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Abstract – The goal of this paper is to give a short overview 
to the complex field of x-ray CT reconstruction methods, 
focusing on the main classes of reconstruction methods and 
on some of the methods actually in use in modern x-ray CT 
systems. 

I. INTRODUCTION 

Since the origins of x-ray CT (due to the pioneering work 
of Hounsfield and Kormack) to present time, tomographic 
reconstruction has been one of the most dynamic research 
topics of the last forty years. An impressive number of 
scientific publications and meetings has been devoted to 
this research field and the trend is likely to continue. 
The goal of this paper is to give an overview to the 

complex research field of x-ray CT reconstruction, 
focusing on the main classes of reconstruction methods 
and on some of the methods actually in use in modern x-
ray CT systems. 
The extraordinary evolution of x-ray CT is based on the 

interconnected and reciprocally challenging developments 
in systems’ technology, mathematical methods and new 
clinical applications. Because of this we won’t consider 
the reconstruction methods in a purely theoretical 
framework, instead, we’ll constantly refer practical aspects 
like the specific system geometry, acquisition protocol or 
clinical application to which the different methods are 
suitable. 
We’ll start with some basic aspects and with the formal 

definition of the mathematical problem of tomographic 
reconstruction in the original 2D geometrical framework 
(section II).  
In section III we shortly describe the two main algorithms 

for 2D tomographic reconstruction, direct Fourier (DF) 
and filtered backprojection (FBP) methods. Most of the 
state of the art 2/3D reconstruction methods belong to the 
idea of FBP algorithm. 
With the introduction of spiral acquisition geometry and 

multi-slice detectors, the acquisition/reconstruction 
processes need to be described in a 3D framework. 
Nevertheless, under certain conditions, CT reconstruction 
methods continue to follow a 2D paradigm. In section III, 
we review the reconstruction methods suitable for 
multislice spiral x-ray CT.  

II.  BASICS OF X-RAY CT RECONSTRUCTION 

The distribution of the attenuation coefficient on a 
transversal section of an object can be described as a 2D 

function f (object function) in the (x,y) plane of the 
section.  
The two parameters θ and s univocally specify the line 

with equation 

 syx =+ θθ sincos  (1) 

in the (x,y) plane and the general formula for the line 
integral, known as the Radon transform of f(x,y), is: 

 ∫∫ −+= dxdysyxyxfsp )sincos(),(),( θθδθ   (2).  

The purpose of x-ray CT 2D reconstruction methods is to 
calculate f(x,y) given a proper set of measured line 
integrals, that means, from a mathematical point of view, 
to calculate the inverse Radon transform given a sufficient 
set of samples. 
A projection consists of a collection of integrated values 

of f(x,y) taken along a set of straight lines in the plane and 
the projection data set is given by a number of projections 
taken with different orientations. Basically, two 
geometries have been defined for the sets of line integrals 
making a 2D projection: parallel and divergent (or fan-
beam).  
In parallel geometry (the acquisition geometry of first 

generation systems, shown in figure 1), a projection 
)(spθ  consists of a collection of line integrals taken 

along straight parallel lines in the plane, that means a 
collection of p(θ,s) with constant θ  and s∈[-S/2,S/2]. A 
parallel projection data set is usually represented as a 2D 
matrix, called sinogram, each row of which corresponds to 
a value for the parameter θ  (a parallel projection) and 
each column to a value for the parameter s. 
In divergent geometry (the acquisition geometry of third 

generation systems, shown in figure 2) to each angular 
position of the focal spot corresponds a fan of focus-
detector lines (the detector being an array of detector 
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Fig. 1 Object function f(x,y) and its parallel projection in θ direction. 
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elements). Given the ray of focal spot trajectory, the 
parameters β and γ define the line of equation  

γγβγβ sin)sin()cos( ryx −=+++  

and each divergent projection is a collection of line 
integrals taken with constant β and γ∈[-Γ/2,Γ/2] . 
In Radon space, the space of the Radon transform of 

f(x,y), a projection data set for a given geometry 
corresponds to a set of samples taken over a specific 
sampling grid. As a consequence, given a set of samples 
obtained with a given geometry a different sample set can 
be calculated by interpolation. This transformation, called 
rebinning, is commonly performed to obtain a parallel 
projection sample set given a divergent one. 
A fundamental result in tomographic reconstruction is the 

Fourier slice theorem (details and demonstration can be 
found in [1]): 
Theorem 1: The Fourier transform of a parallel projection 

of an object function f(x,y) taken at angle θ gives a slice of 
the two-dimensional Fourier transform of f(x,y), F(u,v), 
subtending an angle θ  with the u axis. 
In other words, the 1D Fourier transform Pθ(σ) of the 

parallel projection pθ(s), gives the values of F(u,v) along 
line BB in figure 3. 

III.  2D X-RAY CT RECONSTRUCTION 

The Fourier slice theorem suggests a simple way to solve 
the reconstruction problem. Taking parallel projections of 
the object function f at angles θ1, θ2 .. θn and Fourier 
transforming each of them, we obtain the 2D Fourier 
transform of the object function F(u,v) on n radial lines. In 
ideal conditions (infinite number of projections and 
samples per projection) F(u,v) would be known at all 

points in the frequency domain and the object function 
f(x,y) could be recovered by 2D inverse Fourier 
transforming F(u,v). 
Fourier reconstruction methods (also known as direct 

Fourier or Fourier based methods) follow directly from 
this ideal procedure, adapted to the discrete case [2]. Since 
only a finite number of projections and samples per 
projection are taken, F(u,v) is known just on a finite 
number of points along a finite number of radial lines (fig. 
4) and, in order to obtain an approximation of f(x,y) by 2D 
inverse Fourier transform of F(u,v), first we have to 
interpolate from the radial points to the points on a 
Cartesian grid. 
Unfortunately, the results obtained with such a straight 

method suffer from artefacts due to interpolation in 
Fourier space and aliasing. Nevertheless, due to its low 
computational complexity (O(N2logN)) this method has 
been object of research and various techniques have been 
proposed in order to improve its performance. Some 
techniques are based on peculiar sampling schemes –polar 
interleaved grid [3], polar squared grid [2], linogram [4]– 
while some others take advantage on recent development 
in the calculation of NUFFT (Non Uniform Fast Fourier 
Transform) [5], allowing for the 2D inverse Fourier 
transform of F(u,v) directly from its radial samples. 
Especially these last methods have shown a performance 
equivalent to the one of the more widely accepted FBP 
algorithm with a considerable saving in computational 
time. The fact that, in principle, these algorithms are not 
suitable for reconstruction from divergent projections 
doesn’t seem to be an obstacle anymore since, in any case, 
2D reconstruction is performed on interpolated data (after 
longitudinal interpolation), being possible to choose a 
parallel geometry resampling grid. Moreover, it has been 
demonstrated that, taking advantage of NUFFT, direct 
Fourier methods can be applied directly on divergent 
projections [6]. 
For historical and practical reasons, the most successful 

2D reconstruction method (chosen by all the 
manufacturers) is FBP. The reconstruction formula can be 
mathematically derived [1], but the method can also be 
introduced in a very intuitive fashion. 
If we smear back (backproject) the measured samples 

along the direction with which they were taken, we obtain 
a blurred version of the image we were supposed to get. 
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Fig. 2 Object function f(x,y) and its divergent projection in β direction. 
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Fig. 3 Graphic representation of Fourier slice theorem statement. 
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Fig. 4 In Fourier reconstruction, sample points of the 2D Fourier 

transform of the image are given on a conventional polar grid. 
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This problem is solved by filtering (with a ramp filter) the 
projections before backprojecting them. This method can 
be applied to divergent geometry by adding additional 
weighting to the projections and in the backprojection 
process.  
Despite their higher computational complexity (O(N3)), 

FBP methods have been preferred over DF methods 
because they offer the possibility to perform the 
acquisition and reconstruction processes at the same time, 
to adjust image quality by choosing different (harder or 
softer) filters, to be easily extended to new acquisition 
geometries. Nowadays, since reconstruction is always 
performed “a posteriori” and the NFFT based DF methods 
also need a filtering step, giving the possibility to choose 
between softer and harder filters, we can say that (in 2D 
reconstruction) FBP and DF methods have equivalent 
performance. 
In most applications it’s important to limit as much as 

possible the number of projections to consider in the 
reconstruction of an image. In case of divergent 
projections we just need a set of projections corresponding 
to a focal spot rotation arc of π+Γ (being Γ the fan angle), 
called short scan data set [7]. Both FBP and DF 
algorithms can be modified in order to perform 
reconstruction based on short scan data sets. 
Moreover, it has been demonstrated that an object point 

can be reconstructed exactly if it “sees” a scan path 
segment of angular range π. Thus, if we are interested in 
the reconstruction in just a limited ROI, an even smaller 
data set is sufficient (super short scan). Specific 
reconstruction algorithms have been developed to 
reconstruct ROI images based on a super short scan data 
set [8, 9]. 

IV.  SPIRAL CT: FROM 2 TO 3D RECONSTRUCTION 

With the introduction of multislice spiral acquisition, 
although the acquisition geometry is defined in the 3D 
space, up to a small number of slices (tipically 8) image 
reconstruction is still managed as a 2D reconstruction 
problem. The spiral acquisition geometry is defined 
introducing a new parameter, called pitch, which is the 
ratio of table movement per rotation and collimator 
aperture. 
An additional processing step called longitudinal 

interpolation allows for the synthesis of a consistent planar 
data set from the spiral data for an arbitrary image 

position, then, 2D reconstruction is performed. The 
possibility to retrospectively select image position and 
reconstruction increment provides the most significant 
advantage of spiral acquisition. 
Various different approaches to longitudinal interpolation 

have been proposed: 360º/180ºLI –Linear Interpolation– 
(for single slice acquisition), 360º/180ºMLI –Multislice 
Linear Interpolation– and 180ºMFI – Multislice Filtered 
Interpolation– (for multislice acquisition). In figure 6 the 
interpolation scheme of the 180ºFMI longitudinal 
interpolation algorithm is represented. In this algorithm 
are selected for interpolation (filtered) all the samples 
corresponding to a longitudinal window of pre-defined 
width. Slice thickness can be altered by setting different 
filter widths [10]. 
For higher number of slices (wider cone angle), the error 

associated with longitudinal interpolation cannot be 
neglected anymore. A number of algorithms have been 
developed taking into account the focal spot trajectory and 
the cone angle of different slices. Basically, in these 
algorithms 2D reconstruction is performed over tilted 
image planes (fig. 7), then, the multiple tilted images are 
interpolated (filtrated) to obtain axial images. The tilted 

 
Fig. 5 Focal spot rotation arc corresponding to a super short scan data 

set. 

 
Fig. 6 Interpolation scheme in 180ºFMI longitudinal interpolation 

algorithm [10]. 

 

Fig. 7 2D reconstruction over tilted planes and longitudinal flter to 

obtain axial images (www.impactscan.org). 

 

Fig. 8 In ASSR algoritm the image plane is selected in order to 

minimize the reconstruction error [11]. 
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planes are selected in order to better fit the segment of 
trajectory used for the reconstruction. Techniques like 
ASSR –Advanced Single Slice Rebinning– and AMPR –
Adapted Multiple Plane Reconstruction– follow this 
strategy [12, 13]. 
In the SMPR –Segmented Multiple Plane 

Reconstruction– technique [14], short segments of focal 
spot trajectory are considered. For each of these segments 
the data corresponding to each detector slice are rebinned 
to a small set of parallel projections, which are filtered and 
backprojected to the image plane that better fits the focal 
spot trajectory and the cone angle of the detector slice, 
obtaining a set of incomplete images on planes with 
different inclination (fig. 9). Finally, in order to obtain an 
axial image, the partial images have to be longitudinally 
interpolated and combined. This or similar strategies are 
used in some modern 64 slices CT systems (Siemens, GE). 
Another possible reconstruction strategy, already 

followed by manufacturers like Philips and Toshiba in 
their state of the art multi slice CT systems, is fully 3D 
reconstruction. These algorithms are extension of the 
Feldkamp algorithm, an approximate 3D filtered  

backprojection algorithm developed for sequential 
scanning [15], to multislice spiral scanning. With this 
approach, the measurement rays are first weighted and 
filtered (similarly to what happen in 2D filtered 
backprojection for divergent geometry) and then 
backprojected into a 3D volume along the lines of 
measurement, accounting in this way for their cone-beam 
geometry. Examples of Feldkamp type 3D filtered 
backprojection algorithms for spiral trajectory are [16-18]. 
Three-dimensional backprojection has a high 
computational complexity (O(N4)) and requires dedicated 
hardware to reduce image-reconstruction times. 

CONCLUSIONS 

We presented a short overview on x-ray CT 
reconstruction methods. Although 2D acquisition 
geometries are almost outdated, 2D reconstruction is still 
in use since, due to the high computational complexity of 
3D reconstruction algorithms, most of the reconstruction 
methods continue to follow one of the paradigms: 

• sinogram synthesis -> 2D axial plane 
reconstruction 

• 2D tilted plane reconstruction -> axial plane 
image interpolation. 

Due to space constraints, we have limited our analysis to 
the most important methods. 
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Fig. 9 Reconstrução de imagens parciais in SMPR algorithm [14]. 


