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Abstract Second order diffusion tensor analysis of diffusion
weighted MR data only accounts for a single intra voxel fibre
direction. This poses a problem in many regions of the brain
wher e fibres cross. An anisotropy measurement based on the
traditional diffusion tensor model, such as fractional
anisotropy (FA), produces significantly low values when
there are fibres crossing within the same voxel, or in the
presence of other partial volume effects. A new anisotropy
index based on the variance of the diffusion MRI signal is
described and applied to both simulated and experimental
data. A method to normalise this parameter, in order to allow
comparisons across scan sessions, is also presented. It is
shown that this parameter can characterise white matter in
situations in which the diffusion tensor formalism fails to
accurately reflect the local diffusion. The images obtained
show more detail in the fibre structure, a better contrast
between regions of high and low anisotropy, and the main
fibre tracts appear to be thicker and brighter, which
corresponds better anatomically to the information obtained
from structural images.

|. INTRODUCTION

Diffusion Weighted Magnetic Resonance Imaging
(DWMRI) measures diffusivity in tissues and canvide
unique biologically and clinically relevant infortien that
is not available from other imaging modalities. §hi
information includes parameters that help charesster
tissue composition, the physical properties of utss
constituents, tissue microstructure, and its aechitral
organisation. Moreover, these measurements
performed non-invasively and without exogenous @t
agents.

It is well established that the information prowddby
Diffusion MRI can be very useful in characterisitige
anisotropy of the brain. However,
measurement based on the traditional diffusion aiens
model [1], such as fractional anisotropy (FA) [2],
produces significantly low values when there atwel
crossing within the same voxel. This observatiahte a
recent interest in finding alternative measuremeotts
anisotropy, for example, SDV (Spherical Signal ¥ade)
[3] and GA (Generalised Anisotropy) [4]. Here we

are

an anisotropy

describe an anisotropy index based on the variahtiee
diffusion MRI signal

IIl. THEORY

When diffusion is isotropic, the MRI signal measire
with gradient directions defined on a sphericafae and
expressed as the radius from the origin as a fumcif the
spherical coordinatesB ¢) has the shape of a perfect
sphere. Anisotropic diffusion deviates from thihapcal
surface in a manner that depends on the charaiteris
the local diffusion (Figure 1). The deviation ofeth
measured signal from the spherical shape can trerée
used as a measure of anisotropy. A way to quattidy
deviation is to calculate the MR signal variance:
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where N is the number of gradient directions used and
Sis the measured MR signal for each direction. Wik wi
call this parameter Spherical Signal Variance (SSWjs
method allows the identification of regions of difon
anisotropy in the brain, and avoids the problenfittihg
an inappropriate model to the data.
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Fig. 1. Spherical coordinates plot of the MR sigofala) an isotropic
voxel, (b) a single fiber and (c) two fibers cregsivithin the same
voxel.

However, the range of values that this index c&e ia
unclear. Typically, an anisotropy index will givevalue
between 0 and 1, with O corresponding to a fulbgrigpic
medium and 1 to an infinitely anisotropic mediunutB
since SSV is a variance, this index can (in theasgume
any value between 0 ando. SSV=0 would still
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correspond to perfect isotropy, but the upper liginot
well defined, which makes it difficult to scale thmmages
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size 10&100, reconstructed to 12828) and the slice
thickness was 2.0mm. 63 slices were acquired

in a consistent way that allows comparisons betweencontiguously, with a total scan time of 12 minutEsr

different subjects.
A way to normalise SSV is to use a function defitred
the interval x= 0and that takes values i< f (x)<1

In addition, this function must be monotonic inieg
X >X, = f(x)>f(X,).The functions that satisfy

these two conditions can be divided in two classes:
functions of type (a) - functions that have non-
zero derivative aboux =0 (f (0))# O
functions of type (b) - functions that have zero
derivative aboutx =0 (f (0))=10

Functions of type (a) will tend rapidly to zero»as~ 0,
while functions of type (b) will tend to zero slowl
Functions of type (b) will therefore return valuesry
close to zero for low values @&f- this will work as a “cut-
off” that can be useful to mask even better thesaoi
outside the brain in SSV images. However, this -affit
might also mask regions of low anisotropy inside th

brain, resulting in a loss on structure detail.
An example of a function of type (a) is:

L9=tanhex)=——— @
e
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comparative purposes, FA, SDV [3] and GA [4] welspa
calculated. To better compare SSV and FA, simulatio
were performed for four fibres with different vatuef
anisotropy. Each simulated fiber was first aligneth the
gradient frame of reference to give a diagonaldebs

A, 0 0
D={0 A, 0/[x10°mm’ /s ()
0 0 A,

The noise-free diffusion weighted signals were daled
according to the diffusion tensor model [1], assugman
ideal value of the baseline signal $ 100. Complex
Gaussian noise was then superimposed upon the ideal
signals to provide the complex noise-contaminaiglads.
The noise values were obtained using the roujaselev
[6], and scaled so that the signal to noise ra8dlR),
defined asifleal S)/(standard deviation of noise), could
be set to any desired level. A series of SNR were
considered in the range of 10-100. The six independ
elements ofD and the baseline signal, &ere fitted
simultaneously to all the generated signals usingpia-
linear least-squares fitting routine [6] to theditinal
single tensor model [1]. To evaluate the robustéshe

where ¢ is an adjustable parameter that determines theresults in the presence of noise, the procedursenoi

shape if this function, and a simple function gigyb) is
given by:

f (x) =€ 3)
A related issue is the comparability of SSV acresan
sessions. The use of such a normalisation funalimes
not itself address this problem - in order to donsomust
relate SSV to some metric which is repeatable bastwe
sessions. This may be done by using the FA maphtor
same dataset: by selecting some white matter regibn

the brain were FA gives comparable values across

different subjects we will determine the approgriaslue
of o for each dataset.

. METHODS

A. Comparison between SSV and other anisotropy indices

SSV was calculated for 4 datasets of healthy veknst
carried out at the Wolfson Brain Imaging Centre (WB
using a Bruker MedSpec S300 3T scanner. Scans wer
carried out with the approval of the local ethiosnenittee.

A 63 direction encoding scheme [5] with a b-valde o
1000s/mmwas used. Diffusion weighting was achieved
using a Stejskal-Tanner sequence [7], with pulsihw =
27.5ms, inter-pulse spacingp\=40ms TE=85ms and
TR=6000ms. The in plane field of view was 20cm (iRat

generation — creation of noisy data— fitting —
determination of FA and SSV was repeatéttithes, and
the mean values and standard deviations were ascul

In addition, variable fibre orientation was reatisby
spatially rotating the simulated fibres at discrete
orientations. 121 orientations were used, whichnspd
uniformly the space ofg( ¢), 0°< 6 < 180°and 0%< @ <
360°.

B. Normalisation of SSV

To determine the appropriate value of _ in eitteereg we
used the FA map for the same dataset. We firstieppl
brain extracting tool (BET) to the FA map using F%B.
Then, we selected all the brain voxels in the nadslice
of each dataset, and used them to find the valwetbét
fits better to FA£(SSV) and, separately, to FAXSSV).
The middle slice contains a large quantity of winitatter,
and it is the slice where the corpus callosum igebe
defined.

We applied this method to the four datasets used in
section Ill. The selected voxels were fittedf{&) or f,(x)

%sing optimised non-linear fitting routines for bac

function. The fitting process associated wfiflx) is more
simple and faster, since we can simply apply alineast-
squares fitting process to log(FA)g/SSV, and use the
result as a good initial guess to initialise then-finear
least-sequares fit. In the casef.f), finding a good initial
estimate is not straightforward, and therefore wedua
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Markov Chain Monte Carlo algorithm [8] to find the improves as we increase the value of SNR. On therot

appropriate value af. hand, the ratio FA/SSV decreases as the simulafed F
increases, which indicates that SSV is more seasftir
IV. RESULTS high anisotropy regions and will show a higher casit
than FA between regions of high and low anisotropy.

A. Comparison between SSV and other anisotropy indices Datasat 1 Dataset 2
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Fig. 2. Results obtained with simulated Fibresfbr4(a) FA, (b) SSV
and (c) FA/SSV ratio. Fig. 3. Orientation colour display maps modulatgd-B, GA, SDV and

SSV obtained for two of the datasets analysed.

Figure 2 shows the results obtained for FA (Fig@Q énd

SSV (Fig 2 (b)) for the simulated Fibres 1-4. Facletype Figure 3 shows the orientation colour displa_y maps
of fibre, the ratio between FA and SSV was also modulated by FA, GA, SDV and SSVfor the middle

2(c). obtained with FSL View (part of FSL 3.3). When

Figure 2 (b) shows that the higher the simulated COmpared to FA maps, SSV images show better cantras

anisotropy the higher is the value obtained for S8hich ~ between regions of high and low anisotropy, as ipted
confirms that SSV can be used as a measurement opY the simulations performed. GA images show aebett
anisotropy. However, this image also highlights ohéhe ~ Contrast when compared to FA maps, but we can see m
limitations of using the spherical signal varianee an Qetau! in the fibre structure in SSV images. Ip@ssible to
anisotropy index: the minimum and maximum values of identify the same structures in FA, GA and SSV maps
SSV do not converge to the same value as SNR sesea I SSV images the fibre tracts appear to be thickwet
which means that SSV is not rotationally invariant.

The ratio FA/SSV increases as SNR increases, which
suggests that FA is more affected by the presehoeise.
This could be related to the fact that FA is ratadilly
independent in the absence of noise and so itenpeahce

1 1In these color display maps the red, green ang lthannels
correspond talx, dy anddz multiplied by an anisotropy indes. = (dx,
dy, d2) is the fibre direction estimated by the diffusimmsor model at
each voxel.
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brighter, which agrees better with the informatiea get
from structural images, especially in the region tioé
corpus callosum. In addition, the noise outsidebitzén is
automatically cleared in SSV images. This is dughe
fact that the variance of the noise is much smélien the
signal variance within the brain. In SDV images the
contrast is generally worse and much structureildista
lost. This might be due to the logarithmic scaling
necessary to estimate the apparent diffusivity dach
voxel, which can introduce additional errors, esgfcat
low values of SNR.

B. Normalisation of SSV

Figure 4 shows the original SSV image compared with
the images obtained after normalisation vitk) andf,(x).
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the presence of noise the estimated FA depend$en t
fibre orientation (as do all the traditional anieply
indices), and for signal to noise ratios around (&
values of SNR we typically obtain with experimerdata)
the relative variation ((max-min)/max) of FA is gian to
the relative variation of SSV. Secondly, the rangfe
values that this index can take is unclear, whietkes it
difficult to scale the images in a consistent waat @allows
comparisons between different subjects. This issas
addressed in sections 1lI-C and IV-C and it hasnbee
shown that SSV images can be normalised without any
significant loss of detail in fibre structure. Thesults
obtained with two different normalisation functiongre
compared. In both cases, the main fibre tracts apypery
well defined, but some structure detail is loss thre
regions of low anisotropy when we use a functiorypg

Both normalised images and the un-normalised SSV(b). This is most probably due to the “cut-off’ et

images look very similar: they show the same stmest
with identical contrasts. However, while it is difflt to
identify any differences between SSV difs) images, the
f(x) images look slightly more blurry than the oridina
ones, and there is a clear loss of structure datathe
regions of low anisotropy (outside the main fibracts).
This suggests that a function of type (a) is mariéable
for this normalisation process. Table | shows therage
values of FA, SSV and normalised SSV (usiiig)).
obtained for a region of interest drawn on the uaerp
callosum of each analysed dataset. These resuifgmo
that the described normalisation process does peodu
SSV values comparable across different subjects.

V. DISCUSSIONAND CONCLUSION

The local structure of diffusion in voxels with
multidirectional fibres can be quite complicateddat is
not necessarily well characterised by a singleudifin
tensor. The results obtained with SSV show thas thi
method can characterise white matter in situations
which the diffusion tensor formalism may oversimipthe
local diffusion characteristics.

Dataset FA SSV Normalised
SsSV

1 0.682 0.945 17933.134

2 0.787 0.912 19391.043

3 0.884 0.977 59509.087

4 0.886 0.916 79457.869

TABLE I: AVERAGE VALUES OFFA, SSVAND NORMALISED SSV
OBTAINED FOR AREGION OF INTEREST DRAWN ON THE CORPUS
CALLOSUM OF EACHANALYSED DATASET.

Even though the results obtained with SSV show a
general improvement when compared to FA resulis, th
technique has two important limitations. First, SiS\hot
rotationally invariant. This means that two voxeith the
same degree of anisotropy but different orientatioould
show up with completely different contrasts in aBVS
map. However, this limitation is not exclusive t8\8 in

described earlier and illustrated in Figure 10. Fas
reason, even though the fitting process associaféu
fy(X) is faster, the results obtained by this processvarse
than the ones obtained witlx). Future work will include
the application of this method to datasets acquirem
patients, in order to assess how this parametergesain
pathological conditions.

Dataset 1

1
U

S5V norm
using [ ix

55V narm
using f i

Fig. 4. SSV images for datasets 1 and 2 compargdtiagé images
obtained after normalisation wifk(x). andf,(x).
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