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Abstract Second order diffusion tensor analysis of diffusion 
weighted MR data only accounts for a single intra voxel fibre 
direction. This poses a problem in many regions of the brain 
where fibres cross. An anisotropy measurement based on the 
traditional diffusion tensor model, such as fractional 
anisotropy (FA), produces significantly low values when 
there are fibres crossing within the same voxel, or in the 
presence of other partial volume effects. A new anisotropy 
index based on the variance of the diffusion MRI signal is 
described and applied to both simulated and experimental 
data. A method to normalise this parameter, in order to allow 
comparisons across scan sessions, is also presented. It is 
shown that this parameter can characterise white matter in 
situations in which the diffusion tensor formalism fails to 
accurately reflect the local diffusion. The images obtained 
show more detail in the fibre structure, a better contrast 
between regions of high and low anisotropy, and the main 
fibre tracts appear to be thicker and brighter, which 
corresponds better anatomically to the information obtained 
from structural images. 

I. INTRODUCTION 

Diffusion Weighted Magnetic Resonance Imaging 
(DWMRI) measures diffusivity in tissues and can provide 
unique biologically and clinically relevant information that 
is not available from other imaging modalities. This 
information includes parameters that help characterise 
tissue composition, the physical properties of tissue 
constituents, tissue microstructure, and its architectural 
organisation. Moreover, these measurements are 
performed non-invasively and without exogenous contrast 
agents. 
It is well established that the information provided by 

Diffusion MRI can be very useful in characterising the 
anisotropy of the brain. However, an anisotropy 
measurement based on the traditional diffusion tensor 
model [1], such as fractional anisotropy (FA) [2], 
produces significantly low values when there are fibres 
crossing within the same voxel. This observation led to a 
recent interest in finding alternative measurements of 
anisotropy, for example, SDV (Spherical Signal Variance) 
[3] and GA (Generalised Anisotropy) [4]. Here we 

describe an anisotropy index based on the variance of the 
diffusion MRI signal 

II.  THEORY 

When diffusion is isotropic, the MRI signal measured 
with gradient directions defined on a spherical surface and 
expressed as the radius from the origin as a function of the 
spherical coordinates (θ, φ) has the shape of a perfect 
sphere. Anisotropic diffusion deviates from this spherical 
surface in a manner that depends on the characteristics of 
the local diffusion (Figure 1). The deviation of the 
measured signal from the spherical shape can therefore be 
used as a measure of anisotropy. A way to quantify that 
deviation is to calculate the MR signal variance:  

 

2
22 2

1 1

1 1N N

i i
i i

SSV S S S S
N N= =

= − = − 
 
 

∑ ∑  (1) 

where N is the number of gradient directions used and 

iS is the measured MR signal for each direction. We will 

call this parameter Spherical Signal Variance (SSV). This 
method allows the identification of regions of diffusion 
anisotropy in the brain, and avoids the problem of fitting 
an inappropriate model to the data. 

 
Fig. 1. Spherical coordinates plot of the MR signal of (a) an isotropic 

voxel, (b) a single fiber and (c) two fibers crossing within the same 

voxel. 

However, the range of values that this index can take is 
unclear. Typically, an anisotropy index will give a value 
between 0 and 1, with 0 corresponding to a fully isotropic 
medium and 1 to an infinitely anisotropic medium. But 
since SSV is a variance, this index can (in theory) assume 
any value between 0 and ∞ . SSV=0 would still 
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correspond to perfect isotropy, but the upper limit is not 
well defined, which makes it difficult to scale the images 
in a consistent way that allows comparisons between 
different subjects.  
A way to normalise SSV is to use a function defined in 

the interval 0x ≥ and that takes values in 0 ( ) 1f x≤ ≤  

In addition, this function must be monotonic increasing 

1 2 1 2( ) ( )x x f x f x> ⇔ > .The functions that satisfy 

these two conditions can be divided in two classes:  
• functions of type (a) - functions that have non-

zero derivative about '0 ( (0)) 0x f= ≠  

• functions of type (b) - functions that have zero 

derivative about '0 ( (0)) 0x f= =  

Functions of type (a) will tend rapidly to zero as x → 0, 
while functions of type (b) will tend to zero slowly. 
Functions of type (b) will therefore return values very 
close to zero for low values of x - this will work as a “cut-
off” that can be useful to mask even better the noise 
outside the brain in SSV images. However, this “cut-off” 
might also mask regions of low anisotropy inside the 
brain, resulting in a loss on structure detail.  
An example of a function of type (a) is: 
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where σ is an adjustable parameter that determines the 
shape if this function, and a simple function of type (b) is 
given by: 

 
2/( ) x

bf x e−σ=  (3) 

A related issue is the comparability of SSV across scan 
sessions. The use of such a normalisation function does 
not itself address this problem - in order to do so we must 
relate SSV to some metric which is repeatable between 
sessions. This may be done by using the FA map for the 
same dataset: by selecting some white matter regions of 
the brain were FA gives comparable values across 
different subjects we will determine the appropriate value 
of σ for each dataset.  

III.  METHODS 

A. Comparison between SSV and other anisotropy indices 

SSV was calculated for 4 datasets of healthy volunteers 
carried out at the Wolfson Brain Imaging Centre (WBIC), 
using a Bruker MedSpec S300 3T scanner. Scans were 
carried out with the approval of the local ethics committee. 
A 63 direction encoding scheme [5] with a b-value of 
1000s/mm2 was used. Diffusion weighting was achieved 
using a Stejskal-Tanner sequence [7], with pulse width δ = 
27.5ms, inter-pulse spacing ∆=40ms TE=85ms and 
TR=6000ms. The in plane field of view was 20cm (matrix 

size 100×100, reconstructed to 128×128) and the slice 
thickness was 2.0mm. 63 slices were acquired 
contiguously, with a total scan time of 12 minutes. For 
comparative purposes, FA, SDV [3] and GA [4] were also 
calculated. To better compare SSV and FA, simulations 
were performed for four fibres with different values of 
anisotropy. Each simulated fiber was first aligned with the 
gradient frame of reference to give a diagonal tensor D:  
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The noise-free diffusion weighted signals were calculated 
according to the diffusion tensor model [1], assuming an 
ideal value of the baseline signal S0 = 100. Complex 
Gaussian noise was then superimposed upon the ideal 
signals to provide the complex noise-contaminated signals. 
The noise values were obtained using the routine gasdev 
[6], and scaled so that the signal to noise ratio (SNR), 
defined as (ideal S0)/(standard deviation of noise), could 
be set to any desired level. A series of SNR were 
considered in the range of 10-100. The six independent 
elements of D and the baseline signal S0 were fitted 
simultaneously to all the generated signals using a non-
linear least-squares fitting routine [6] to the traditional 
single tensor model [1]. To evaluate the robustness of the 
results in the presence of noise, the procedure noise 
generation → creation of noisy data → fitting → 
determination of FA and SSV was repeated 213

 times, and 
the mean values and standard deviations were calculated. 
In addition, variable fibre orientation was realised by 
spatially rotating the simulated fibres at discrete 
orientations. 121 orientations were used, which spanned 
uniformly the space of (θ, φ), 0º ≤ θ ≤ 180º and 0º ≤ φ ≤ 
360º. 

B. Normalisation of SSV 

To determine the appropriate value of _ in either case, we 
used the FA map for the same dataset. We first applied a 
brain extracting tool (BET) to the FA map using FSL 3.3. 
Then, we selected all the brain voxels in the middle slice 
of each dataset, and used them to find the value of σ that 
fits better to FA=fa(SSV) and, separately, to FA= fb(SSV). 
The middle slice contains a large quantity of white matter, 
and it is the slice where the corpus callosum is better 
defined. 
We applied this method to the four datasets used in 

section III. The selected voxels were fitted to fa(x) or fb(x) 
using optimised non-linear fitting routines for each 
function. The fitting process associated with fb(x) is more 
simple and faster, since we can simply apply a linear least-
squares fitting process to log(FA)=−σ/SSV2, and use the 
result as a good initial guess to initialise the non-linear 
least-sequares fit. In the case of fa(x), finding a good initial 
estimate is not straightforward, and therefore we used a 
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Markov Chain Monte Carlo algorithm [8] to find the 
appropriate value of σ.  

IV.  RESULTS 

A. Comparison between SSV and other anisotropy indices 
 

 
Fig. 2. Results obtained with simulated Fibres 1-4 for: (a) FA, (b) SSV 

and (c) FA/SSV ratio. 

Figure 2 shows the results obtained for FA (Fig 2 (a)) and 
SSV (Fig 2 (b)) for the simulated Fibres 1-4. For each type 
of fibre, the ratio between FA and SSV was also 
calculated, and the results obtained are presented in Figure 
2(c). 
Figure 2 (b) shows that the higher the simulated 

anisotropy the higher is the value obtained for SSV, which 
confirms that SSV can be used as a measurement of 
anisotropy. However, this image also highlights one of the 
limitations of using the spherical signal variance as an 
anisotropy index: the minimum and maximum values of 
SSV do not converge to the same value as SNR increases, 
which means that SSV is not rotationally invariant. 
The ratio FA/SSV increases as SNR increases, which 

suggests that FA is more affected by the presence of noise. 
This could be related to the fact that FA is rotationally 
independent in the absence of noise and so its performance 

improves as we increase the value of SNR. On the other 
hand, the ratio FA/SSV decreases as the simulated FA 
increases, which indicates that SSV is more sensitive for 
high anisotropy regions and will show a higher contrast 
than FA between regions of high and low anisotropy. 

 
Fig. 3. Orientation colour display maps modulated by FA, GA, SDV and 

SSV obtained for two of the datasets analysed. 

Figure 3 shows the orientation colour display maps 
modulated by FA, GA, SDV and SSV1, for the middle 
slice of two of the four datasets analysed. The images were 
obtained with FSL View (part of FSL 3.3). When 
compared to FA maps, SSV images show better contrast 
between regions of high and low anisotropy, as predicted 
by the simulations performed. GA images show a better 
contrast when compared to FA maps, but we can see more 
detail in the fibre structure in SSV images. It is possible to 
identify the same structures in FA, GA and SSV maps, but 
in SSV images the fibre tracts appear to be thicker and 

                                                           
1 1In these color display maps the red, green and blue channels 

correspond to dx, dy and dz multiplied by an anisotropy index. d = (dx, 

dy, dz) is the fibre direction estimated by the diffusion tensor model at 

each voxel. 
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brighter, which agrees better with the information we get 
from structural images, especially in the region of the 
corpus callosum. In addition, the noise outside the brain is 
automatically cleared in SSV images. This is due to the 
fact that the variance of the noise is much smaller than the 
signal variance within the brain. In SDV images the 
contrast is generally worse and much structure detail is 
lost. This might be due to the logarithmic scaling 
necessary to estimate the apparent diffusivity for each 
voxel, which can introduce additional errors, especially at 
low values of SNR.  

B. Normalisation of SSV 

Figure 4 shows the original SSV image compared with 
the images obtained after normalisation with fa(x) and fb(x). 
Both normalised images and the un-normalised SSV 
images look very similar: they show the same structures 
with identical contrasts. However, while it is difficult to 
identify any differences between SSV and fa(x) images, the 
fb(x) images look slightly more blurry than the original 
ones, and there is a clear loss of structure detail in the 
regions of low anisotropy (outside the main fibre tracts). 
This suggests that a function of type (a) is more suitable 
for this normalisation process. Table I shows the average 
values of FA, SSV and normalised SSV (using fa(x)). 
obtained for a region of interest drawn on the corpus 
callosum of each analysed dataset. These results confirm 
that the described normalisation process does produce 
SSV values comparable across different subjects. 

V. DISCUSSION AND CONCLUSION 

The local structure of diffusion in voxels with 
multidirectional fibres can be quite complicated, and it is 
not necessarily well characterised by a single diffusion 
tensor. The results obtained with SSV show that this 
method can characterise white matter in situations in 
which the diffusion tensor formalism may oversimplify the 
local diffusion characteristics.  
 

Dataset FA SSV Normalised 
SSV 

1 0.682 0.945 17933.134 
2 0.787 0.912 19391.043 
3 0.884 0.977 59509.087 
4 0.886 0.916 79457.869 

TABLE I: AVERAGE VALUES OF FA, SSV AND NORMALISED SSV 

OBTAINED FOR A REGION OF INTEREST DRAWN ON THE CORPUS 

CALLOSUM OF EACH ANALYSED DATASET. 

Even though the results obtained with SSV show a 
general improvement when compared to FA results, this 
technique has two important limitations. First, SSV is not 
rotationally invariant. This means that two voxels with the 
same degree of anisotropy but different orientations could 
show up with completely different contrasts in an SSV 
map. However, this limitation is not exclusive to SSV: in 

the presence of noise the estimated FA depends on the 
fibre orientation (as do all the traditional anisotropy 
indices), and for signal to noise ratios around 10 (the 
values of SNR we typically obtain with experimental data) 
the relative variation ((max-min)/max) of FA is similar to 
the relative variation of SSV. Secondly, the range of 
values that this index can take is unclear, which makes it 
difficult to scale the images in a consistent way that allows 
comparisons between different subjects. This issue was 
addressed in sections III-C and IV-C and it has been 
shown that SSV images can be normalised without any 
significant loss of detail in fibre structure. The results 
obtained with two different normalisation functions were 
compared. In both cases, the main fibre tracts appear very 
well defined, but some structure detail is loss in the 
regions of low anisotropy when we use a function of type 
(b). This is most probably due to the “cut-off” effect 
described earlier and illustrated in Figure 10. For this 
reason, even though the fitting process associated with 
fb(x) is faster, the results obtained by this process are worse 
than the ones obtained with fa(x). Future work will include 
the application of this method to datasets acquired from 
patients, in order to assess how this parameter changes in 
pathological conditions. 
 
 
 

 
Fig. 4. SSV images for datasets 1 and 2 compared with the images 

obtained after normalisation with fa(x). and fb(x). 
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