
 
 

 

 
Resumo - Este artigo é focado em assuntos de modelação do 
comportamento dinâmico e optimização baseada em modelo de 
processos industriais de cristalização em lotes. A estratégia das 
redes neuronais artificiais foi implementada como a ferramenta 
computacional. O objectivo é conduzir o processo ao estado 
óptimo de maximização do lucro e minimização dos custos. Os 
resultados de simulação demonstram que os objectivos 
conflituosos, que dizem respeito ao tempo final do processo,  são 
simultaneamente atingíveis na presença de restrições fortes 
impostos ao processo.  
 
Abstract — This paper is focused on issues of dynamic process 
modeling and model-based optimization of batch and fed-batch 
industrial crystallization processes applying the concept of 
artificial neural networks as computational tools. The objective 
is to drive the process to its optimal state of profit maximization 
and cost minimization. The simulation results demonstrate that 
the very tight and conflicting end-point objectives are 
simultaneously feasible in the presence of hard process 
constrains.  
 

I. INTRODUCTION  

The phenomenon of crystallisation occurs in a large group 
of pharmaceutical, biotechnological, food and chemical 
processes. These kind of industrial productions are usually 
performed in a batch or fed-batch mode which is related with 
the formulation of a control problem in terms of economic or 
performance objective at the end of the process (end-point 
property control). The crystallisation quality is evaluated by 
the particle size distribution (PSD) at the end of the process 
which is quantified by two parameters - the average (in mass) 
particle size (MA) and the coefficient of particle variation 
(CV). The main challenge of the batch production is the 
large batch to batch variation of the final PSD. This lack of 
process repeatability is caused mainly by improper control 
policy and results in final product recycling and loss 
increase. 
Due to the highly competitive nature of the today’s 
crystallization industry, model-based optimization becomes  
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increasingly accepted as one of the approaches that can 
overcome the problem of repeatability and can drive the 
process to its optimal state of profit maximization and cost 
minimization [1], [2]. However, the crystallisation occurs 
through the complex mechanisms of particle nucleation, 
subsequent particle growth and agglomeration or 
aggregation, phenomena that are physically not well 
understood therefore their reliable modelling is still a 
challenging task [3]. For example many of the reported 
crystallizer models neglect the agglomeration effect but it 
leads in general to biased estimation of CV and MA [4].  

 
Development of a reliable model facilitates effectively all 

subsequent steps in process optimization, control and 
operation monitoring.  There are two main modelling 
paradigms - analytical (based on the first principles rules) 
which has been the traditional way of process modelling 
since many years and data-driven (based on the process data) 
which became nowadays practically meaningful due to the 
rapid growth of computational resources. One of the most 
successful data-driven modelling techniques are the artificial 
neural networks (ANNs). Their ability to approximate 
complex non-linear relationships without prior knowledge of 
the model structure makes them a very attractive alternative 
to the classical modelling techniques [5]- [7].  

The purpose of this paper is twofold. On one hand we 
discuss and evaluate the benefits of applying ANNs at two 
stages of the process control –dynamic behaviour modelling 
and model-based optimization. On the other hand it is an 
attempt to determine a systematic procedure for modelling 
and optimisation of batch crystallization class of processes.   

II.  CRYSTALIZATION PROCESS MODELLING  

A. Analytical prior knowledge approach (white box model) 

The traditional way of process modelling for many years has 
been by mathematical equations. Since the analytical models 
capture physical behaviour they have the potential to 
extrapolate beyond the regions for which the model was 
constructed.  The general first principles model describing a 
batch crystallization process consists of three parts [4].  
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The mass of all participating solid and dissolved substances 
are included in a set of conservation mass balance equations  
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where qRtM ∈)( and mRtF ∈)( are the mass and the flow 

rate vectors, with q and m dimensions respectively, and ft  is 

the final batch time. P1 is the vector of physical parameters 
as density, viscosity, purity, ect.  
 
Energy balance:  
The general energy (E) balance model is 
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where P2 incorporates the enthalpy terms and specific 
heat capacities derived as functions of physical and 
thermodynamic properties.  

 
Population balance:  
Mathematical representation of the crystallization rate can be 
achieved through basic mass transfer considerations [8] or by 
writing a population balance represented by its moment 
equations [9]. Employing a population balance is generally 
preferred since it allows to take into account initial 
experimental distributions and, most significantly, to 
consider complex mechanisms such as those of size 
dispersion and/or particle agglomeration/aggregation. Hence 
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where iη is the j-th  moment of the mass-size particle 

distribution function, 0
~
B , G and β’  are the kinetic variables 

nucleation rate,  linear growth rate  and the agglomeration 
kernel, respectively.  The PSD measures (MA and CV) are 
derived from (3) as follows  
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It is difficult to formulate physically based analytical models 
for the kinetic variables (see Fig. 1). Here, the empirical 
correlations have a long tradition and there exist in the 
literature a large number of empirical equations for them [4], 
[10], [11]. The decision which of them provides the best 
approximation of the crystallisation process in hand is very 
difficult. 
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Fig 1. Analytical model 

 

B. ANN (black box model) 

Data based modelling techniques are methods that are able to 
extract process knowledge from measured data.  The ANNs 
are the most celebrating data driven approach. A neural 
network consists of a set of elementary computing units 
termed neurons, which are combined in a parallel-serial 
mode. The neuron consists of a set of input signals, 
multiplied by respective weights and processed through an 
activation function to compute the neuron output. The 
parallel combination of a number of such units supplied with 
same inputs is called layer. The most typical ANN structure 
consists of tree layers – input, output and hidden layers. In 
case the information (the signals) move only in one direction 
(from left to right) the network is termed feedforward neural 
network (FFNN).   This is in contrast to the recurrent neural 
networks (RNN) having feedback connections from the 
output layer to the input or hidden layers.  More details on 
the ANN concept can be found elsewhere [5].  
The topology of the network is defined by the number of 
network inputs and outputs, the number of layers and 
neurons per layer and the associated number of weights and 
biases. While the particular choice of network inputs and 
outputs is physically motivated and therefore comparatively 
straightforward task, the choice of layer numbers and 
neurons per layer is less clear. It depends on the available 
process data, the desired model accuracy and the assumed 
model complexity. There is no recipe for choosing the right 
ANN topology. In most of the applications the ANN contains 
usually one or rarely two hidden layers. In general, the 
chosen topology is a trial and error compromise between 
model accuracy and complexity.  
 
ANN training:  
The ANN parameters (weights and biases) are identified by 
an adaptation algorithm known as network training.  Among 
various ANN training algorithms the Backpropagation (BP) 
algorithm is the most widely implemented for modeling 
purposes. Standard BP is a gradient descent algorithm in 
which the network parameters are moved in the steepest 
descent direction i.e. along the negative of the gradient of the 
performance index. This is the direction in which the 
performance index is decreasing most rapidly. The term 
backpropagation refers to the manner in which the gradients 
are computed for nonlinear multilayer networks. It starts 
computing the gradient of the performance index with 
respect to the network parameters in the last (the output) 
layer and continuing subsequently with the previous layers. 
One (k) iteration of this algorithm can be written as 

kkkk gxx α−=+1 , 
k

k
k

x

P
g

∂
∂

=            (5) 

 
where xk is a vector of current network parameters, gk is the 
current gradient of the performance index (Pk ) and αk is the 
learning rate. The steepest descent algorithm suffers of 
convergence problems. Though the performance index 
decreases most rapidly along the negative of the gradient, 
this does not guarantee the fastest convergence. The 



 
 

 

conjugate gradient algorithm [12] (with many variations) and 
the Newton’s method [13] are alternatives which overcome 
the problem of the optimization speed. The basic step of 
Newton’s method is 
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where Hk is the Hessian matrix (second derivatives) of the 
performance index at the current values of the ANN 
parameters. Newton’s method often converges faster than 
steepest descent and conjugate gradient methods. 
Unfortunately, it is complex and expensive to compute the 
Hessian matrix for ANN. In case the performance index has 
the form of a sum of squares of the errors (typically in 
training of ANNs)  
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where NN
ky , kt  and ke are the network output, target and 

error vectors respectively, then there are solutions (known 
also as quasi-Newton methods) to approach second-order 
training speed without having to compute the Hessian matrix. 
We apply here the Levenberg-Marquardt algorithm where, at 
each iteration, instead of direct calculation of second 
derivatives, the Hessian matrix is approximated as  
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where J is the Jacobian matrix that contains first derivatives 
of the network errors with respect to the network parameters 
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Then the gradient is computed as 
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and the Levenberg-Marquardt algorithm updates the 
parameters in the following way: 
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When the scalar µ �is zero, this is just Newton’s method, 
using the approximate Hessian matrix. When µ �is large, 
this becomes gradient descent with a small step size. 
Newton’s method is faster and more accurate near an error 
minimum, so the aim is to shift towards Newton’s method as 
quickly as possible. Thus, µ �is decreased after each 
successful step (reduction in performance function) and is 
increased only when a tentative step would increase the 
performance function. In this way, the performance function 
will always be reduced at each iteration of the algorithm. 

An obvious advantage of the ANN modelling is its 
universal character in approximating different physical 
phenomena with similar computational structure. It saves 
time and efforts for identifying parameters, in contrast to the 
case when an analytical model is designed. Therefore ANNs 
are nowadays known as powerful computing structures for 
data processing and information storage. However, they have 
some remarkable disadvantages.  The ANN approach suffers 
of the lack of transparent structure and physical 
understanding of the network parameters. The resulting 
black-box (input-output) model in general does not provide 
the transparency desired to enhance the process 
understanding. It relies only on the recorded data and does 
not exploit any other source of knowledge available for the 
process in hand.  
 

C. Knowledge-based hybrid modeling (grey box model) 

Knowledge-based hybrid modelling (KBHM) is a quite 
efficient alternative of the two modelling techniques 
discussed above [14].  The idea of KBHM is to complement 
the analytical model with the data-driven approach. In the 
design of such models it is possible to combine theoretical 
and experimental knowledge as well as process information 
from different sources: theoretical knowledge from physical 
and mass conservation laws; experimental data from 
laboratory plant experiments; experimental data from real 
plant experiments; data from regular process operation; 
knowledge and experience from qualified process operators.  
The clear advantages of KBHM compared with the data-
based modelling are first with respect to more physical 
transparency of the model parameters and secondly less 
training data is required [15].  

Our solution for a KBHM of crystallization processes 
combines a partial analytical model reflecting the mass, 
energy and population balances (1-3) with an ANN for 
modelling the crystal growth, nucleation rate and the 
agglomeration kernel (see Fig. 2). The ANN parameters 
were tuned applying the Levenberg-Marquart optimisation 
procedure described above.  
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III.  ANN PARAMETERISED END-POINT OPTIMIZATION  

 
End-point process optimization, i.e. achievement of the 

best outcome of a finite end-time process through 
appropriate manipulation of its input variables is the main 
control concern of batch applications. For example, in a 
crystallization process the final time values of the quality 
parameters MA, and CV are common properties of interest 



 
 

 

for optimization. The optimization problem can be 
mathematically formulated as: 
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where (11) is the performance index,  (12) is the  process 

model, function f is the state-space description, function  h is 
the relationship between the output and the state and P is the 

parameter vector. mn RtuRtx ∈∈ )(,)(  and pRty ∈)(  are 

the state, the manipulated input, also known as the control 
decision variable, and the control output vectors, 
respectively. The manipulated inputs, the state and the 
control outputs are subject to the following constraints, 

Υ∈Ζ∈Χ∈ )(,)(,)( tytutx  in which Χ , Z and Y are 

convex and closed subsets of mn RR , and 
pR . jg  and 

jv are the equality and inequality constrains with p and l 

dimensions respectively.  
We apply here the practical approach of reformulating the 

optimization problem (11) and the process constrains (13) in 
an unified structure through the use of a penalty function in 
the performance index. It is a simple and intuitive way to 
include the constrains in the optimization procedure as an 
extra term in the performance function  
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where jg  and jv  are the constraints defined in (13) and 

3,2,1, =iiα are weighting factors accounting for the relative 

importance of each component of (14). 
Several methods can tackle the optimisation problem (14). 

The derivative based deterministic methods are rather 
sensitive to the model initial conditions and do not guarantee 
a global optimum but they are faster than the stochastic 
methods and are usually more appropriate to on-line 
optimisation. Since the aim was to find off-line the optimal 
profiles of the manipulated inputs that lead to maximisation 
of the process performance index at the end of the process, 
the stochastic approach appears to be more efficient solution. 
In particular, the evolutionary programming was considered 
as the method with less sensitivity to the scaling of the 

multidimensional performance index and good convergence 
approaching the optimum [16], [17].  

To relax the numerical procedure the optimization 
variables are usually parameterised as peace wise constant, 
linear or polynomial functions. However, it means less 
freedom in determining their final values and leads to 
suboptimal profiles. To deal with this problem we express 
each optimization variable as a general nonlinear time 
function [18] 
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where t is the time and kaaa ,......., 21  are parameters to 

determine. Then employ an ANN with a single layer and 
radial-basis functions (RBF) as the activation units to 
approximate (15) 
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where jw are the ANN weights and jΦ  are Gaussian 

functions, determining bell shaped relationships: 
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Note that cj is the equidistantly divided time grid for RBF 

and ρj define the shape of RBF.  

IV . CASE-STUDY – BATCH EVAPORATIVE SUGAR 

CRYSTALLIZATION PROCESS 

A. Process Operation 

Crystallisation occurs through the mechanisms of 
nucleation, growth and agglomeration. The process is 
characterised by strongly non-linear and non-stationary 
dynamics and can be divided into several sequential phases. 

Charging. During the first phase the pan is partially filled 
with a juice containing dissolved sucrose (termed liquor).  

Concentration. The next phase is the concentration. The 
liquor is concentrated by evaporation, under vacuum, until 
the supersaturation reaches a predefined value. At this stage 
seed crystals are introduced into the pan to induce the 
production of crystals. This is the beginning of the third 
(crystallisation) phase. 

Crystallisation (main phase). In this phase as evaporation 
takes place further liquor or water is added to the pan in 
order to guarantee crystal growth at a controlled 
supersaturation level and to increase total contents of sugar 
in the pan. In most cases, due to economical reasons, the 
liquor is replaced by other juice of lower purity (termed 
syrup).  

Tightening. The fourth phase consists of tightening which 
is principally controlled by the evaporation capacity. The 



 
 

 

pan is filled with a suspension of sugar crystals in heavy 
syrup, which is dropped into a storage mixer. At the end of 
the batch, the final massecuite undergoes centrifugation, 
where final refined sugar is separated from the (mother) 
liquor. 

The unit contains 15 sensors for the following properties 
and operating variables: i) inside the pan - massecuite 
temperatures at three locations; brix of solution; level; 
massecuite consistency; stirrer current; vacuum pressure and 
temperature. ii) feed conditions - temperature, brix and flow 
rate of feed liquor and feed syrup. iii) steam conditions - 
temperature, pressure and flow rate of steam.  

Brix is the concentration of total dissolved solids (sucrose 
plus impurities) in the solution. Supersaturation is not a 
measured variable but can be determined from the available 
measurements. The feed flow rates of sugar liquor/syrup and 
the steam supply are considered as process inputs. The final 
crystal contents and the end-point PSD characterise the 
product quality. More details about the process can be found 
elsewhere [4], [11]. 

B.  Knowledge-based hybrid model (analytical+ ANN) 

Based on the available process measurements a detailed 
first-principles model was developed and identified 
following the general structure (1-4). Due to the lack of on-
line measurements of the PSD, the states related with the 
population balance (3) are not estimable and it makes the 
model not suitable for optimization or control purposes. To 
overcome this problem a KBHM was obtained according to 
the strategy presented in section II. Short description of the 
model follows below. 

 
Mass balance:  
The mass of water ( wM ), impurities ( iM ), dissolved 

sucrose ( sM ) and crystals ( cM ) are included in the 

following set of conservation mass balance equations  
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where fPur , fB and fρ are the purity (mass fraction of 

sucrose in the dissolved solids), brix and the density of the 
incoming feed. crisJ  is the  crystallisation rate and fF is the 

feed flowrate considered as the process input. 

 
Energy balance 
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where a, b, c, d are the components of parameter vector 

P1 and vapJ  is the evaporation rate which is a function of 

the steam supply rate (sF ), considered as the second process 

input.  
 
Population balance (in volume coordinates):  
The kinetics mechanisms of nucleation, crystal growth and 

particle agglomeration are defined by the population balance. 
The population balance is expressed by the leading moments 
of PSD in volume coordinates (iµ~ ) since agglomeration 

must obey mass conservation low, 
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The crystallisation rate is determined as  

 

dt

d
J ccris

1
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The nucleation rate (0
~
B ), the growth rate (Gv) and the 

agglomeration kernel (β’)  are replaced by a feed-forward 
ANN with 4 inputs, 3 outputs and one hidden layer with 9 
sigmoid activation functions. The temperature of massecuite 
( mT ), the supersaturation (S), the purity of the solution 

( solPur ) and the volume fraction of crystals (cυ ) are 

considered as the networks inputs because they all affect 
directly the kinetic parameters.   

 
Hybrid ANN training – sensitivity approach:  
The training of an ANN requires that the network weights 

are determined in such a way that the error between the 
network output and the corresponding target output becomes 
minimal. In the hybrid system, however, the target outputs 
are not available since the kinetic parameters are not 
measured. Therefore, a new training procedure was 
developed. Our solution was to build a hybrid ANN training 
structure where the network outputs go through some fixed 
(known) part of the analytical model and to compare this 
hybrid model output with the available data (Fig. 3).  



 
 

 

The error for updating the network weights is a function of 
the observed error and the gradient of the hybrid model 
output with respect to the ANN output. The mass of crystals 
is considered as most appropriate to serve as a target output 
in the hybrid ANN training.  

According to equations (21), (23), the mass balance of 
crystals can be rewritten as 
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(27) is incorporated in the hybrid training structure but in 

order to integrate it 0
~µ is required. Therefore its balance 

equation is also involved in the network training stage, 
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Fig.3: Hybrid ANN training procedure 
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Superscripts hyb and NN are used to point out variables 

obtained during the hybrid network training. The network 
outputs give estimates of the growth rate, nucleation and 
agglomeration kinetic parameters. These estimates are 
propagated through (27-28).  The error signal for updating 
the network parameters  is 
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It is obtained by multiplying the observed error 
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with the gradient of the hybrid model output with respect 

to the network outputs 
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The gradients (31-33) can be computed through 

integration of the sensitivity equations 
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Note, that while Gλ  can be straightforward obtained, Bλ  

and βλ  depend on the gradients of 0
~µ  with respect to 0

~
B  

and β´, respectively. In order to determine them the same 
strategy is applied leading to integration of the following 
sensitivity equations with zero initial conditions 
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C. KBHM-based optimization procedure 

Process performance index: The crystallizer performance 
index fJ  (related to the final time objectives) has several 

components.  The first objective is to achieve crystals with a 
desired final size, which is quantified by the quality variable 
MA.  It is practically more relevant instead of defining a 
fixed end-setpoint for MA to choose a tight zone around the 
desired value. For the process considered these 
are 55.0min =MA  and 60.0max =MA . Therefore 
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The second objective is reducing the quality variable CV as 
much as possible but in practice CV less than a predefined  
maximum value is enough for good performance. Then  
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To guarantee sufficient efficiency of the production, the 

crystals should occupy a certain minimum volume of the pan. 
This objective is quantified by the crystal content (wc) 
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The main process constrains are related to the 

supersaturation and the volume of the pan during the batch. 
In case the supersaturation is below a minimum value, the 
crystals start dissolving and if the supersaturation is above a 
maximum value, undesired secondary nucleation takes place. 
Therefore   
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where for the process in hand reasonable limiting values 

are 02.1min =S , 25.1max =S .  The total volume constrain is 

determined by the physical dimension of the pan. Hence 
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The decision variables of the optimisation (the process 

inputs) are the feeding rate (Ff) and the steam supply rate 
(Fs). The optimal switching time between liquor and syrup 
supply tsyr was also considered as an optimisation parameter. 
Due to technological limits of the process equipment, Ff and 
Fs are limited which is considered as a hard constrain of the 
optimisation procedure. The input constrains are summarised 
in Table 1.  

 
TABLE 1.  INPUT MIN AND MAX VALUES 

Fsmin 1.1 [kg/s] 
Fsmax 2.1 [kg/s] 
Ffmin 0.0 [m3/s] 
Ffmax 0.015 [m3/s] 

 
The final process time is fixed to 90min. Taking into 

account (39-43), the general multi-objective optimization 
performance index in (14) has the following particular 
structure: 

 
 

 

( )[ ]

( )[ ]

( )[ ]

( )[ ]

( )[ ]

( )[ ]

( )[ ] .)(,0max

)(,0max

)(,0max

)(,0max

)(,0max

)(,0max

)(,0max

2
max7

2
max6

2
min5

2
min4

2
max3

2
max2

2
min1

VtV

StS

tSS

twcwc

CVtCV

AMtAM

tAMAMJ

f

f

f

f

−α

−−α

−−α

−−α

−−α

−−α

−−α−=

 (44) 

 
and the optimisation problem (11) can be stated as 

follows: 
 

{ } J
syrsssf tFtFFFtFF ;)(;)( maxminmaxmin

max
≤≤≤≤

 (45) 

 
subject to:  equations (18-28 ) 
 
The iterative optimisation procedure can be summarized 

in the following steps:  
i) Assignment of initial values of the process states, initial 

values of all parameters (jw ) subject to optimization (16) 

and the switching time between liquor and syrup, tsyr. 
ii) Computation of the manipulated inputs (15) by solving 

(16) and (17) for each variable.  
iii) The tentative inputs are propagated through the 

KBHM (see Fig. 2) and the values of the components of the 
performance index are obtained (CV, MA, V , S , wc).  

iv) The overall performance index (44) is computed. In 
case, an improvement with the previous iteration is 
registered, the evolutionary programming technique 
generates a new set of jw and tsyr.  The procedure repeats 

starting from the step 2.  
v) If no improvements of the performance index (44) is 

achieved within a predefined iteration number or the relative 
iteration-to-iteration change is insignificant the procedure is 
stopped and the final optimal profiles are generated.  

V. SIMULATION RESULTS 

The simulation results are summarised in Figs. 4-7. The 
optimal profiles of the steam supply rate and the feeding rate 
of liquor/syrup with the respective switching time between 
liquor and syrup are depicted in Fig. 4. Based on these 
optimal input profiles (determined by the optimization 
procedure), the optimal trajectories for the process outputs 
are estimated by the model. The optimal profiles of the 



 
 

 

supersaturation (Fig.5a), the brix (Fig.5b) and the massecuite 
temperature (Fig.5c) can be used then as setpoints in a 
feedback control framework.   

Fig. 6 shows the main process quality variables along the 
batch. Though the PSD objectives are related only with the 
final values, the smooth behaviour of MA (Fig.6a) and CV 
(Fig.6b) contribute to a higher process internal performance. 
Note that the MA final value (0.6mm) is within the margins 
defined by (39) and the CV= 28.2% is also less than the 
upper limit defined by (40). Moreover it is much less than 
the average values of CV (37%-39%) obtained in the real 
plant production [11].  The third objective, quantified by 
(41), is also satisfied.  The crystal content (Fig.7a) at the 
process end was 57% of the total volume (Fig. 7b). The main 
process constrains related to the supersaturation and the total 
volume (42-43) remain within the predefined limits. 
V(tf)=29m3 corresponds to approximately 90% utilisation of 
the working volume which is considered as a reasonable 
compromise between productivity and safetiness.  
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Fig.4. Optimised steam supply (a) and feeding rate (b) profiles, and 
the optimal switching time.  
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Fig. 5.  Supersaturation (a), brix (b) and temperature (c) profiles 
resulting from the optimised control strategy.  

1000 2000 3000 4000 5000
0

10

20

30

40
1000 2000 3000 4000 5000

0.00

0.15

0.30

0.45

0.60

b

 

t, [s]

 CV, [%]

a

 

 

 MA, [mm]

 
Fig. 6. Average (in mass) crystal size MA (a) and coefficient of 
variation CV (b) resulting from the optimised control strategy. 
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Fig. 7. Crystal content (a), the total (massecuite) volume and the 
crystal volume (b)  resulting from the optimised control strategy.  

VI. CONCLUSIONS 

The application of ANN at two stages of batch 
crystallization process automation, namely modelling and 
optimisation, is presented.  

At the modelling stage, a knowledge based hybrid model 
(KBHM) of the process was designed that possesses the 
advantages of both analytical and pure data based process 
models. The KBHM offers a reasonable compromise 
between the extensive efforts to get a fully parameterised 
structure, as are the analytical models and the poor 
generalisation of the complete data-based modelling 
approaches.  

Optimisation strategy based on the KBHM model was 
proposed and the simulations show that the very tight and 
conflicting end-point objectives are simultaneously feasible 
in the presence of hard process constrains. Moreover it led to 
a significant improvement in the CV measure of the 
industrial sugar crystallisation process as compared to 
statistically averaged value of CV achieved by the industrial 



 
 

 

data.  
For successful implementation of the optimised control 
strategy in practice, accurate tracking of the optimised 
profiles   is required. However, the presence of inevitable 
disturbances occurring in the process variables like brix, 
purity and temperature of feeding solution, vacuum pressure 
or steam temperature can make the manipulated  inputs not 
optimal any more. A closed loop control is usually the most 
effective solution where an on-line input correction is 
performed based on the current measurements. These issues 
are not treated in this paper but work on them is now in 
progress [19]. 
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