))]z -

the

Og [ma)(ov S(t) - Smax)]2 -

a- [maX(O,V(t) _Vmax)]z'

and the optimisation problem (11) can be stated as

follows:

max J (45)

subject to: equations (18-28)

The iterative optimisation procedure can be sunmuedri
in the following steps:
i) Assignment of initial values of the process esatinitial

(F9. The optimal switching time between liquor andugy Values of all parametersa(| ) subject to optimization (16)
supplyts, was also considered as an optimisation parametgid the switching time between liquor and sytyp,

Due to technological limits of the process equipthEpand
F are limited which is considered as a hard consiithe
optimisation procedure. The input constrains arersarised
in Table 1.

TABLE 1. INPUT MIN AND MAX VALUES

Fsmir 11 [kg/s]
Fsma: 2.1 [kgls
Fimin 0.0 [r¥/s]
Fima 0.015 [n°/s]

The final process time is fixed to 90min. Takingoin
account (39-43), the general multi-objective optiation
performance index in (14) has the following paftcu
structure:

i) Computation of the manipulated inputs (15) lmyvig
(16) and (17) for each variable.

iii) The tentative inputs are propagated througle th
KBHM (see Fig. 2) and the values of the componehthe
performance index are obtaindd\, MA, V , S , wc

iv) The overall performance index (44) is computéd.
case, an improvement with the previous iteration is
registered, the evolutionary programming technique
generates a new set of; andts,. The procedure repeats

starting from the step 2.

v) If no improvements of the performance index (#&!)
achieved within a predefined iteration number er tblative
iteration-to-iteration change is insignificant theocedure is
stopped and the final optimal profiles are genekate

V. SIMULATION RESULTS

The simulation results are summarised in Figs. #¥e
optimal profiles of the steam supply rate and tredfng rate
of liquor/syrup with the respective switching tirbetween
liquor and syrup are depicted in Fig. 4. Based loese
optimal input profiles (determined by the optimirat
procedure), the optimal trajectories for the prscestputs
are estimated by the model. The optimal profilesthe



supersaturation (Fig.5a), the brix (Fig.5b) andrtfassecuite
temperature (Fig.5c) can be used then as setpoints
feedback control framework.

Fig. 6 shows the main process quality variablesglie
batch. Though the PSD objectives are related oitly the
final values, the smooth behaviour of MA (Fig.6adeCV
(Fig.6b) contribute to a higher process internafqrenance.
Note that the MA final value (0.6mm) is within theargins
defined by (39) and the CV= 28.2% is also less ttian
upper limit defined by (40). Moreover it is muclssethan
the average values of CV (37%-39%) obtained inrdsd
plant production [11]. The third objective, quéietl by
(41), is also satisfied. The crystal content (Fég.at the
process end was 57% of the total volume (Fig. Th& main
process constrains related to the supersaturatiornhe total
volume (42-43) remain within the predefined
V(t)=29n7 corresponds to approximately 90% utilisation
the working volume which is considered as a redslena
compromise between productivity and safetiness.
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VI. CONCLUSIONS

The application of ANN at two stages of batch
crystallization process automation, namely modgllend
optimisation, is presented.

At the modelling stage, a knowledge based hybridieho
(KBHM) of the process was designed that possedses t
advantages of both analytical and pure data baseckgs
models. The KBHM offers a reasonable compromise
between the extensive efforts to get a fully patensed
structure, as are the analytical models and ther poo
generalisation of the complete data-based modelling
approaches.

Optimisation strategy based on the KBHM model was
proposed and the simulations show that the vetyt tégnd
conflicting end-point objectives are simultaneoufdgsible
in the presence of hard process constrains. Morablel to
a significant improvement in theCV measure of the
industrial sugar crystallisation process as contgpate
statistically averaged value @V achieved by the industrial



data.

For successful implementation of the optimised dnt
strategy in practice, accurate tracking of the rogtd
profiles is required. However, the presence elitable
disturbances occurring in the process variables lkix,
purity and temperature of feeding solution, vacyuessure
or steam temperature can make the manipulated tsinpmi
optimal any more. A closed loop control is usualig most
effective solution where an on-line input correotids
performed based on the current measurements. T$@ss
are not treated in this paper but work on themadw fn
progress [19].
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